Antimicrobial Activity of a Synthetic Brevibacillin Analog Against Multidrug-Resistant Campylobacter spp.
Abstract
:1. Introduction
2. Results
2.1. Antimicrobial Susceptibility Testing
Strains | Ciprofloxacin | Tetracycline | Gentamycin | Ampicillin | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Disc a | MIC b | gyrAc | R-box d | Disc a | MIC b | tet(O) e | Disc a | MIC b | Genotype f | Disc a | MIC b | bla OXA-61 g | |||
NGS | PCR | ||||||||||||||
C. jejuni | |||||||||||||||
1 | CCUG11284 | S | 1 | WT | WT | S | na | neg | na | S | na | - | I | 32 | - |
2 | 10034 | R | na | WT | T-A | R | na | + | na | S | na | - | I | na | + |
3 | 10166 | R | na | WT | T-A | R | na | + | na | S | na | - | R | na | + |
4 | 21187 | I | na | WT | T-A | R | na | neg | + | S | na | - | I | na | + |
5 | 21330 | R | 4 | WT | T-A | R | na | + | na | S | 2 | - | I | na | + |
6 | 21338 | I | 1 | WT | WT | R | na | neg | + | S | na | - | R | na | + |
7 | 21347 | I | 4 | WT | T-A | R | 16 | neg | + | S | na | - | I | na | + |
8 | 21387 | R | 4 | WT | WT | R | na | neg | + | R | 32 | aph(3′)-IIIa | S | na | - |
9 | 21388 | I | 1 | WT | WT | R | na | + | na | S | na | - | I | na | - |
10 | 21390 | I | 4 | WT | T-A | S | 2 | neg | na | S | na | - | R | na | + |
11 | 21391 | R | 8 | T86I | WT | R | na | + | na | I | na | - | I | na | + |
12 | 24313 | R | 4 | WT | T-A | S | na | neg | na | S | 8 | - | S | 64 | + |
13 | 2110274318 | R | 8 | T86I | T-A | R | na | + | na | S | na | - | S | 16 | - |
14 | 2110274330 | R | 8 | T86I | WT | R | na | + | na | S | na | - | R | na | + |
15 | 2110274350 | R | na | T86I | T-A | S | na | neg | na | S | na | - | R | na | + |
16 | 2110274352 | I | 8 | T86I | T-A | R | na | neg | + | S | na | - | R | na | + |
17 | 2110274918 | R | na | T86I | T-A | R | na | neg | + | S | na | - | R | na | + |
18 | 2110278639 | R | 8 | T86I | WT | S | na | neg | na | S | na | - | R | 64 | - |
19 | 2110279208 | R | na | T86I | T-A | R | na | + | na | S | na | - | R | na | + |
20 | 2110283250 | I | 1 | WT | WT | S | na | na | S | na | - | R | na | + | |
C. coli | |||||||||||||||
21 | CP.70.80 | S | 1 | WT | WT | S | na | neg | na | S | na | - | I | 32 | - |
22 | 21057 | R | 8 | T86I | T-C | R | na | + | na | S | na | - | R | na | + |
23 | 21176 | R | 8 | T86I | WT | R | na | neg | + | S | na | - | R | na | + |
24 | 21245 | R | 2 | WT | WT | R | na | + | na | R | 16 | aph(3′)-IIIa | I | 64 | + |
25 | 21349 | I | 1 | WT | WT | S | na | neg | na | S | na | I | na | - | |
26 | 24757 | R | na | T86I | WT | R | na | + | na | R | 32 | aph(3′)-IIIaaph(2″)-If | I | na | - |
27 | 2020/0011 | R | na | T86I | WT | S | na | - | na | S | na | - | R | 128 | + |
28 | 2020/0013 | I | na | WT | WT | R | na | + | na | S | na | - | R | na | + |
29 | 2020/0019 | I | na | WT | WT | R | na | + | na | S | na | - | R | na | + |
30 | 2020/0045 | R | na | T86I | WT | S | na | - | na | S | na | - | I | na | - |
31 | 2020/0048 | R | 8 | T86I | WT | R | na | + | na | S | na | - | I | na | + |
32 | 2020/0049 | R | na | T86I | WT | R | na | + | na | S | na | - | R | na | + |
33 | 2020/0073 | R | na | T86I | WT | R | na | + | na | S | na | - | R | na | + |
34 | 2110278602 | I | na | WT | WT | R | na | neg | + | S | na | - | R | na | + |
35 | 2110296031 | R | na | T86I | WT | R | na | + | na | S | na | - | R | na | + |
C. fetus | |||||||||||||||
36 | 24317 | R | 8 | T86I | WT | R | na | + | na | S | na | - | I | na | - |
