Stromal Cell-Derived Factor-1, P-Selectin, and Advanced Oxidation Protein Products with Mitochondrial Dysfunction Concurrently Impact Cerebral Vessels in Patients with Normoalbuminuric Diabetic Kidney Disease and Type 2 Diabetes Mellitus
Abstract
1. Introduction
2. Results
2.1. Clinical and Biological Data of Patients with Type 2 DM and Controls
2.2. Variations in Blood and Urine of SDF-1, P-Selectin, and AOPPs Are Associated with mtDNA Changes in Early DKD
2.3. Cerebrovascular Hemodynamic Indices Are Associated with Changes in Blood and Urine Levels of SDF-1, P-Selectin, AOPPs, mtDNA, and Renal Tubular and Glomerular Biomarkers
3. Discussion
3.1. SDF-1, P-Selectin, and AOPP Variations in Blood and Urine in Conjunction with mtDNA Are Interrelated with Early DKD in Patients with Type DM
3.2. SDF-1, P-Selectin, and AOPPs Are Major Players in the Mechanisms of Cerebrovascular Remodeling in Patients with Type 2 DM and Normoalbuminuric DKD
4. Materials and Methods
4.1. Cohort/Inclusion/Exclusion Criteria
4.2. Laboratory Assessments
- -
- Human SDF-1 (stromal cell-derived factor-1) (Catalog No. E-EL-H0052, Elabscience, Houston, TX, USA); sensitivity: 0.1 ng/mL; detection range: 0.16–10 ng/mL; and coefficient of variation (CV) < 10%.
- -
- Human SELP (P-Selectin) (Catalog No. E-EL-H0917, Elabscience, Houston, TX, USA); sensitivity: 0.1 ng/mL; detection range: 0.16–10 ng/mL; and CV < 10%.
- -
- OxiSelectTM AOPP Assay Kit (Catalog Number STA-318, Cell Biolabs, San Diego, CA 92126, USA); AOPP-HSA Positive Control [Part No. number_2]: One 100 μL tube containing 7.5 mg/mL of AOPP-Human Serum Albumin with 0.14 μmol AOPP/mg proteins.
- -
- Podocyte injury biomarkers included synaptopodin (Catalog No. abx055120, Abbexa, Cambridge, UK), with a sensitivity of 0.10 ng/mL, a detection range of 0.156–10 ng/mL, and a coefficient of variation (CV) of less than 10%. Podocalyxin (Catalog No. E-EL-H2360, Elabscience, Houston, TX, USA) has a sensitivity of 0.1 ng/mL, a detection range of 0.16–10 ng/mL, and a coefficient of variation (CV) of less than 10%.
4.3. Evaluation of mtDNA
4.4. Neurosonologic Ultrasound Methods
4.4.1. Carotid Artery Intima-Media Thickness (IMT)
4.4.2. Pulsatility Index (PI) and Resistivity Index (RI)
4.4.3. Cerebrovascular Reactivity
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, S.; Dominguez, M.; Golestaneh, L. Diabetic kidney disease: An update. Med. Clin. N. Am. 2023, 107, 689–705. [Google Scholar] [CrossRef]
- Shi, S.; Ni, L.; Gao, L.; Wu, X. Comparison of nonalbuminuric and albuminuric diabetic kidney disease among patients with type 2 diabetes: A systematic review and meta-analysis. Front. Endocrinol. 2022, 13, 871272. [Google Scholar] [CrossRef]
- Krolewski, A.S.; Niewczas, M.A.; Skupien, J.; Gohda, T.; Smiles, A.; Eckfeldt, J.H.; Doria, A.; Warram, J.H. Early Progressive Renal Decline Precedes the Onset of Microalbuminuria and Its Progression to Macroalbuminuria. Diabetes Care 2014, 37, 226–234. [Google Scholar] [CrossRef]
- Tang, S.C.; Leung, J.C.; Lai, K.N. Diabetic tubulopathy: An emerging entity. Contrib. Nephrol. 2011, 170, 124–134. [Google Scholar]
