The Genetic Polymorphisms of NPPA:rs5065 and NPPB:rs198389 and Intermediate Phenotypes of Heart Failure in Polish Patients
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Genotyping
4.3. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ANP | A-type Natriuretic Peptide (Arial Natriuretic Peptide) |
ARIC | Atherosclerosis Risk in Communities |
BMI | Body Mass Index |
BNP | B-type Natriuretic Peptide |
CAD | Coronary Artery Disease |
COGENT | Clopidogrel and the Optimization of Gastrointestinal Events Trial |
EF | Ejection Fraction |
HF | Heart Failure |
HFmrEF | Heart Failure with mildly reduced Ejection Fraction |
HfpEF | Heart Failure with preserved Ejection Fraction |
HFrEF | Heart Failure with reduced Ejection Fraction |
IVST | Interventricular Septal (Wall) Thickness |
LVEDD | Left Ventricular End-Diastolic Diameter |
LVEF | Left Ventricular Ejection Fraction |
LVH | Left Ventricular Hypertrophy |
LVM | Left Ventricular Mass |
LVMI | Left Ventricular Mass Index |
NP | Natriuretic Peptide |
NPPA | Natriuretic Peptide A gene |
NPPB | Natriuretic Peptide B gene |
NYHA | New York Heart Association |
PCR | Polymerase Chain Reaction |
PWT | Posterior Wall Thickness |
RFLP | Restriction Fragment Length Polymorphism |
STOP-HF | St Vincent’s Screening to Prevent Heart Failure |
T2DM | Type 2 Diabetes Mellitus |
References
- Gorący, I.; Gorący, A.; Kaczmarczyk, M.; Rosik, J.; Lewandowska, K.; Ciechanowicz, A. The Genetic Variants in the Renin-Angiotensin System and the Risk of Heart Failure in Polish Patients. Genes 2022, 13, 1257. [Google Scholar] [CrossRef] [PubMed]
- Savarese, G.; Becher, P.M.; Lund, L.H.; Seferovic, P.; Rosano, G.M.C.; Coats, A.J.S. Global burden of heart failure: A comprehensive and updated review of epidemiology. Cardiovasc. Res. 2023, 118, 3272–3287, Erratum in Cardiovasc. Res. 2023, 119, 1453. [Google Scholar] [CrossRef]
- Bozkurt, B.; Coats, A.J.S.; Tsutsui, H.; Abdelhamid, C.M.; Adamopoulos, S.; Albert, N.; Anker, S.D.; Atherton, J.; Böhm, M.; Butler, J.; et al. Universal definition and classification of heart failure: A report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure: Endorsed by the Canadian Heart Failure Society, Heart Failure Association of India, Cardiac Society of Australia and New Zealand, and Chinese Heart Failure Association. Eur. J. Heart Fail. 2021, 23, 352–380. [Google Scholar] [CrossRef] [PubMed]
- Volpe, M.; Carnovali, M.; Mastromarino, V. The natriuretic peptides system in the pathophysiology of heart failure: From molecular basis to treatment. Clin. Sci. 2016, 130, 57–77. [Google Scholar] [CrossRef]
- Volpe, M.; Gallo, G.; Rubattu, S. Endocrine functions of the heart: From bench to bedside. Eur. Heart J. 2023, 44, 643–655. [Google Scholar] [CrossRef]
- Kuwahara, K. The natriuretic peptide system in heart failure: Diagnostic and therapeutic implications. Pharmacol. Ther. 2021, 227, 107863. [Google Scholar] [CrossRef] [PubMed]
