Pharmacological Effects and Immune Mechanisms of Oriental Medicines in Restoring Male Infertility
Abstract
:1. Introduction
2. Male Infertility with Insufficient Treatment Effects in Western Medicine
3. Pharmacological Effects and Immune Mechanisms of Oriental Medicines
3.1. Varicocele
3.2. Oxidant Stress
3.3. IOA
3.4. Anti-Cancer Treatment
Oriental Medicine | Compounds | Models | Treatment (Dosages/Duration) | Effect Sizes | |
---|---|---|---|---|---|
Anti-cancer treatment | Goshajinkigan (TJ107) [26,27,29] (Japanese) | Rehmanniae radix (RR), Achyranthis radix, Corni fructus, Dioscoreae rhizome, Plantaginis semen (PS), Alismatis rhizome, Hoelen, Moutan cortex, Cinnamomi cortex, processed Aconite tuber | animal | free access to TJ107 diet containing 5.4% (w/w) extract | n = 60 |
60 days | |||||
MYOMI-7 [25] (Korean) | Cuscuta chinensis (CC), Lycium chinense (LC), Epimedium koreanum, Rubus coreanus, Morinda officinalis, Cynomorium songaricum, Cistanche deserticola | animal | 790 mg/kg/day by gavage | n = 8 | |
21 days | |||||
Qiangjing tablets (QJT) [36] (Chinese) | Ginseng radix et rhizoma, Angelica sinensis radix, RR, Corni fructus, Lycii fructus (LF), Schisandrae chinensis fructus, Cuscutae semen, PS, Epimedii folium, Common curculigo orchioides, Herba leonuri | animal | 0.45 g/kg/day by gavage | n = 10 | |
4 weeks | |||||
Sheng Jing Decoction (SJD) [47,86] (Chinese) | RR, Astragalus membranaceus, Pseudostellaria heterophylla, Dipsacus acaulis, Lycium arenicolum, Astragalus complanatus, Gleditsia sinensis | animal | 33 g, 16.5, and 8.25 g/kg/day by gavage | n = 6 per group | |
35 days | |||||
Varicocele | Jiawei Runjing Decoction (JWRJD) [49,75] (Chinese) | CC, Dioscorea polystachya, Polygonatum sibiricum, Epimedium brevicornu (EB), Lycium barbarum, Eleutherococcus senticosus, Rhodiola crenulata, Cyathula officinalis, Citrus × aurantium, Hirudo, Homo sapiens, Eupolyphaga seu Steleophaga. | animal and human | 4.725 and 18.9 g/kg/day by gavage | n = 8 per group |
4 weeks | |||||
one dose/day | n = 58 | ||||
90 days | |||||
Taohong Siwu Decoction (THSWD) [30] (Chinese) | Persicae semen, Carthami flos, RR, Paeoniae radix alba, Chuanxiong rhizoma, Angelicae sinensis radix | GeneCards database, STRING database, DAVID database, RCSB database | |||
Zishen Yutai Pill (ZYP) [39] (Chinese) | CC, Ginseng radix et rhizoma, Dipsaci radix, Taxilli herba, Eucommiae cortex, Morindae officinalis radix, Cervi cornu degelatinatum, Codonopsis radix, Atractylodis macrocephalae rhizoma, Asini corii colla, LF, RR, Polygoni multiflori radix, Artemisiae argyi, Amomi fructus | animal | 1575 and 3150 mg/kg/d by gavage | n = 6 per group | |
6 weeks | |||||
Oxidant stress | Kyung-Ok-Ko (KOK) [35,77,78,79] (Korean) | RR, purpurea, Panax ginseng, Poria cocos, LC, Aquilaria agallocha, honey | animal | 0.25, 0.50, and 2.00 g/kg/day by gavage | n = 8 per group |
5 weeks | |||||
MOTILIPERM (MTP) [28,33] (Korean) | Rubiaceae root, Convol vulaceae seed, Liliaceae outer scales | animal | 100 and 200 mg/kg/day by gavage | n = 10 per group | |
30 days | |||||
Qilin pills (QLPs) [42] (Chinese) | Polygonum multijiorum, Herba Ecliptae, Eclipta prostrata, EB, CC, Cynomorium songaricum, Codonopsis pilosula, Curcuma aromatica, LC, Rubus idaeus, Dioscorea oppositifolia, Salvia miltiorrhiza, Astragalus membranaceus, Paeonia lactiflora, Citrus reticulata, Morus alba | animal | 1.62 and 3.24 g/kg/day by gavage | n = 10 per group | |
60 days | |||||
IOA | Wuzi Yanzong pill (WZYZP) [18,43,80,81] (Chinese) | CC, LF, Rubi fructus, Schizandrae fructus, PS | in vitro and animal | 12.0 g/kg 2 times a day | |
7 d | |||||
0.635, 1.269, and 2.538 g/kg/day, by gavage | n = 12 per group | ||||
30 days | |||||