37 | 24326 | I | 1 | WT | WT | S | na | - | na | S | na | - | R | na | - |
C. lari | |||||||||||||||
38 | 24309 | I | 1 | WT | WT | S | na | - | na | S | 2 | - | R | na | - |
39 | 24315 | I | 2 | WT | WT | S | na | - | na | S | 2 | - | R | na | + |
40 | 24316 | R | 4 | T86V | WT | S | na | - | na | S | na | - | R | na | + |
41 | 24323 | R | na | T86V | WT | S | na | - | na | S | na | - | R | na | + |
42 | 24324 | I | 4 | T86V | WT | S | na | - | na | S | na | - | S | na | + |
43 | 24329 | R | na | T86V | WT | S | na | - | na | S | na | - | R | na | + |
44 | 24756 | I | na | WT | WT | S | na | - | na | S | 2 | - | I | na | - |
2.2. Molecular Typing and Secondary Metabolite Biosynthesis Analysis
2.3. Chemical Synthesis and Antimicrobial Activity of the Thr1 Analog
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains
4.2. Campylobacter Culture
4.3. Antimicrobial Susceptibility Test
4.4. Whole-Genome Sequencing and Data Analysis
4.5. Production of the Brevibacillin Thr1 Analog
4.6. Antimicrobial Activity of the Brevibacillin Analog
4.7. Mutants’ Selection
4.8. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Manyi-Loh, C.; Mamphweli, S.; Meyer, E.; Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018, 23, 795. [Google Scholar] [CrossRef] [PubMed]
- Ventola, C.L. The antibiotic resistance crisis: Part 1: Causes and threats. Pharm. Ther. 2015, 40, 277. [Google Scholar]
- WHO. Antimicrobial Resistance: WHO. 2023. Available online: https://www.who.int/health-topics/antimicrobial-resistance (accessed on 17 November 2021).
- Hansson, I.; Sandberg, M.; Habib, I.; Lowman, R.; Engvall, E.O. Knowledge gaps in control of Campylobacter for prevention of campylobacteriosis. Transbound. Emerg. Dis. 2018, 65, 30–48. [Google Scholar] [CrossRef]
- Tong, S.; Ma, L.; Ronholm, J.; Hsiao, W.; Lu, X. Whole genome sequencing of Campylobacter in agri-food surveillance. Curr. Opin. Food Sci. 2021, 39, 130–139. [Google Scholar] [CrossRef]
- Hodges, L.M.; Carrillo, C.D.; Upham, J.P.; Borza, A.; Eisebraun, M.; Kenwell, R.; Mutschall, S.K.; Haldane, D.; Schleihauf, E.; Taboada, E.N. A strain comparison of Campylobacter isolated from retail poultry and human clinical cases in Atlantic Canada. PLoS ONE 2019, 14, e0215928. [Google Scholar] [CrossRef] [PubMed]
- Franklin, K.; Pollari, F.; Marshall, B.J.; Pintar, K.D.M.; Nesbitt, A.; Young, I.; McEWEN, S.A.; Vanderlaan, J.; Papadopoulos, A. Stool submission data to help inform population-level incidence rates of enteric disease in a Canadian community. Epidemiol. Infect. 2015, 143, 1368–1376. [Google Scholar] [CrossRef]
- John, P.; Varga, C.; Cooke, M.; Majowicz, S.E. Temporal, spatial and space–time distribution of infections caused by five major enteric pathogens, Ontario, Canada, 2010–2017. Zoonoses Public Health 2024, 71, 178–190. [Google Scholar] [CrossRef]
- Tsoni, K.; Papadopoulou, E.; Michailidou, E.; Kavaliotis, I. Campylobacter jejuni meningitis in a neonate: A rare case report. J. Neonatal-Perinat. Med. 2013, 6, 183–185. [Google Scholar] [CrossRef] [PubMed]
- El Beayni, N.K.; Araj, G.F.; Beydoun, S.; Kozah, M.; Tabbarah, Z. Campylobacter fetus thyroid gland abscess in a young immunocompetent woman. IDCases 2020, 19, e00681. [Google Scholar] [CrossRef]