- Giovou, A.E.; Gladka, M.M.; Christoffels, V.M. The Impact of Natriuretic Peptides on Heart Development, Homeostasis, and Disease. Cells 2024, 13, 931. [Google Scholar] [CrossRef]
- Rubattu, S.; Sciarretta, S.; Marchitti, S.; Bianchi, F.; Forte, M.; Volpe, M. The T2238C Human Atrial Natriuretic Peptide Molecular Variant and the Risk of Cardiovascular Diseases. Int. J. Mol. Sci. 2018, 19, 540. [Google Scholar] [CrossRef]
- Scarpino, S.; Marchitti, S.; Stanzione, R.; Evangelista, A.; Di Castro, S.; Savoia, C.; Quarta, G.; Sciarretta, S.; Ruco, L.; Volpe, M.; et al. Reactive oxygen species-mediated effects on vascular remodeling induced by human atrial natriuretic peptide T2238C molecular variant in endothelial cells in vitro. J. Hypertens. 2009, 27, 1804–1813. [Google Scholar] [CrossRef]
- Greenberg, B.D.; Bencen, G.H.; Seilhamer, J.J.; Lewicki, J.A.; Fiddes, J.C. Nucleotide sequence of the gene encoding human atrial natriuretic factor precursor. Nature 1984, 312, 656–658. [Google Scholar] [CrossRef]
- Kato, N.; Sugiyama, T.; Morita, H.; Nabika, T.; Kurihara, H.; Yamori, Y.; Yazaki, Y. Genetic analysis of the atrial natriuretic peptide gene in essential hypertension. Clin. Sci. 2000, 98, 251–258. [Google Scholar] [CrossRef]
- Cannone, V.; Huntley, B.K.; Olson, T.M.; Heublein, D.M.; Scott, C.G.; Bailey, K.R.; Redfield, M.M.; Rodeheffer, R.J.; Burnett, J.C., Jr. Atrial natriuretic peptide genetic variant rs5065 and risk for cardiovascular disease in the general community: A 9-year follow-up study. Hypertension 2013, 62, 860–865. [Google Scholar] [CrossRef]
- Nannipieri, M.; Penno, G.; Pucci, L.; Colhoun, H.; Motti, C.; Bertacca, A.; Rizzo, L.; De Giorgio, L.; Zerbini, G.; Mangili, R.; et al. Pronatriodilatin gene polymorphisms, microvascular permeability, and diabetic nephropathy in type 1 diabetes mellitus. J. Am. Soc. Nephrol. 1999, 10, 1530–1541. [Google Scholar] [CrossRef] [PubMed]
- Ciechanowicz, A.; Kurzawski, G.; Widecka, K.; Goździk, J.; Adler, G.; Czekalski, S. Mutacja T-->C nukleotydu 2238 genu prekursora przedsionkowego peptydu natriuretycznego (ANP) i niejednorodność sodowrażliwego nadciśnienia tętniczego. Doniesienie wstepne [Mutation T-->C of nucleotide 2238 in the gene of atrial natriuretic peptide (ANP) precursor and heterogeneity of sodium-sensitive hypertension. Preliminary report]. Pol. Arch. Intern. Med. 1997, 98, 501–509. [Google Scholar]
- Vassalle, C.; Andreassi, M.G.; Prontera, C.; Fontana, M.; Zyw, L.; Passino, C.; Emdin, M. Influence of ScaI and natriuretic peptide (NP) clearance receptor polymorphisms of the NP System on NP concentration in chronic heart failure. Clin. Chem. 2007, 53, 1886–1890. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yang, Y.; Zheng, M.; Zhang, L.; Wulasihan, M. Atrial natriuretic peptide T2238C gene polymorphism and the risk of cardiovascular diseases: A meta-analysis. Biomed. Rep. 2024, 20, 41. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, Z.; Yu, C. Association of Polymorphisms in the Atrial Natriuretic Factor Gene with the Risk of Essential Hypertension: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2016, 13, 458. [Google Scholar] [CrossRef]