Yishentongluo decoction (YSTL) [34,83,84,85] (Chinese) | CC, EB, RR, Astragalus propinquus, Salvia miltiorrhiza, Cyathula officinalis | human | 1 grid granule 2 times a day | n = 80 | |
12 weeks |
4. Limitations of Studies on Oriental Medicines
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Collins, J.A. Male infertility: The interpretation of the diagnostic assessment. In The Year Book of Infertility; Mishell, D.R., Paulsen, C.A., Lobo, R.A., Eds.; Year Book Medical Publishers Inc.: Chicago, IL, USA, 1989; Volume 1989, p. 45. [Google Scholar]
- Rowe, P.J. WHO Manual for the Standardized Investigation, Diagnosis and Management of the Infertile Male; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Barratt, C.L.R.; Bjorndahl, L.; De Jonge, C.J.; Lamb, D.J.; Martini, F.O.; McLachlan, R.; Oates, R.D.; van der Poel, S.; St. John, B.; Sigman, M.; et al. The diagnosis of male infertility: An analysis of the evidence to support the development of global WHO guidance-challenges and future research opportunities. Hum. Reprod. Update 2017, 23, 660–680. [Google Scholar] [CrossRef] [PubMed]
- Dohle, G.R.; Halley, D.J.J.; Van Hemel, J.O.; van den Ouwel, A.M.; Pieters, M.H.; Weber, R.F.; Govaerts, L.C. Genetic risk factors in infertile men with severe oligozoospermia and azoospermia. Hum. Reprod. 2002, 17, 13–16. [Google Scholar] [CrossRef] [PubMed]
- Kidd, S.A.; Eskenazi, B.; Wyrobek, A.J. Effects of male age on semen quality and fertility: A review of the literature. Fertil. Steril. 2001, 75, 237–248. [Google Scholar] [CrossRef]
- Oliva, A.; Spira, A.; Multigner, L. Contribution of environmental factors to the risk of male infertility. Hum. Reprod. 2001, 16, 1768–1776. [Google Scholar] [CrossRef]
- Machen, G.L.; Sandlow, J.I. Causes of male infertility. In Male Infertility; Springer: Cham, Switzerland, 2020; pp. 3–14. [Google Scholar]
- Jo, J.; Kang, M.J. Successful Treatment of Oligoasthenozoospermia Using Traditional Korean Medicine Resulting in Spontaneous Preg Nancy: Two Case Reports. Explore 2016, 12, 136–138. [Google Scholar] [CrossRef]
- Tournaye, H. Male factor infertility and ART. Asian J. Androl. 2012, 14, 103–108. [Google Scholar] [CrossRef]
- Rhoton-Vlasak, A.; Drury, K.C. ART and its impact on male Infertility management. In Male Infertility; Springer: New York, NY, USA, 2012. [Google Scholar]
- Smith, R.P.; Lipshultz, L.I.; Kovac, J.R. Stem cells, gene therapy, and advanced medical management hold promise in the treatment of male infertility. Asian J. Androl. 2016, 18, 364. [Google Scholar] [CrossRef]
- Li, Z.; Chen, G.W.; Shang, X.J.; Bai, W.J.; Han, Y.F.; Chen, B.; Teng, X.M.; Meng, F.H.; Zhang, B.; Chen, D.N.; et al. A controlled randomized trial of the use of combined L-carnitine and acetyl-L-carnitine treatment in men with oligoasthenozoospermia. J. Androl. 2005, 11, 761–764. [Google Scholar]
- Schwarzstein, L.; Aparicio, N.J.; Schally, A.V. D-Tryptophan-6-luteinizing hormone-releasing hormone in the treatment of normogonadotropic oligoasthenozoospermia. Int. J. Androl. 2010, 5, 171–178. [Google Scholar] [CrossRef]
- Jiang, D.; Coscione, A.; Li, L.; Zeng, B.-Y. Effect of Chinese herbal medicine on male infertility. Int. Rev. Neurobiol. 2017, 135, 297–311. [Google Scholar] [CrossRef]
- Miner, S.A.; Robins, S.; Zhu, Y.J.; Keeren, K.; Gu, V.; Read, S.C.; Zelkowitz, P. Evidence for the use of complementary and alternative medicines during fertility treatment: A scoping review. BMC Complement. Altern. Med. 2018, 18, 158. [Google Scholar] [CrossRef] [PubMed]
- Tempest, H.G.; Homa, S.T.; Routledge, E.J.; Garner, A.; Zhai, X.P.; Griffin, D.K. Plants used in Chinese medicine for the treatment of male infertility possess antioxidant and anti-oestrogenic activity. Syst. Biol. Reprod. Med. 2008, 54, 185–195. [Google Scholar] [CrossRef] [PubMed]