- Nielsen, H.; Hansen, K.K.; Gradel, K.O.; Kristensen, B.; Ejlertsen, T.; Østergaard, C.; Schønheyder, H.C. Bacteraemia as a result of Campylobacter species: A population-based study of epidemiology and clinical risk factors. Clin. Microbiol. Infect. 2010, 16, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Ioannou, P.; Sourris, A.; Tsantes, A.G.; Samonis, G. Infective Endocarditis by Campylobacter Species—A Narrative Review. Pathogens 2024, 13, 594. [Google Scholar] [CrossRef] [PubMed]
- Whitehouse, C.A.; Zhao, S.; Tate, H. Antimicrobial resistance in Campylobacter species: Mechanisms and genomic epidemiology. In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 103, pp. 1–47. [Google Scholar]
- Sahin, O.; Kassem, I.I.; Shen, Z.; Lin, J.; Rajashekara, G.; Zhang, Q. Campylobacter in poultry: Ecology and potential interventions. Avian Dis. 2015, 59, 185–200. [Google Scholar] [CrossRef]
- Ahmed, N.A.; Gulhan, T. Campylobacter in wild birds: Is it an animal and public health concern? Front. Microbiol. 2022, 12, 812591. [Google Scholar] [CrossRef]
- Skarp, C.; Hänninen, M.-L.; Rautelin, H. Campylobacteriosis: The role of poultry meat. Clin. Microbiol. Infect. 2016, 22, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Datta, A.; Ghosh, A.; Airoldi, C.; Sperandeo, P.; Mroue, K.H.; Jiménez-Barbero, J.; Kundu, P.; Ramamoorthy, A.; Bhunia, A. Antimicrobial peptides: Insights into membrane permeabilization, lipopolysaccharide fragmentation and application in plant disease control. Sci. Rep. 2015, 5, 11951. [Google Scholar] [CrossRef] [PubMed]
- Huan, Y.; Kong, Q.; Mou, H.; Yi, H. Antimicrobial peptides: Classification, design, application and research progress in multiple fields. Front. Microbiol. 2020, 11, 2559. [Google Scholar] [CrossRef]
- Wu, Y.; Zhou, L.; Lu, F.; Bie, X.; Zhao, H.; Zhang, C.; Lu, Z.; Lu, Y. Discovery of a novel antimicrobial lipopeptide, brevibacillin V, from Brevibacillus laterosporus fmb70 and its application on the preservation of skim milk. J. Agric. Food Chem. 2019, 67, 12452–12460. [Google Scholar] [CrossRef]
- Chu, J.; Vila-Farres, X.; Inoyama, D.; Ternei, M.; Cohen, L.J.; Gordon, E.A.; Reddy, B.V.B.; Charlop-Powers, Z.; Zebroski, H.A.; Gallardo-Macias, R.; et al. Discovery of MRSA active antibiotics using primary sequence from the human microbiome. Nat Chem Biol. 2016, 12, 1004–1006. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sinha, R.; Shukla, P. Antimicrobial peptides: Recent insights on biotechnological interventions and future perspectives. Protein Pept. Lett. 2019, 26, 79–87. [Google Scholar] [CrossRef]
- Epand, R.M.; Vogel, H.J. Diversity of antimicrobial peptides and their mechanisms of action. Biochim. Biophys. Acta (BBA)-Biomembr. 1999, 1462, 11–28. [Google Scholar] [CrossRef]
- Gutiérrez-Chávez, C.; Benaud, N.; Ferrari, B.C. The ecological roles of microbial lipopeptides: Where are we going? Comput. Struct. Biotechnol. J. 2021, 19, 1400–1413. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Meena, K.R.; Kanwar, S.S. Lipopeptides as the antifungal and antibacterial agents: Applications in food safety and therapeutics. Biomed Res Int. 2015, 2015, 473050. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Yang, X.; Huang, E.; Yuan, C.; Zhang, L.; Yousef, A.E. Isolation and structural elucidation of brevibacillin, an antimicrobial lipopeptide from Brevibacillus laterosporus that combats drug-resistant Gram-positive bacteria. Appl. Environ. Microbiol. 2016, 82, 2763–2772. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, X.; Shukla, R.; Kumar, R.; Weingarth, M.; Breukink, E.; Kuipers, O.P. Brevibacillin 2V, a novel antimicrobial lipopeptide with an exceptionally low hemolytic activity. Front. Microbiol. 2021, 12, 693725. [Google Scholar] [CrossRef] [PubMed]