- Seidelmann, S.B.; Vardeny, O.; Claggett, B.; Yu, B.; Shah, A.M.; Ballantyne, C.M.; Selvin, E.; MacRae, C.A.; Boerwinkle, E.; Solomon, S.D. An NPPB Promoter Polymorphism Associated With Elevated N-Terminal pro-B-Type Natriuretic Peptide and Lower Blood Pressure, Hypertension, and Mortality. J. Am. Heart Assoc. 2017, 6, e005257. [Google Scholar] [CrossRef]
- Meirhaeghe, A.; Sandhu, M.S.; McCarthy, M.I.; de Groote, P.; Cottel, D.; Arveiler, D.; Ferrières, J.; Groves, C.J.; Hattersley, A.T.; Hitman, G.A.; et al. Association between the T-381C polymorphism of the brain natriuretic peptide gene and risk of type 2 diabetes in human populations. Hum. Mol. Genet. 2007, 16, 1343–1350. [Google Scholar] [CrossRef]
- Lanfear, D.E.; Stolker, J.M.; Marsh, S.; Rich, M.W.; McLeod, H.L. Genetic variation in the B-type natiuretic peptide pathway affects BNP levels. Cardiovasc. Drugs Ther. 2007, 21, 55–62. [Google Scholar] [CrossRef]
- Takeishi, Y.; Toriyama, S.; Takabatake, N.; Shibata, Y.; Konta, T.; Emi, M.; Kato, T.; Kawata, S.; Kubota, I. Linkage disequilibrium analyses of natriuretic peptide precursor B locus reveal risk haplotype conferring high plasma BNP levels. Biochem. Biophys. Res. Commun. 2007, 362, 480–484. [Google Scholar] [CrossRef] [PubMed]
- Costello-Boerrigter, L.C.; Boerrigter, G.; Ameenuddin, S.; Mahoney, D.W.; Slusser, J.P.; Heublein, D.M.; Redfield, M.M.; Rodeheffer, R.J.; Olson, T.M.; Burnett, J.C., Jr. The effect of the brain-type natriuretic peptide single-nucleotide polymorphism rs198389 on test characteristics of common assays. Mayo Clin. Proc. 2011, 86, 210–218, Erratum in Mayo Clin. Proc. 2011, 86, 469. [Google Scholar] [CrossRef]
- Ellis, K.L.; Newton-Cheh, C.; Wang, T.J.; Frampton, C.M.; Doughty, R.N.; Whalley, G.A.; Ellis, C.J.; Skelton, L.; Davis, N.; Yandle, T.G.; et al. Association of genetic variation in the natriuretic peptide system with cardiovascular outcomes. J. Mol. Cell Cardiol. 2011, 50, 695–701. [Google Scholar] [CrossRef]
- Folkersen, L.; Gustafsson, S.; Wang, Q.; Hansen, D.H.; Hedman, Å.K.; Schork, A.; Page, K.; Zhernakova, D.V.; Wu, Y.; Peters, J.; et al. Genomic and drug target evaluation of 90 cardiovascular proteins in 30,931 individuals. Nat. Metab. 2020, 2, 1135–1148. [Google Scholar] [CrossRef]
- Xhaard, C.; Rouget, R.; Vodovar, N.; Le Floch, E.; Dandine-Roulland, C.; Wagner, S.; Bacq-Daian, D.; Thuillier, Q.; Boivin, J.M.; Branlant, C.; et al. Impact of natriuretic peptide polymorphisms on diastolic and metabolic function in a populational cohort: Insights from the STANISLAS cohort. ESC Heart Fail. 2022, 9, 729–739. [Google Scholar] [CrossRef]
- Sun, B.B.; Maranville, J.C.; Peters, J.E.; Stacey, D.; Staley, J.R.; Blackshaw, J.; Burgess, S.; Jiang, T.; Paige, E.; Surendran, P.; et al. Genomic atlas of the human plasma proteome. Nature 2018, 558, 73–79. [Google Scholar] [CrossRef]