- Yun, S.J.; Bae, G.S.; Park, J.H.; Song, T.H.; Choi, A.; Ryu, B.Y.; Pang, M.G.; Kim, E.J.; Yoon, M.; Chang, M.B. Antioxidant effects of cultured wild ginseng root extracts on the male reproductive function of boars and guinea pigs. Anim. Reprod. Sci. 2016, 170, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Choe, S.; Park, N.C. Effects of Korean red ginseng on semen parameters in male infertility patients: A randomized, placebo-controlled, double-blind clinical study. Chin. J. Integr. Med. 2016, 22, 490–495. [Google Scholar] [CrossRef]
- Head, J.R.; Billingham, R.E. Immune privilege in the testis. II. Evaluation of potential local factors. Transplantation 1982, 40, 269–295. [Google Scholar] [CrossRef]
- Bhushan, S.; Meinhardt, A. The macrophages in testis function. J. Reprod. Immunol. 2017, 119, 107–112. [Google Scholar] [CrossRef]
- Qu, N.; Itoh, M.; Sakabe, K. Effects of chemotherapy and radiotherapy on spermatogenesis: The role of testicular immunology. Int. J. Mol. Sci. 2019, 20, 957. [Google Scholar] [CrossRef]
- Fang, Y.; Su, Y.; Xu, J.; Hu, Z.; Zhao, K.; Liu, C.; Zhang, H. Varicocele-mediated male infertility: From the perspective of testicular immunity and inflammation. Front. Immunol. 2021, 12, 729539. [Google Scholar] [CrossRef]
- Castleton, P.E.; Deluao, J.C.; Sharkey, D.J.; McPherson, N.O. Measuring reactive oxygen species in Semen for Male Preconception Care: A Scientist Perspective. Antioxidants 2022, 11, 264. [Google Scholar] [CrossRef]
- Chen, W.Q.; Wang, B.; Ding, C.F.; Wan, L.Y.; Hu, H.M.; Lv, B.D.; Ma, J.X. In vivo and in vitro protective effects of the Wuzi Yanzong pill against experimental spermatogenesis disorder by promoting germ cell proliferation and suppressing apoptosis. J. Ethnopharmacol. 2021, 280, 114443. [Google Scholar] [CrossRef]
- Park, A.; Yang, Y.; Jo, J.; Yoon, S.R. Modified MYOMI-14 Korean herbal formulations have protective effects against cyclophosphamide-induced male infertility in mice. Andrologia 2021, 53, e14025. [Google Scholar] [CrossRef] [PubMed]
- Qu, N.; Kuramasu, M.; Hirayanagi, Y.; Nagahori, K.; Hayashi, S.; Ogawa, Y.; Terayama, H.; Suyama, K.; Naito, M.; Sakabe, K.; et al. Gosha-Jinki-Gan recovers spermatogenesis in mice with busulfan-induced aspermatogenesis. Int. J. Mol. Sci. 2018, 19, 2606. [Google Scholar] [CrossRef] [PubMed]
- Qu, N.; Nagahori, K.; Kuramasu, M.; Ogawa, Y.; Suyama, K.; Hayashi, S.; Sakabe, K.; Itoh, M. Effect of Gosha-Jinki-Gan on levels of specific mRNA transcripts in mouse testes after busulfan treatment. Biomedicines 2020, 8, 432. [Google Scholar] [CrossRef]
- Karna, K.K.; Soni, K.K.; You, J.H.; Choi, N.Y.; Kim, H.K.; Kim, C.Y.; Lee, S.W.; Shin, Y.S.; Park, J.K. MOTILIPERM ameliorates immobilization stress-induced testicular dysfunction via inhibition of oxidative stress and modulation of the Nrf2/HO-1 pathway in SD rats. Int. J. Mol. Sci. 2020, 21, 4750. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, K.; Nagahori, K.; Qu, N.; Kuramasu, M.; Hirayanagi, Y.; Hayashi, S.; Ogawa, Y.; Hatayama, N.; Terayama, H.; Suyama, K.; et al. The effectiveness of traditional Japanese medicine Goshajinkigan in irradiation-induced aspermatogenesis in mice. BMC Complement. Altern. Med. 2019, 19, 362. [Google Scholar] [CrossRef]
- Wu, B.; Lan, X.; Chen, X.; Wu, Q.; Yang, Y.; Wang, Y. Researching the molecular mechanisms of Taohong Siwu Decoction in the treatment of varicocele-associated male infertility using network pharmacology and molecular docking: A review. Medicine 2023, 102, e34476. [Google Scholar] [CrossRef]
- Setchell, B.P. The effects of heat on the testes of mammals. Anim. Reprod. 2006, 3, 81–91. [Google Scholar]
- Mahfouz, R.Z.; du Plessis, S.S.; Aziz, N.; Sharma, R.; Sabanegh, E.; Agarwal, A. Sperm viability, apoptosis, and intracellular reactive oxygen species levels in human spermatozoa before and after induction of oxidative stress. Fertil. Steril. 2010, 93, 814–821. [Google Scholar] [CrossRef]