- Petrica, L.; Petrica, M.; Vlad, A.; Jianu, D.C.; Gluhovschi, G.; Ianculescu, C.; Firescu, C.; Dumitrascu, V.; Giju, S.; Gluhovschi, C.; et al. Proximal tubule dysfunction is dissociated from endothelial dysfunction in normoalbuminuric patients with type 2 diabetes mellitus: A cross-sectional study. Nephron. Clin. Pract. 2011, 118, c155–c164. [Google Scholar] [CrossRef]
- Dai, Q.; Chen, N.; Zeng, L.; Lin, X.J.; Jiang, F.X.; Zhuang, X.J.; Lu, Z.Y. Clinical Features of and Risk Factors for Normoalbuminuric Diabetic Kidney Disease in Hospitalized Patients with Type 2 Diabetes Mellitus: A Retrospective Cross-Sectional Study. BMC Endocr. Disord. 2021, 21, 104. [Google Scholar] [CrossRef]
- Harris, A.K.; Hutchinson, J.R.; Sachidanandam, K.; Johnson, M.H.; Dorrance, A.M.; Stepp, D.W.; Fagan, S.C.; Ergul, A. Type 2 Diabetes Causes Remodeling of Cerebrovasculature via Differential Regulation of Matrix Metalloproteinases and Collagen Synthesis. Diabetes 2005, 54, 2638–2644. [Google Scholar] [CrossRef]
- Air, E.L.; Kissela, B.M. Diabetes, the Metabolic Syndrome, and Ischemic Stroke: Epidemiology and Possible Mechanisms. Diabetes Care 2007, 30, 3131–3140. [Google Scholar] [CrossRef]
- Petrica, L.; Pusztai, A.M.; Vlad, M.; Vlad, A.; Gadalean, F.; Dumitrascu, V.; Vlad, D.; Velciov, S.; Gluhovschi, C.; Bob, F.; et al. MiRNA Expression Is Associated with Clinical Variables Related to Vascular Remodeling in the Kidney and the Brain in Type 2 Diabetes Mellitus Patients. Endocr. Res. 2020, 45, 119–130. [Google Scholar] [CrossRef]
- Petrica, L.; Vlad, A.; Gluhovschi, G.; Gadalean, F.; Dumitrascu, V.; Vlad, D. Glycated peptides are associated with the endothelial variability in the kidney and cerebral vessels in Type 2 diabetes mellitus patients. J Diabetes Complicat. 2015, 29, 230–237. [Google Scholar] [CrossRef]
- Karimabad, M.N.; Hassanshahi, G. Significance of CXCL12 in type 2 diabetes mellitus and its associated complications. Inflammation 2015, 38, 710–717. [Google Scholar] [CrossRef]
- Darisipudi, M.N.; Kulkarni, O.P.; Sayyed, S.G.; Ryu, M.; Migliorini, A.; Sagrinati, C.; Parente, E.; Vater, A.; Eulberg, D.; Klussmann, S.; et al. Dual blockade of the homeostatic chemokine CXCL12 and the pro-inflammatory chemokine CCL2 has additive protective effects on diabetic kidney disease. Am. J. Cardiol. 2011, 179, 116–124. [Google Scholar]
- Döring, Y.; van der Vorst, E.P.C.; Duchene, J.; Jansen, Y.; Gencer, S.; Bidzhekov, K.; Atzler, D.; Santovito, D.; Rader, D.J.; Saleheen, D.; et al. CXCL12 derived from endothelial cells promotes atherosclerosis to drive coronary artery disease. Circulation 2019, 139, 1338–1340. [Google Scholar] [CrossRef]
- Li, L.; Du, Z.; Rong, B.; Zhao, D.; Wang, A.; Xu, Y.; Zhang, H.; Bai, X.; Zhong, J. Foam cells promote atherosclerosis progression by releasing CXCL12. Biosci. Rep. 2020, 40, BSR20193267. [Google Scholar] [CrossRef] [PubMed]
- Guyon, A. CXCL12 chemokine and its receptors as major players in the interactions between immune and nervous systems. Front. Cell Neurosci. 2014, 8, 65. [Google Scholar] [CrossRef]