- Caron, B.; Patin, E.; Rotival, M.; Charbit, B.; Albert, M.L.; Quintana-Murci, L.; Duffy, D.; Rausell, A.; Milieu Intérieur Consortium. Integrative genetic and immune cell analysis of plasma proteins in healthy donors identifies novel associations involving primary immune deficiency genes. Genome Med. 2022, 14, 28. [Google Scholar] [CrossRef] [PubMed]
- Musani, S.K.; Fox, E.R.; Kraja, A.; Bidulescu, A.; Lieb, W.; Lin, H.; Beecham, A.; Chen, M.H.; Felix, J.F.; Fox, C.S.; et al. Genome-wide association analysis of plasma B-type natriuretic peptide in blacks: The Jackson Heart Study. Circ. Cardiovasc. Genet. 2015, 8, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Johansson, Å.; Eriksson, N.; Lindholm, D.; Varenhorst, C.; James, S.; Syvänen, A.C.; Axelsson, T.; Siegbahn, A.; Barratt, B.J.; Becker, R.C.; et al. Genome-wide association and Mendelian randomization study of NT-proBNP in patients with acute coronary syndrome. Hum. Mol. Genet. 2016, 25, 1447–1456. [Google Scholar] [CrossRef]
- Katz, D.H.; Tahir, U.A.; Bick, A.G.; Pampana, A.; Ngo, D.; Benson, M.D.; Yu, Z.; Robbins, J.M.; Chen, Z.Z.; Cruz, D.E.; et al. Whole Genome Sequence Analysis of the Plasma Proteome in Black Adults Provides Novel Insights Into Cardiovascular Disease. Circulation 2022, 145, 357–370. [Google Scholar] [CrossRef]
- Cannone, V.; Ledwidge, M.; Watson, C.; McKie, P.M.; Burnett, J.C., Jr.; McDonald, K. STOP-HF Trial: Higher Endogenous BNP and Cardiovascular Protection in Subjects at Risk for Heart Failure. JACC Basic. Transl. Sci. 2021, 6, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Gorący, I.; Dawid, G.; Skonieczna-Żydecka, K.; Kaczmarczyk, M.; Łoniewska, B.; Gorący, J. Association of genetic variation in the natriuretic peptide system and left ventricular mass and blood pressure in newborns. Kardiol. Pol. 2015, 73, 366–372. [Google Scholar] [CrossRef]
- Newton-Cheh, C.; Larson, M.G.; Vasan, R.S.; Levy, D.; Bloch, K.D.; Surti, A.; Guiducci, C.; Kathiresan, S.; Benjamin, E.J.; Struck, J.; et al. Association of common variants in NPPA and NPPB with circulating natriuretic peptides and blood pressure. Nat. Genet. 2009, 41, 348–353. [Google Scholar] [CrossRef]
- Larsen, T.B.; Lassen, J.F.; Brandslund, I.; Byriel, L.; Petersen, G.B.; Nørgaard-Pedersen, B. The Arg506Gln mutation (FV Leiden) among a cohort of 4188 unselected Danish newborns. Thromb. Res. 1998, 89, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Namipashaki, A.; Razaghi-Moghadam, Z.; Ansari-Pour, N. The Essentiality of Reporting Hardy-Weinberg Equilibrium Calculations in Population-Based Genetic Association Studies. Cell J. 2015, 17, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Sollis, E.; Mosaku, A.; Abid, A.; Buniello, A.; Cerezo, M.; Gil, L.; Groza, T.; Güneş, O.; Hall, P.; Hayhurst, J.; et al. The NHGRI-EBI GWAS Catalog: Knowledgebase and deposition resource. Nucleic Acids Res. 2023, 51, D977–D985. [Google Scholar] [CrossRef]