- Soni, K.K.; Zhang, L.T.; Choi, B.R.; Karna, K.K.; You, J.H.; Shin, Y.S.; Lee, S.W.; Kim, C.Y.; Zhao, C.; Chae, H.J.; et al. Protective effect of motiliperm in varicocele-induced oxidative injury in rat testis by activating phosphorylated inositol requiring kinase 1alpha (p-IRE1alpha) and phosphorylated c-Jun N-terminal kinase (p-JNK) pathways. Pharm. Biol. 2018, 56, 94–103. [Google Scholar] [CrossRef]
- Alamo, A.; De Luca, C.; Mongioì, L.M.; Barbagallo, F.; Cannarella, R.; La Vignera, S.; Calogero, A.E.; Condorelli, R.A. Mitochondrial membrane potential predicts 4-hour sperm motility. Biomedicines 2020, 8, 196. [Google Scholar] [CrossRef]
- Kim, H.M.; An, C.S.; Jung, K.Y.; Choo, Y.K.; Park, J.K.; Nam, S.Y. Rehmannia glutinosa inhibits tumour necrosis factor-α and interleukin-1 secretion from mouse astrocytes. Pharmacol. Res. 1999, 40, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; You, Y.; Zhang, P.; Huang, X.; Dong, L.; Yang, F.; Yu, X.; Chang, D. Qiangjing tablets repair blood-testis barrier dysfunction in rats via regulating oxidative stress and p38 MAPK pathway. BMC Complement. Med. Ther. 2022, 22, 133. [Google Scholar] [CrossRef]
- Vandekerckhove, P.; Lilford, R.; Vail, A.; Hughes, E. Clomiphene or tamoxifen for idiopathic oligo/asthenospermia. Cochrane Database Syst. Rev. 2000, 1996, CD000151. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen; World Health Organization: Geneva, Switzerland, 2021; Volume 6, pp. 1–276.
- Peng, M.; Wang, W.; Zhu, W.; Bai, Y.; Ning, N.; Huang, Q.; Pang, X.; Zhou, J.; Zhang, H.; Zhao, K. Zishen Yutai Pill improves sperm quality and reduces testicular inflammation in experimental varicocele rats. Heliyon 2023, 9, e17161. [Google Scholar] [CrossRef]
- Brinster, R.L.; Zimmermann, J.W. Spermatogenesis following male germ-cell transplantation. Proc. Natl. Acad. Sci. USA 1994, 91, 11298–11302. [Google Scholar] [CrossRef]
- SenGupta, P.; Agarwal, A.; Pogrebetskaya, M.; Roychoudhury, S.; Durairajanayagam, D.; Henkel, R. Role of Withania somnifera (Ashwagandha) in the management of male infertility. Reprod. Biomed. Online 2018, 36, 311–326. [Google Scholar] [CrossRef]
- Zhang, K.; Fu, L.; An, Q.; Hu, W.; Liu, J.; Tang, X.; Ding, Y.; Lu, W.; Liang, X.; Shang, X.; et al. Effects of Qilin pills on spermatogenesis, reproductive hormones, oxidative stress, and the TSSK2 gene in a rat model of oligoasthenospermia. BMC Complement. Med. Ther. 2020, 20, 42. [Google Scholar] [CrossRef]
- Li, Y.; Xue, Y.; Bao, B.; Wang, J.; Dai, H.; Gong, X.; Zheng, W.; Li, Y.; Zhang, B. Effectiveness comparison of a Chinese dicitraditionalmene formula Wuzi Yanzong Pill and its analogous prescriptions for the treatment of oligoasthenozoospermia: A systematic review and meta-analysis protocol. Medicine 2019, 98, e15594. [Google Scholar] [CrossRef]
- Condorelli, R.A.; Barbagallo, F.; Calogero, A.E.; Cannarella, R.; Crafa, A.; La Vignera, S. D-Chiro-inositol improves sperm mitochondrial membrane potential: In vitro evidence. J. Clin. Med. 2020, 9, 1373. [Google Scholar] [CrossRef]
- Paoli, D.; Gallo, M.; Rizzo, F.; Baldi, E.; Francavilla, S.; Lenzi, A.; Lombardo, F.; Gandini, L. Mitochondrial membrane potential profile and its correlation with increasing sperm motility. Fertil. Steril. 2011, 95, 2315–2319. [Google Scholar] [CrossRef]
- Zhang, Q.; Fan, L.; Li, F.; Sun, Z.; Zhang, C.; Chen, R. Yishentongluo decoction in treatment of idiopathic asthenozoospermia infertility: Study protocol for a randomized controlled trial. Medicine 2020, 99, e22662. [Google Scholar] [CrossRef] [PubMed]