- Pacífico, C.; Wösten, M.M.; Hilbert, F. Low-Level Tetracycline Resistance Gene tet (O)_3 in Campylobacter jejuni. Antibiotics 2023, 12, 426. [Google Scholar] [CrossRef]
- Morita, D.; Arai, H.; Isobe, J.; Maenishi, E.; Kumagai, T.; Maruyama, F.; Kuroda, T. Whole-genome and plasmid comparative analysis of Campylobacter jejuni from human patients in Toyama, Japan, from 2015 to 2019. Microbiol. Spectr. 2023, 11, e02659-22. [Google Scholar] [CrossRef]
- Vacher, S.; Menard, A.; Bernard, E.; Santos, A.; Megraud, F. Detection of mutations associated with macrolide resistance in thermophilic Campylobacter spp. by real-time PCR. Microb. Drug Resist. 2005, 11, 40–47. [Google Scholar] [CrossRef]
- Fliss, O.; Guay, L.-D.; Fliss, I.; Biron, E. Synthesis and structure-activity study of the antimicrobial lipopeptide brevibacillin. RSC Med. Chem. 2024, 15, 4168–4179. [Google Scholar] [CrossRef]
- Platts-Mills, J.A.; Babji, S.; Bodhidatta, L.; Gratz, J.; Haque, R.; Havt, A.; McCormick, B.J.; McGrath, M.; Olortegui, M.P.; Samie, A.; et al. Pathogen-specific burdens of community diarrhoea in developing countries: A multisite birth cohort study (MAL-ED). Lancet Glob. Health 2015, 3, e564–e575. [Google Scholar] [CrossRef]
- Igwaran, A.; Okoh, A.I. Human campylobacteriosis: A public health concern of global importance. Heliyon 2019, 5, e02814. [Google Scholar] [CrossRef]
- Kashoma, I.P.; Kassem, I.I.; John, J.; Kessy, B.M.; Gebreyes, W.; Kazwala, R.R.; Rajashekara, G. Prevalence and antimicrobial resistance of Campylobacter isolated from dressed beef carcasses and raw milk in Tanzania. Microb. Drug Resist. 2016, 22, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Griggs, D.J.; Peake, L.; Johnson, M.M.; Ghori, S.; Mott, A.; Piddock, L.J. β-Lactamase-mediated β-lactam resistance in Campylobacter species: Prevalence of Cj0299 (bla OXA-61) and evidence for a novel β-lactamase in C. jejuni. Antimicrob. Agents Chemother. 2009, 53, 3357–3364. [Google Scholar] [CrossRef]
- Habib, I.; Mohamed, M.-Y.I.; Ghazawi, A.; Lakshmi, G.B.; Khan, M.; Li, D.; Sahibzada, S. Genomic characterization of molecular markers associated with antimicrobial resistance and virulence of the prevalent Campylobacter coli isolated from retail chicken meat in the United Arab Emirates. Curr. Res. Food Sci. 2023, 6, 100434. [Google Scholar] [CrossRef] [PubMed]
- Iovine, N.M. Resistance mechanisms in Campylobacter jejuni. Virulence 2013, 4, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Nunes, A.; Oleastro, M.; Alves, F.; Liassine, N.; Lowe, D.M.; Benejat, L.; Ducounau, A.; Jehanne, Q.; Borges, V.; Gomes, J.P.; et al. Recurrent Campylobacter jejuni Infections with In Vivo Selection of Resistance to Macrolides and Carbapenems: Molecular Characterization of Resistance Determinants. Microbiol. Spectr. 2023, 11, e01070-23. [Google Scholar] [CrossRef]
- Post, A.; Martiny, D.; van Waterschoot, N.; Hallin, M.; Maniewski, U.; Bottieau, E.; Van Esbroeck, M.; Vlieghe, E.; Ombelet, S.; Vandenberg, O.; et al. Antibiotic susceptibility profiles among Campylobacter isolates obtained from international travelers between 2007 and 2014. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 2101–2107. [Google Scholar] [CrossRef]