- Geelhoed, B.; Börschel, C.S.; Niiranen, T.; Palosaari, T.; Havulinna, A.S.; Fouodo, C.J.K.; Scheinhardt, M.O.; Blankenberg, S.; Jousilahti, P.; Kuulasmaa, K.; et al. Assessment of causality of natriuretic peptides and atrial fibrillation and heart failure: A Mendelian randomization study in the FINRISK cohort. EP Europace. 2020, 22, 1463–1469. [Google Scholar] [CrossRef]
- Pfister, R.; Luben, R.N.; Khaw, K.T.; Wareham, N.J. Common genetic variants of the natriuretic peptide gene locus are not associated with heart failure risk in participants in the EPIC-Norfolk study. Eur. J. Heart Fail. 2013, 15, 624–627. [Google Scholar] [CrossRef]
- Nannipieri, M.; Manganiello, M.; Pezzatini, A.; De Bellis, A.; Seghieri, G.; Ferrannini, E. Polymorphisms in the hANP (human atrial natriuretic peptide) gene, albuminuria, and hypertension. Hypertension 2001, 37, 1416–1422. [Google Scholar] [CrossRef]
- Nannipieri, M.; Posadas, R.; Williams, K.; Politi, E.; Gonzales-Villalpando, C.; Stern, M.P.; Ferrannini, E. Association between polymorphisms of the atrial natriuretic peptide gene and proteinuria: A population-based study. Diabetologia 2003, 46, 429–432. [Google Scholar] [CrossRef]
- Pfister, R.; Sharp, S.; Luben, R.; Welsh, P.; Barroso, I.; Salomaa, V.; Meirhaeghe, A.; Khaw, K.T.; Sattar, N.; Langenberg, C.; et al. Mendelian randomization study of B-type natriuretic peptide and type 2 diabetes: Evidence of causal association from population studies. PLoS Med. 2011, 8, e1001112. [Google Scholar] [CrossRef] [PubMed]
- Choquet, H.; Cavalcanti-Proença, C.; Lecoeur, C.; Dina, C.; Cauchi, S.; Vaxillaire, M.; Hadjadj, S.; Horber, F.; Potoczna, N.; Charpentier, G.; et al. The T-381C SNP in BNP gene may be modestly associated with type 2 diabetes: An updated meta-analysis in 49 279 subjects. Hum. Mol. Genet. 2009, 18, 2495–2501. [Google Scholar] [CrossRef] [PubMed]
- Everett, B.M.; Cook, N.R.; Chasman, D.I.; Magnone, M.C.; Bobadilla, M.; Rifai, N.; Ridker, P.M.; Pradhan, A.D. Prospective evaluation of B-type natriuretic peptide concentrations and the risk of type 2 diabetes in women. Clin. Chem. 2013, 59, 557–565. [Google Scholar] [CrossRef] [PubMed]
- Meroufel, D.N.; Ouhaïbi-Djellouli, H.; Mediene-Benchekor, S.; Hermant, X.; Grenier-Boley, B.; Lardjam-Hetraf, S.A.; Boulenouar, H.; Hamani-Medjaoui, I.; Saïdi-Mehtar, N.; Amouyel, P.; et al. Examination of the brain natriuretic peptide rs198389 single-nucleotide polymorphism on type 2 diabetes mellitus and related phenotypes in an Algerian population. Gene 2015, 567, 159–163. [Google Scholar] [CrossRef]