- Yan, G.; Tian, F.; Liu, P.; Sun, J.; Mao, J.; Han, W.; Mo, R.; Guo, S.; Yu, Q. Sheng Jing Decoction can promote spermatogenesis and increase sperm motility of the oligozoospermia mouse model. Evid. Based Complement. Altern. Med. 2021, 2021, 3686494. [Google Scholar] [CrossRef] [PubMed]
- Allamaneni, S.S.; Naughton, C.K.; Sharma, R.K.; Thomas, A.J., Jr.; Agarwal, A. Increased seminal reactive oxygen species levels in patients with varicoceles correlate with varicocele grade but not with testis size. Fertil. Steril. 2004, 82, 1684–1686. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Huang, Z.; Zheng, H.; Zhu, Z.; Yang, H.; Liu, X.; Pang, T.; He, L.; Lin, H.; Hu, L.; et al. Jiawei Runjing decoction improves spermatogenesis of cryptozoospermia with varicocele by regulating the testicular microenvironment: Two-center prospective cohort study. Front. Pharmacol. 2022, 13, 945949. [Google Scholar] [CrossRef]
- Amory, J.K.; Ostrowski, K.A.; Gannon, J.R.; Berkseth, K.; Stevison, F.; Isoherranen, N.; Muller, C.H.; Walsh, T. Isotretinoin administration improves sperm production in men with infertility from oligoasthenozoospermia: A pilot study. Andrology 2017, 5, 1115–1123. [Google Scholar] [CrossRef]
- Jung, A.; Schuppe, H.C. Influence of genital heat stress on semen quality in humans. Andrologia 2007, 39, 203–215. [Google Scholar] [CrossRef]
- O’Flaherty, C. Reactive oxygen species and male fertility. Antioxidants 2020, 9, 287. [Google Scholar] [CrossRef]
- Alahmar, A.T. Role of oxidative stress in male infertility: An updated review. J. Hum. Reprod. Sci. 2019, 12, 4–18. [Google Scholar] [CrossRef]
- Agarwal, A.; Parekh, N.; Panner Selvam, M.K.; Henkel, R.; Shah, R.; Homa, S.T.; Ramasamy, R.; Ko, E.; Tremellen, K.; Esteves, S.; et al. Male oxidative stress infertility (MOSI): Proposed terminology and clinical practice guidelines for management of idiopathic male infertility. World J. Men’s Health 2019, 37, 296–312. [Google Scholar] [CrossRef]
- Walczak-Jedrzejowska, R.; Wolski, J.K.; Slowikowska-Hilczer, J. The role of oxidative stress and antioxidants in male fertility. Cent. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef]
- Mieusset, R.; Bujan, L. Testicular heating and its possible contributions to male infertility: A review. Int. J. Androl. 1995, 18, 169–184. [Google Scholar] [CrossRef] [PubMed]
- Ren, L.; Medan, M.S.; Ozu, M.; Li, C.; Watanabe, G.; Taya, K. Effects of experimental cryptorchidism on sperm motility and testicular endocrinology in adult male rats. J. Reprod. Dev. 2006, 52, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Szymański, M.; Wandtke, T.; Wasilow, K.; Andryszczyk, M.; Janicki, R.; Domaracki, P. Comparison of 3- and 6-Month Outcomes of Combined Oral L-Carnitine Fumarate and Acetyl-L-Carnitine Therapy, Included in an Antioxidant Formulation, in Patients with Idiopathic Infertility. Am. J. Men’s Health 2021, 15, 15579883211036790. [Google Scholar] [CrossRef] [PubMed]
- Esteves, S.C.; Agarwal, A. Novel concepts in male infertility. Int. Braz. J. Urol. 2011, 37, 5–15. [Google Scholar] [CrossRef]
- Wright, E.J.; Young, G.P.; Goldstein, M. Reduction in testicular temperature after varicocelectomy in infertile men. Urology 1997, 50, 257–259. [Google Scholar] [CrossRef]
- Will, M.A.; Swain, J.; Fode, M.; Sonksen, J.; Christman, G.M.; Ohl, D. The great debate: Varicocele treatment and impact on fertility. Fertil. Steril. 2011, 95, 841–852. [Google Scholar] [CrossRef]
- Romeo, C.; Santoro, G. Varicocele and infertility: Why a prevention? J. Endocrinol. Investig. 2009, 32, 559–561. [Google Scholar] [CrossRef]
- Dubin, L.; Amelar, R.D. Varicocelectomy as therapy in male infertility: A study of 504 cases. Fertil. Steril. 1975, 26, 217–220. [Google Scholar] [CrossRef]
- Razi, M.; Tavalaee, M.; Sarrafzadeh-Rezaei, F.; Moazamian, A.; Gharagozloo, P.; Drevet, J.R.; Nasr-Eshafani, M.-H. Varicocoele and oxidative stress: New perspectives from animal and human studies. Andrology 2021, 9, 546–558. [Google Scholar] [CrossRef]