- Elhadidy, M.; Miller, W.G.; Arguello, H.; Álvarez-Ordóñez, A.; Duarte, A.; Dierick, K.; Botteldoorn, N. Genetic basis and clonal population structure of antibiotic resistance in Campylobacter jejuni isolated from broiler carcasses in Belgium. Front. Microbiol. 2018, 9, 1014. [Google Scholar] [CrossRef] [PubMed]
- Inglis, G.D.; Taboada, E.N.; Boras, V.F. Rates of fluoroquinolone resistance in domestically acquired Campylobacter jejuni are increasing in people living within a model study location in Canada. Can. J. Microbiol. 2021, 67, 37–52. [Google Scholar] [CrossRef]
- Wanja, D.W.; Mbuthia, P.G.; Bebora, L.C.; Aboge, G.O.; Ogoti, B. Antimicrobial Usage, Susceptibility Profiles, and Resistance Genes in Campylobacter Isolated from Cattle, Chicken, and Water Samples in Kajiado County, Kenya. Int. J. Microbiol. 2023, 2023, 8394605. [Google Scholar] [CrossRef]
- Ammar, A.M.; El-Hamid, M.I.A.; El-Malt, R.M.S.; Azab, D.S.; Albogami, S.; Al-Sanea, M.M.; Soliman, W.E.; Ghoneim, M.M.; Bendary, M.M. Molecular detection of fluoroquinolone resistance among multidrug-, extensively drug-, and pan-drug-resistant Campylobacter species in Egypt. Antibiotics 2021, 10, 1342. [Google Scholar] [CrossRef]
- Huang, H.-W.; Liu, H.-Y.; Chuang, H.-C.; Chen, B.-L.; Wang, E.-Y.; Tsao, L.-H.; Ai, M.-Y.; Lee, Y.-J. Correlation between antibiotic consumption and resistance of Pseudomonas aeruginosa in a teaching hospital implementing an antimicrobial stewardship program: A longitudinal observational study. J. Microbiol. Immunol. Infect. 2023, 56, 337–343. [Google Scholar] [CrossRef]
- Abdi-Hachesoo, B.; Khoshbakht, R.; Sharifiyazdi, H.; Tabatabaei, M.; Hosseinzadeh, S.; Asasi, K. Tetracycline resistance genes in Campylobacter jejuni and C. coli isolated from poultry carcasses. Jundishapur J. Microbiol. 2014, 7, e12129. [Google Scholar] [CrossRef] [PubMed]
- Wieczorek, K.; Osek, J. Antimicrobial resistance mechanisms among Campylobacter. BioMed Res. Int. 2013, 2013, 340605. [Google Scholar] [CrossRef] [PubMed]
- Gharbi, M.; Béjaoui, A.; Hamda, C.B.; Ghedira, K.; Ghram, A.; Maaroufi, A. Distribution of virulence and antibiotic resistance genes in Campylobacter jejuni and Campylobacter coli isolated from broiler chickens in Tunisia. J. Microbiol. Immunol. Infect. 2022, 55, 1273–1282. [Google Scholar] [CrossRef] [PubMed]
- Cobo-Díaz, J.F.; Gonzalez del Rio, P.; Álvarez-Ordóñez, A. Whole resistome analysis in Campylobacter jejuni and C. coli genomes available in public repositories. Front. Microbiol. 2021, 12, 662144. [Google Scholar] [CrossRef]
- Rivera-Mendoza, D.; Martínez-Flores, I.; Santamaría, R.I.; Lozano, L.; Bustamante, V.H.; Pérez-Morales, D. Genomic analysis reveals the genetic determinants associated with antibiotic resistance in the zoonotic pathogen Campylobacter spp. distributed globally. Front. Microbiol. 2020, 11, 513070. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, Y.; Zhang, Q.; Shen, J. Antimicrobial resistance in Campylobacter spp. Microbiol. Spectr. 2018, 6, 10–1128. [Google Scholar] [CrossRef]
- Lekshmi, M.; Kumar, S.H.; Nayak, B.B.; Varela, M.F. Antimicrobial Resistance in Food-Borne Campylobacter spp. Handbook on Antimicrobial Resistance: Current Status. In Trends in Detection and Mitigation Measures; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–19. [Google Scholar]