- Rubattu, S.; Bigatti, G.; Evangelista, A.; Lanzani, C.; Stanzione, R.; Zagato, L.; Manunta, P.; Marchitti, S.; Venturelli, V.; Bianchi, G.; et al. Association of atrial natriuretic peptide and type a natriuretic peptide receptor gene polymorphisms with left ventricular mass in human essential hypertension. J. Am. Coll. Cardiol. 2006, 48, 499–505. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, M.; Sheng, H.; Lou, Y.; Su, X.; Chen, Y.; Lu, L.; Liu, Y.; Jin, W. Association of natriuretic peptide polymorphisms with left ventricular dysfunction in southern Han Chinese coronary artery disease patients. Int. J. Clin. Exp. Pathol. 2014, 7, 7148–7157. [Google Scholar]
- Rutledge, D.R.; Sun, Y.; Ross, E.A. Polymorphisms within the atrial natriuretic peptide gene in essential hypertension. J. Hypertens. 1995, 13, 953–955. [Google Scholar] [CrossRef]
- Gorący, I.; Peregud-Pogorzelska, M.; Safranow, K.; Ciechanowicz, A. Key genetic variants in the renin-angiotensin system and left ventricular mass in a cohort of Polish patients with heart failure. Kardiol. Pol. 2021, 79, 765–772. [Google Scholar] [CrossRef]
Polymorphism | HF Patients (n = 330) | Control Newborns a (n = 206) | p b | Compared Genotypes or Alleles | OR (95% CI) | p a | ||
---|---|---|---|---|---|---|---|---|
N | (%) | n | % | |||||
NPPA genotype | ||||||||
TT | 239 | (72.4) | 143 | (69.4) | 0.678 | CC + CT vs. TT | 0.86 (0.59–1.27) | 0.454 |
TC | 88 | (26.7) | 60 | (29.1) | CC vs. CT + TT | 0.62 (0.12–3.10) | 0.680 | |
CC | 3 | (0.9) | 3 | (1.5) | CC vs. TT | 0.60 (0.12–3.00) | 0.676 | |
NPPA allele | ||||||||
T | 566 | (85.8) | 346 | (84.0) | 0.427 | C vs. T | 0.87 (0.62–1.22) | 0.427 |
C | 94 | (14.2) | 66 | (16.0) | ||||
NPPB genotype | ||||||||
TT | 112 | (33.9) | 62 | (30.1) | 0.445 | CC + CT vs. TT | 0.84 (0.58–1.22) | 0.356 |
TC | 156 | (47.3) | 109 | (52.9) | CC vs. CT + TT | 1.13 (0.71–1.78) | 0.597 | |
CC | 62 | (18.8) | 35 | (17.0) | CC vs. CT | 0.98 (0.58–1.64) | 0.920 | |
NPPB allele | ||||||||
T | 380 | (57.6) | 233 | (56.6) | 0.742 | C vs. T | 0.96 (0.75–1.23) | 0.742 |
C | 280 | (42.4) | 179 | (43.4) |
Variable | NPPA:rs5065 (c.2238T>C) Genotype | p a | p D b | p R b | ||
---|---|---|---|---|---|---|
TT (n = 239) | TC (n = 88) | CC (n = 3) | ||||
Age, years | 66 (61:70) | 67 (63:73) | 68 (67:77) | 0.125 | 0.062 | 0.270 |
BMI, kg/m2 | 29.0 (25.8:31.8) | 29.0 (26.0:32.1) | 29.7 (27.7:33.9) | 0.766 | 0.767 | 0.526 |
Males, n (%) | 182 (76.1) | 60 (68.2) | 3 (100.0) | 0.204 | 0.199 | 0.306 |
Smokers, n (%) | 87 (36.4) | 19 (21.6) | 1 (33.3) | 0.040 | 0.013 | 0.973 |
T2DM, n (%) | 87 (36.4) | 30 (34.1) | 1 (33.3) | 0.925 | 0.693 | 0.930 |
Hypertension, n (%) | 201 (84.1) | 73 (82.9) | 3 (100.0) | 0.726 | 0.898 | 0.447 |
Echocardiographic parameters: | ||||||
IVST, cm | 1.28 (1.10:1.40) | 1.20 (1.10:1.35) | 1.10 (1.05:1.90) | 0.239 | 0.091 | 0.838 |
PWT, cm | 1.12 (1.00:1.20) | 1.12 (1.00:1.22) | 1.20 (0.90:1.50) | 0.901 | 0.864 | 0.657 |
LVEDD, cm | 5.00 (4.70:5.50) | 4.90 (4.60:5.20) | 5.50 (5.20:5.50) | 0.084 | 0.106 | 0.206 |
EF, % | 50.0 (40.0:55.0) | 45.0 (40.0:55.0) | 60.0 (55.0:60.0) | 0.112 | 0.797 | 0.037 |
LVM, g | 241.8 (199.6:288.2) (194.2:287.5) | 229.3 (179.0:281.4) | 257.0 (187.7:448.7) | 0.202 | 0.118 | 0.544 |