- Leung, W.; Hudson, M.M.; Strickland, D.K.; Phipps, S.; Srivastava, D.K.; Ribeiro, R.C.; Rubnitz, J.E.; Sandlund, J.T.; Kun, L.E.; Bowman, L.C.; et al. Late effects of treatment in survivors of childhood acute myeloid leukemia. J. Clin. Oncol. 2000, 18, 3273–3279. [Google Scholar] [CrossRef]
- Thomson, A.B.; Campbell, A.J.; Irvine, D.C.; Anderson, R.A.; Kelnar, C.J.H.; Wallace, W.H.B. Semen quality and spermatozoal DNA integrity in survivors of childhood cancer: A case-control study. Lancet 2002, 360, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Meistrich, M.L.; Wilson, G.; Brown, B.W.; da Cunha, M.F.; Lipshultz, L.I. Impact of cyclophosphamide on long-term reduction in sperm count in men treated with combination chemotherapy for Ewing and soft tissue sarcomas. Cancer 1992, 70, 2703–2712. [Google Scholar] [CrossRef] [PubMed]
- Speiser, B.; Rubin, P.; Casarett, G. Aspermia following lower truncal irradiation in Hodgkin’s disease. Cancer 1973, 32, 692–698. [Google Scholar] [CrossRef]
- Anserini, P.; Chiodi, S.; Spinelli, S.; Costa, M.; Conte, N.; Copello, F.; Bacigalupo, A. Semen analysis following allogeneic bone marrow transplantation. Additional data for evidence-based counselling. Bone Marrow Transplant. 2002, 30, 447–451. [Google Scholar] [CrossRef]
- Ghobadi, E.; Moloudizargari, M.; Asghari, M.H.; Abdollahi, M. The mechanisms of cyclophosphamide-induced testicular toxicity and the protective agents. Expert. Opin. Drug Met. 2017, 13, 525–536. [Google Scholar] [CrossRef]
- Dietze, R.; Shihan, M.; Stammler, A.; Konrad, L.; Scheiner-Bobis, G. Cardiotonic steroid ouabain stimulates expression of blood-testis barrier proteins claudin-1 and −11 and formation of tight junctions in Sertoli cells. Mol. Cell Endocrinol. 2015, 405, 1–13. [Google Scholar] [CrossRef]
- Urriola-Muñoz, P.; Lagos-Cabré, R.; Moreno, R.D. A mechanism of male germ cell apoptosis induced by bisphenol-A and nonylphenol involving ADAM17 and p38 MAPK activation. PLoS ONE 2014, 9, e113793. [Google Scholar] [CrossRef]
- Ward, J.A.; Robinson, J.; Furr, B.J.; Shalet, S.M.; Morris, I.D. Protection of spermatogenesis in rats from the cytotoxic procarbazine by the depot formulation of Zoladex, a gonadotropin-releasing hormone agonist. Cancer Res. 1990, 50, 568–574. [Google Scholar]
- Johnson, D.H.; Linde, R.; Hainsworth, J.D.; Vale, W.; Rivier, J.; Stein, R.; Flexner, J.; Van Welch, R.; Greco, F.A. Effect of a luteinizing hormone releasing hormone agonist given during combination chemotherapy on posttherapy fertility in male patients with lymphoma: Preliminary observations. Blood 1985, 65, 832–836. [Google Scholar] [CrossRef]
- Yang, K.; Li, S.G.; Zhang, T.Y.; Dong, P.P.; Zeng, Q.Q. Runjing Extract Promotes Spermatogenesis in Rats with Ornidazole-Induced Oligoasthenoteratozoospermia through Extracellular Signal-Regulated Kinase Signalling, and Regulating Vimentin Expression. J. Tradit. Chin. Med. 2021, 41, 581–587. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, Y.; Ma, H.; Ng, E.H.Y.; Wu, X.K. Eastern medicine approaches to male infertility. Semin. Reprod. Med. 2013, 31, 301–310. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.D. The literature study on the efficacy and manufacturing process of gyeongoggo. J. Korean Med. Class. 2011, 24, 51–64. [Google Scholar]
- Hwang, D.-S.; Kim, H.G.; Park, S.; Hong, N.D.; Ryu, J.H.; Oh, M.S. Effect of a traditional herbal prescription, Kyung-ok-Ko, on male mouse spermatogenic ability after heat-induced damage. Evid. Based Complement. Altern. Med. 2015, 2015, 950829. [Google Scholar] [CrossRef] [PubMed]