- Lin, J.; Akiba, M.; Sahin, O.; Zhang, Q. CmeR functions as a transcriptional repressor for the multidrug efflux pump CmeABC in Campylobacter jejuni. Antimicrob. Agents Chemother. 2005, 49, 1067–1075. [Google Scholar] [CrossRef]
- Du, Y.; Wang, C.; Ye, Y.; Liu, Y.; Wang, A.; Li, Y.; Zhou, X.; Pan, H.; Zhang, J.; Xu, X. Molecular identification of multidrug-resistant Campylobacter species from diarrheal patients and poultry meat in Shanghai, China. Front. Microbiol. 2018, 9, 1642. [Google Scholar] [CrossRef]
- Sharifi, S.; Bakhshi, B.; Najar-Peerayeh, S. Significant contribution of the CmeABC Efflux pump in high-level resistance to ciprofloxacin and tetracycline in Campylobacter jejuni and Campylobacter coli clinical isolates. Ann. Clin. Microbiol. Antimicrob. 2021, 20, 36. [Google Scholar] [CrossRef]
- Guo, B.; Lin, J.; Reynolds, D.L.; Zhang, Q. Contribution of the multidrug efflux transporter CmeABC to antibiotic resistance in different Campylobacter species. Foodborne Pathog. Dis. 2010, 7, 77–83. [Google Scholar] [CrossRef] [PubMed]
- Aleksić, E.; Miljković-Selimović, B.; Tambur, Z.; Aleksić, N.; Biočanin, V.; Avramov, S. Resistance to antibiotics in thermophilic Campylobacters. Front. Med. 2021, 8, 763434. [Google Scholar] [CrossRef] [PubMed]
- Compton, C.L.; Schmitz, K.R.; Sauer, R.T.; Sello, J.K. Antibacterial activity of and resistance to small molecule inhibitors of the ClpP peptidase. ACS Chem. Biol. 2013, 8, 2669–2677. [Google Scholar] [CrossRef] [PubMed]
- Culp, E.; Wright, G.D. Bacterial proteases, untapped antimicrobial drug targets. J. Antibiot. 2017, 70, 366–377. [Google Scholar] [CrossRef]
- Zeiler, E.; Korotkov, V.S.; Lorenz-Baath, K.; Böttcher, T.; Sieber, S.A. Development and characterization of improved β-lactone-based anti-virulence drugs targeting ClpP. Bioorganic Med. Chem. 2012, 20, 583–591. [Google Scholar] [CrossRef]
- Browne, K.; Chakraborty, S.; Chen, R.; Willcox, M.D.; Black, D.S.; Walsh, W.R.; Kumar, N. A new era of antibiotics: The clinical potential of antimicrobial peptides. Int. J. Mol. Sci. 2020, 21, 7047. [Google Scholar] [CrossRef]
- Gottler, L.M.; Ramamoorthy, A. Structure, membrane orientation, mechanism, and function of pexiganan—A highly potent antimicrobial peptide designed from magainin. Biochim. Biophys. Acta (BBA)-Biomembr. 2009, 1788, 1680–1686. [Google Scholar] [CrossRef]
- Dürr, U.H.; Sudheendra, U.; Ramamoorthy, A. LL-37, the only human member of the cathelicidin family of antimicrobial peptides. Biochim. Biophys. Acta (BBA)-Biomembr. 2006, 1758, 1408–1425. [Google Scholar] [CrossRef]
- Wu, Y.; Nie, T.; Meng, F.; Zhou, L.; Chen, M.; Sun, J.; Lu, Z.; Lu, Y. The determination of antibacterial mode for cationic lipopeptides brevibacillins against Salmonella typhimurium by quantum chemistry calculation. Appl. Microbiol. Biotechnol. 2021, 105, 5643–5655. [Google Scholar] [CrossRef]
- Lai, Y.; Gallo, R.L. AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends Immunol. 2009, 30, 131–141. [Google Scholar] [CrossRef]
- Gao, G.; Yu, K.; Kindrachuk, J.; Brooks, D.E.; Hancock, R.E.; Kizhakkedathu, J.N. Antibacterial surfaces based on polymer brushes: Investigation on the influence of brush properties on antimicrobial peptide immobilization and antimicrobial activity. Biomacromolecules 2011, 12, 3715–3727. [Google Scholar] [CrossRef]
- EUCAST. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint Tables for Interpretation of MICs and Zone Diameters. Version 14.0. 2024. Available online: http://www.eucast.org (accessed on 10 May 2024).