LVMI, g/m2 | 124.3 (98.6:148.4) | 122.9 (92.6:143.5) | 119.5 (93.7:235.0) | 0.456 | 0.243 | 0.792 |
Variable | NPPB:rs198389 (c.-381T>C) Genotype | p a | p D b | p R b | ||
---|---|---|---|---|---|---|
TT (n = 112) | TC (n = 156) | CC (n = 62) | ||||
Age, years | 66 (62:71) | 65 (61:71) | 69 (63:72) | 0.165 | 0.659 | 0.060 |
BMI, kg/m2 | 28.2 (24.8:31.6) | 29.7 (26.3:32.5) | 28.9 (26.8:30.5) | 0.112 | 0.058 | 0.857 |
Males, n (%) | 88 (78.6) | 111 (71.1) | 46 (74.2) | 0.392 | 0.198 | 0.993 |
Smokers, n (%) | 32 (28.6) | 57 (36.5) | 18 (29.0) | 0.319 | 0.284 | 0.527 |
T2DM, n (%) | 41 (36.6) | 53 (34.0) | 24 (38.7) | 0.785 | 0.818 | 0.591 |
Hypertension, n (%) | 92 (82.1) | 128 (82.0) | 57 (91.9) | 0.164 | 0.525 | 0.058 |
Echocardiographic parameters: | ||||||
IVST, cm | 1.30 (1.10:1.40) | 1.20 (1.10:1.39) | 1.23 (1.11:1.40) | 0.571 | 0.862 | 0.358 |
PWT, cm | 1.11 (1.00:1.20) | 1.15 (1.00:1.20) | 1.12 (1.05:1.20) | 0.762 | 0.771 | 0.462 |
LVEDD, cm | 5.00 (4.70:5.50) | 5.00 (4.60:5.50) | 5.0 (4.70:5.50) | 0.933 | 0.838 | 0.715 |
EF, % | 45.0 (40.0:55.0) | 50.0 (40.0:55.0) | 45.0 (40.0:55.0) | 0.806 | 0.515 | 0.886 |
LVM, g | 239.9 (190.9:286.3) | 241.8 (195.1:281.5) | 236.3 (198.1:304.3) | 0.746 | 0.808 | 0.444 |
LVMI, g/m2 | 121.4 (97.1:148.0) | 122.8 (98.2:147.4) | 133.5 (107.2:157.6) | 0.402 | 0.650 | 0.177 |
Polymorphism | HF Patients with HT (n = 277) | HF Patients Without HT (n = 53) | p a | Compared Genotypes or Alleles | OR (95% CI) for HT | p a | ||
---|---|---|---|---|---|---|---|---|
n | (%) | n | (%) | |||||
NPPA genotype | ||||||||
TT | 201 | (72.6) | 38 | (71.7) | 0.725 | CC + CT vs. TT | 0.96 (0.50–1.84) | 0.897 |
TC | 73 | (26.3) | 15 | (28.3) | CC vs. CT + TT | - | - | |
CC | 3 | (1.1) | 0 | (0.0) | CC vs. TT | - | - | |
NPPA allele | ||||||||
T | 475 | (85.7) | 91 | (85.8) | C vs. T | 1.39 (0.56–1.83) | 0.977 | |
C | 79 | (14.3) | 15 | (14.2) | ||||
NPPB genotype | ||||||||
TT | 92 | (33.2) | 20 | (37.7) | 0.163 | CC + CT vs. TT | 0.22 (0.66–2.24) | 0.524 |
TC | 128 | (46.2) | 28 | (52.8) | CC vs. CT + CT | 2.49 (0.95–6.53) | 0.057 | |
CC | 57 | (20.6) | 5 | (9.5) | CC vs. TT | 2.48 (0.88–6.97) | 0.077 | |
NPPB allele | ||||||||
T | 312 | (56.3) | 68 | (64.2) | C vs. T | 1.39 (0.90–2.13) | 0.134 | |
C | 242 | (43.7) | 38 | (35.8) |
Polymorphism | HF Patients with LVH (n = 214) | HF Patients Without LVH (n = 116) | p a | Compared Genotypes or Alleles | OR (95% CI) for LVH | p a | ||
---|---|---|---|---|---|---|---|---|
n | (%) | n | (%) | |||||
NPPA genotype | ||||||||
TT | 156 | (72.9) | 83 | (71.5) | 0.960 | CC + CT vs. TT | 0.93 (0.56–1.55) | 0.973 |
TC | 56 | (26.2) | 32 | (27.6) | CC vs. CT + TT | 1.08 (0.10–12.09) | 0.947 | |
CC | 2 | (0.9) | 1 | (0.9) | CC vs. TT | 1.06 (0.09–11.91) | 0.959 | |
NPPA allele | ||||||||
T | 368 | (86.0) | 198 | (85.3) | C vs. T | 0.95 (0.60–1.50) | 0.823 | |
C | 60 | (14.0) | 34 | (14.7) | ||||
NPPB genotype | ||||||||