- Cai, M.; Shin, B.Y.; Kim, D.H.; Kim, J.M.; Park, S.J.; Park, C.S.; Won, D.H.; Hong, N.D.; Kang, D.H.; Yutaka, Y.; et al. Neuroprotective effects of a traditional herbal prescription on transient cerebral global ischemia in gerbils. J. Ethnopharmacol. 2011, 138, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.P.; Shi, X.; Kong, G.W.S.; Wang, C.C.; Wu, J.C.Y.; Lin, Z.X.; Li, T.C.; Chan, D.Y.L. The therapeutic effects of a traditional Chinese medicine formula Wuzi Yanzong Pill for the treatment of oligoasthenozoospermia: A meta-analysis of randomized controlled trials. Evid. Based Complement. Altern. Med. 2018, 2018, 2968025. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Z.; Tong, K.; Wang, C.; Wang, S.; Zhao, P.; Gu, M.; Hu, J.; Tang, Y.; Liu, Z. Mechanism of action of Wuzi Yanzong pill in the treatment of oligoasthenozoospermia in rats determined via serum metabolomics. J. Trad. Chin. Med. Sci. 2024, 11, 180–190. [Google Scholar] [CrossRef]
- Agnihotri, S.K.; Agrawal, A.K.; Hakim, B.A.; Vishwakarma, A.L.; Narender, T.; Sachan, R.; Sachdev, M. Mitochondrial membrane potential (MMP) regulates sperm motility. In Vitro Cell Dev. Biol. Anim. 2016, 52, 953–960. [Google Scholar] [CrossRef]
- Chen, X.; Sun, Z.X.; Zhao, S.P.; Zhang, X.H.; Chen, J.S.; Wang, R.; Men, B. Yishen Tongluo Recipe combined with minimally invasive surgery for the treatment of varicocele-associated asthenospermia. Zhonghua Nan Ke Xue 2020, 26, 341–345. [Google Scholar]
- Idänpään-Heikkilä, J.E. Ethical principles for the guidance of physicians in medical research–the Declaration of Helsinki. Bull. World Health Organ. 2001, 79, 279. [Google Scholar]
- Wang, S.C.; Wang, S.C.; Li, C.J.; Lin, C.H.; Huang, H.L.; Tsai, L.M.; Chang, C.H. The therapeutic effects of traditional Chinese medicine for poor semen quality in infertile males. J. Clin. Med. 2018, 7, 239. [Google Scholar] [CrossRef]
- Yan, G.; Tian, F.; Liu, P.; Mao, J.; Sun, J.; Han, W.; Mo, R.; Guo, S.; Yu, Q. Sheng Jing Decoction, as a Traditional Chinese Medicine Prescription, Can Promote Spermatogenesis and Increase Sperm Motility. 2021. Available online: https://www.researchsquare.com/article/rs-167175/v1 (accessed on 7 May 2025).
- Kadam, P.; Van Saen, D.; Goossens, E. Can mesenchymal stem cells improve spermatogonial stem cell transplantation efficiency? Andrology 2017, 5, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Wilhelmsson, M.; Vatanen, A.; Borgström, B.; Gustafsson, B.; Taskinen, M.; Saarinen-Pihkala, U.M.; Winiarski, J.; Jahnukainen, K. Adult testicular volume predicts spermatogenetic recovery after allogeneic HSCT in childhood and adolescence. Pediatr. Blood Cancer 2014, 61, 1094–1100. [Google Scholar] [CrossRef] [PubMed]
- Sanderson, B.J.; Shield, A.J.; Sanderson, B.J.S. Mutagenic damage to mammalian cells by therapeutic alkylating agents. Mutat. Res. 1996, 355, 41–57. [Google Scholar] [CrossRef] [PubMed]
- Grigg, A.P.; McLachlan, R.; Zaja, J.; Szer, J. Reproductive status in long-term bone marrow transplant survivors receiving busulfan-cyclophosphamide (120 mg/kg). Bone Marrow Transpl. 2000, 26, 1089–1095. [Google Scholar] [CrossRef]
- Pfitzer, C.; Orawa, H.; Balcerek, M.; Langer, T.; Dirksen, U.; Keslova, P.; Zubarovskaya, N.; Schuster, F.R.; Jarisch, A.; Strauss, G.; et al. Dynamics of fertility impairment and recovery after allogeneic haematopoietic stem cell transplantation in childhood and adolescence: Results from a longitudinal study. J. Cancer Res. Clin. Oncol. 2015, 141, 135–142. [Google Scholar] [CrossRef]
- Bucci, L.R.; Meistrich, M.L. Effects of busulfan on murine spermatogenesis: Cytotoxicity, sterility, sperm abnormalities, and dominant lethal mutations. Mutat. Res. 1987, 176, 259–268. [Google Scholar] [CrossRef]