- CLSI. Performance Standards for Antimicrobial Susceptibility Testing. Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. CLSI Supplement M45. 2020. Available online: https://clsi.org/shop/standards/m45/ (accessed on 10 May 2024).
- Larsen, M.V.; Cosentino, S.; Rasmussen, S.; Friis, C.; Hasman, H.; Marvig, R.L.; Jelsbak, L.; Sicheritz-Pontéen, T.; Ussery, D.W.; Aarestrup, F.M.; et al. Multilocus sequence typing of total-genome-sequenced bacteria. J. Clin. Microbiol. 2012, 50, 1355–1361. [Google Scholar] [CrossRef]
- Jolley, K.A.; Maiden, M.C. BIGSdb: Scalable analysis of bacterial genome variation at the population level. BMC Bioinform. 2010, 11, 595. [Google Scholar] [CrossRef] [PubMed]
- Antipov, D.; Hartwick, N.; Shen, M.; Raiko, M.; Lapidus, A.; Pevzner, P.A. plasmidSPAdes: Assembling plasmids from whole genome sequencing data. Bioinformatics 2016, 32, 3380–3387. [Google Scholar] [CrossRef] [PubMed]
- Roosaare, M.; Puustusmaa, M.; Möls, M.; Vaher, M.; Remm, M. PlasmidSeeker: Identification of known plasmids from bacterial whole genome sequencing reads. PeerJ 2018, 6, e4588. [Google Scholar] [CrossRef] [PubMed]
- Alcock, B.P.; Raphenya, A.R.; Lau, T.T.Y.; Tsang, K.K.; Bouchard, M.; Edalatmand, A.; Huynh, W.; Nguyen, A.-L.V.; Cheng, A.A.; Liu, S.; et al. CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 2020, 48, D517–D525. [Google Scholar] [CrossRef]
- Davis, J.J.; Wattam, A.R.; Aziz, R.K.; Brettin, T.; Butler, R.; Butler, R.M.; Chlenski, P.; Conrad, N.; Dickerman, A.; Dietrich, E.M.; et al. The PATRIC Bioinformatics Resource Center: Expanding data and analysis capabilities. Nucleic Acids Res. 2020, 48, D606–D612. [Google Scholar] [CrossRef]
- Blin, K.; Shaw, S.; Kloosterman, A.M.; Charlop-Powers, Z.; van Wezel, G.P.; Medema, M.H.; Weber, T. antiSMASH 6.0: Improving cluster detection and comparison capabilities. Nucleic Acids Res. 2021, 49, W29–W35. [Google Scholar] [CrossRef]
- Waskom, M.L. Seaborn: Statistical data visualization. J. Open Source Softw. 2021, 6, 3021. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdallah, K.; Fliss, O.; Pham, N.P.; Guay, L.D.; Gingras, H.; Godin, C.; Leprohon, P.; Biron, E.; Fliss, I.; Ouellette, M. Antimicrobial Activity of a Synthetic Brevibacillin Analog Against Multidrug-Resistant Campylobacter spp. Int. J. Mol. Sci. 2025, 26, 4657. https://doi.org/10.3390/ijms26104657
Abdallah K, Fliss O, Pham NP, Guay LD, Gingras H, Godin C, Leprohon P, Biron E, Fliss I, Ouellette M. Antimicrobial Activity of a Synthetic Brevibacillin Analog Against Multidrug-Resistant Campylobacter spp. International Journal of Molecular Sciences. 2025; 26(10):4657. https://doi.org/10.3390/ijms26104657
Chicago/Turabian StyleAbdallah, Khaled, Omar Fliss, Nguyen Phuong Pham, Louis David Guay, Hélène Gingras, Chantal Godin, Philippe Leprohon, Eric Biron, Ismail Fliss, and Marc Ouellette. 2025. "Antimicrobial Activity of a Synthetic Brevibacillin Analog Against Multidrug-Resistant Campylobacter spp." International Journal of Molecular Sciences 26, no. 10: 4657. https://doi.org/10.3390/ijms26104657
APA StyleAbdallah, K., Fliss, O., Pham, N. P., Guay, L. D., Gingras, H., Godin, C., Leprohon, P., Biron, E., Fliss, I., & Ouellette, M. (2025). Antimicrobial Activity of a Synthetic Brevibacillin Analog Against Multidrug-Resistant Campylobacter spp. International Journal of Molecular Sciences, 26(10), 4657. https://doi.org/10.3390/ijms26104657