TT | 71 | (33.2) | 41 | (35.3) | 0.700 | CC + CT vs. TT | 1.10 (0.68–1.77) | 0.691 |
TC | 100 | (46.7) | 56 | (48.3) | CC vs. CT + CT | 1.28 (0.71–2.33) | 0.409 | |
CC | 43 | (20.1) | 19 | (16.4) | CC vs. TT | 1.31 (0.67–2.53) | 0.428 | |
NPPB allele | ||||||||
T | 242 | (56.5) | 138 | (59.4) | C vs. T | 1.27 (0.67–2.38) | 0.461 | |
C | 186 | (43.4) | 94 | (40.5) |
Polymorphism | HFpEF (n = 167) | HFmrEF (n = 53) | HFrEF (n = 110) | p a | p a HFpEF vs. Others | p a HFrEF vs. Others | p a HFpEF vs. HFrEF | |||
---|---|---|---|---|---|---|---|---|---|---|
n | (%) | n | (%) | n | (%) | TT vs. TC vs. CC C+ vs. Others CC vs. Others | TT vs. TC vs. CC C+ vs. Others CC vs. Others | TT vs. TC vs. CC C+ vs. Others CC vs. Others | TT vs. TC vs. CC C+ vs. Others CC vs. Others | |
NPPA genotype | ||||||||||
TT | 122 | (73.1) | 36 | (67.9) | 81 | (73.6) | 0.428 | 0.198 | 0.463 | 0.365 |
TC | 42 | (25.1) | 17 | (32.1) | 29 | (26.4) | 0.722 | 0.795 | 0.727 | 0.915 |
CC | 3 | (1.8) | 0 | (0.0) | 0 | (0.0) | 0.228 | 0.086 | 0.266 | 0.157 |
NPPA allele | ||||||||||
T | 286 | (85.6) | 89 | (84.0) | 191 | (86.8) | 0.784 | 0.924 | 0.581 | 0.692 |
C | 48 | (14.4) | 17 | (16.0) | 29 | (13.2) | ||||
NPPB genotype | ||||||||||
TT | 52 | (31.1) | 21 | (39.6) | 39 | (35.5) | 0.509 | 0.299 | 0.889 | 0.613 |
TC | 86 | (51.5) | 20 | (37.7) | 50 | (45.4) | 0.482 | 0.277 | 0.681 | 0.454 |
CC | 29 | (17.4) | 12 | (22.7) | 21 | (19.1) | 0.689 | 0.503 | 0.921 | 0.715 |
NPPB allele | ||||||||||
T | 190 | (56.9) | 62 | (58.5) | 128 | (58.2) | 0.935 | 0.717 | 0.914 | 0.763 |
C | 144 | (43.1) | 44 | (41.5) | 92 | (41.8) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gorący-Rosik, A.; Fic, M.; Rosik, J.; Lewandowska, K.; Safranow, K.; Ciechanowicz, A.; Gorący, I. The Genetic Polymorphisms of NPPA:rs5065 and NPPB:rs198389 and Intermediate Phenotypes of Heart Failure in Polish Patients. Int. J. Mol. Sci. 2025, 26, 4567. https://doi.org/10.3390/ijms26104567
Gorący-Rosik A, Fic M, Rosik J, Lewandowska K, Safranow K, Ciechanowicz A, Gorący I. The Genetic Polymorphisms of NPPA:rs5065 and NPPB:rs198389 and Intermediate Phenotypes of Heart Failure in Polish Patients. International Journal of Molecular Sciences. 2025; 26(10):4567. https://doi.org/10.3390/ijms26104567
Chicago/Turabian StyleGorący-Rosik, Anna, Mateusz Fic, Jakub Rosik, Klaudyna Lewandowska, Krzysztof Safranow, Andrzej Ciechanowicz, and Iwona Gorący. 2025. "The Genetic Polymorphisms of NPPA:rs5065 and NPPB:rs198389 and Intermediate Phenotypes of Heart Failure in Polish Patients" International Journal of Molecular Sciences 26, no. 10: 4567. https://doi.org/10.3390/ijms26104567
APA StyleGorący-Rosik, A., Fic, M., Rosik, J., Lewandowska, K., Safranow, K., Ciechanowicz, A., & Gorący, I. (2025). The Genetic Polymorphisms of NPPA:rs5065 and NPPB:rs198389 and Intermediate Phenotypes of Heart Failure in Polish Patients. International Journal of Molecular Sciences, 26(10), 4567. https://doi.org/10.3390/ijms26104567