- Choi, Y.J.; Ok, D.W.; Kwon, D.N.; Il Chung, J.I.; Kim, H.C.; Yeo, S.M.; Kim, T.; Seo, H.G.; Kim, J.H. Murine male germ cell apoptosis induced by busulfan treatment correlates with loss of c-kit-expression in a Fas/FASL- and p53-independent manner. FEBS Lett. 2004, 575, 41–51. [Google Scholar] [CrossRef]
- Vasiliausha, S.R.; Beltrame, F.L.; de Santi, F.; Cerri, P.S.; Caneguim, B.H.; Sasso-Cerri, E. Seminiferous epithelium damage after short period of busulphan treatment in adult rats and vitamin B12 efficacy in the recovery of spermatogonial germ cells. Int. J. Exp. Pathol. 2016, 97, 317–328. [Google Scholar] [CrossRef]
- Zohni, K.; Zhang, X.; Tan, S.L.; Chan, P.; Nagano, M.C. The efficiency of male fertility restoration is dependent on the recovery kinetics of spermatogonial stem cells after cytotoxic treatment with busulfan in mice. Hum. Reprod. 2012, 27, 44–53. [Google Scholar] [CrossRef]
- Qin, Y.; Liu, L.; He, Y.; Ma, W.; Zhu, H.; Liang, M.; Hao, H.; Qin, T.; Zhao, X.; Wang, D. Testicular injection of busulfan for recipient preparation in transplantation of spermatogonial stem cells in mice. Reprod. Fertil. Dev. 2016, 28, 1916–1925. [Google Scholar] [CrossRef]
- Chen, R.; Wen, H. Clinical treatment of male infertility with sheng jing pill. Int. J. Orient. Med. 1996, 21, 144–147. [Google Scholar]
- Panimolle, F.; Tiberti, C.; Spaziani, M.; Riitano, G.; Lucania, G.; Anzuini, A.; Lenzi, A.; Gianfrilli, D.; Sorice, M.; Radicioni, A.F. Non-organ-specific autoimmunity in adult 47,XXY Klinefelter patients and higher-grade X-chromosome aneuploidies. Clin. Exp. Immunol. 2021, 205, 316–325. [Google Scholar] [CrossRef] [PubMed]
Immuno- Regulatory Factors in Normal Testis | Anti-Cancer Treatment | Varicocele | Oxidant Stress | IOA | |
---|---|---|---|---|---|
germ | TGF-β | ↑ [22] | ↑ [23] | ↑ [24] | |
cells | Fas-L | ↑ [25,26,27] | ↑or (-) [22] | ↑ [24] | |
IFN-γ | ↑ [22] | ||||
TNF-α | ↑ [25,26,27] | ↑ [22] | ↑ [23,28] | ||
Fas↑ Bax↑ [25] | Fas↑ [22] | caspase3↑ [28] | PI3K/AKT/mTOR↓ [24] | ||
Caspase3,8↑ [25,26,29] | Caspase1↑ [30] | Bax↑ p53↑ [31,32,33] | ROS↑ [34] | ||
p53-ROS↑ [25] | SOD↑ [31] | ||||
Sertoli | activin | ||||
cells | inhibin | ||||
IL-6 | ↑ [22] | ↑ [35] | |||
Fas-L | ↑ [26,27] | ↑ [24] | |||
TNF-α | ↑ [25,26,27] | ↑ [22] | ↑ [35] | ||
MCP-1↑ [26,27] | claudin-11↓ [22] | ||||
TLR2,4↑ [26,27] | |||||
Occludin↓ [29,36] | |||||
ZO-1↓ [29,36] | |||||
F-actin↓ [36] | |||||
Leydig | testosterone | ↓ [36] | ↓ [22,37] | ↓ [33] | ↓ [38] |
cells | protein s | ||||
Fas-L | |||||
IL-10 | ↑ [22] | ||||
TGF-β | ↑ [22] | ||||
Bcl-2↑ [25] | |||||
Testicular | IL-10 | ↑ [22] | ↑ [24] | ||
macro- | IFN-γ | ↑ [22] | |||
phages | IL-6 | ↑ [22] | ↑ [31,32] | ||
TNF-α | ↑ [26,27] | ↑ [22] | ↑ [35] | ||
macrophage infiltration↑ [26,27] | IL-1β ↑ [22,39] | IL-1β↑ [35] | |||
Others | FSH, LH↓ [40] | ASA↑ [22] | ROS/NOS↑ [23,28,31,32,33,41,42] | MMP↓ [43,44,45,46] | |
MMP↓ [47] | ROS↑ [30,48] | FSH, LH↓ [42] | |||
ROS, MDA↑ [25,40] | FSH ↑ [49] | ||||
ASA↑ [21,29] | NLRP3↑ [22,39] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, N. Pharmacological Effects and Immune Mechanisms of Oriental Medicines in Restoring Male Infertility. Int. J. Mol. Sci. 2025, 26, 4642. https://doi.org/10.3390/ijms26104642
Qu N. Pharmacological Effects and Immune Mechanisms of Oriental Medicines in Restoring Male Infertility. International Journal of Molecular Sciences. 2025; 26(10):4642. https://doi.org/10.3390/ijms26104642
Chicago/Turabian StyleQu, Ning. 2025. "Pharmacological Effects and Immune Mechanisms of Oriental Medicines in Restoring Male Infertility" International Journal of Molecular Sciences 26, no. 10: 4642. https://doi.org/10.3390/ijms26104642
APA StyleQu, N. (2025). Pharmacological Effects and Immune Mechanisms of Oriental Medicines in Restoring Male Infertility. International Journal of Molecular Sciences, 26(10), 4642. https://doi.org/10.3390/ijms26104642