- Koyama, H.; Maeno, T.; Fukumoto, S.; Shoji, T.; Yamane, T.; Yokoyama, H.; Emoto, M.; Shoji, T.; Tahara, H.; Inaba, M.; et al. Platelet P-Selectin Expession Is Associated with Atherosclerotic Wall Thickness in Carotid Artery in Humans. Circulation 2003, 108, 524–529. [Google Scholar] [CrossRef]
- Huo, Y.; Schober, A.; Forlow, S.B.; Smith, D.F.; Hyman, M.C.; Jung, S.; Littman, D.R.; Weber, C.; Ley, K. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med. 2003, 9, 61–67. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, K.; George, T.P.; Mujammami, M.; Isnani, A.; Afadda, A.A. The association of cell adhesion molecules and selectins (VCAM-1, ICAM-1, E-selectin, L-selectin, and P-selectin) with microvascular complications in patients with type 2 diabetes: A follow-up study. Front. Endocrinol. 2023, 14, 1072288. [Google Scholar] [CrossRef]
- Zhang, D.D.; Cao, Y.; Mu, J.Y.; Liu, Y.M.; Gao, F.; Han, F.; Zhai, F.F.; Zhou, L.X.; Ni, J.; Yao, M.; et al. Inflammatory biomarkers and cerebral small vessel disease: A community-based cohort study. Stroke Vasc. Neurol. 2022, 7, e001102. [Google Scholar] [CrossRef]
- Descamps-Latscha, B.; Witko-Sarsat, V.; Nguyen-Khoa, T.; Nguyen, A.T.; Gausson, V.; Mothu, N.; London, G.M.; Jungers, P. Advanced oxidation protein products as risk factors for atherosclerotic cardiovascular events in nondiabetic predialysis patients. Am. J. Kidney Dis. 2005, 45, 39–47. [Google Scholar] [CrossRef]
- Piwowar, A.; Knapik-Kordecka, M.; Szczecińska, J.; Warwas, M. Plasma glycooxidation protein products in type 2 diabetic patients with nephropathy. Diabetes Metab. Res. Rev. 2008, 24, 549–553. [Google Scholar] [CrossRef]
- Piwowar, A.; Knapik-Kordecka, M.; Warwas, M. Markers of oxidative protein damage in plasma and urine of type 2 diabetic patients. British J. Biomed. Sci. 2009, 66, 194–199. [Google Scholar] [CrossRef] [PubMed]
- Liang, M.; Wang, J.; Xie, C.; Yang, Y.; Tian, J.W.; Xue, Y.M.; Hou, F.F. Increased plasma advanced oxidation protein products is an early marker of endothelial dysfunction in type 2 diabetes patients without albuminuria. J. Diab. 2014, 6, 417–426. [Google Scholar] [CrossRef]
- Drüeke, T.; Witko-Sarsat, V.; Massy, Z.; Descamps-Latscha, B.; Guerin, A.P.; Marchais, S.J.; Gausson, V.; London, G.M. Iron therapy, advanced oxidation protein products, and carotid artery intima-media thickness in end-stage renal disease. Circulation 2022, 106, 2212–2217. [Google Scholar] [CrossRef] [PubMed]
- Bagyura, Z.; Takács, A.; Kiss, L.; Dósa, E.; Vadas, R.; Nguyen, T.D.; Dinya, E.; Soos, P.; Szelid, Z.; Lang, O.; et al. Level of advanced oxidation protein products is associated with subclinical atherosclerosis. BMC Cardiovasc. Dis. 2022, 22, 5. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.Y.; Hou, F.F.; Niu, H.X.; Wang, G.B.; Xie, D.; Guo, Z.J.; Zhou, Z.M.; Yang, F.; Tian, J.W.; Zhang, X. Advanced oxidation protein products promote inflammation in diabetic kidney through activation of renal nicotinamide adenine dinucleotide phosphate oxidase. Endocrinology 2008, 149, 1829–1839. [Google Scholar] [CrossRef]
- Hallan, S.; Sharma, K. The Role of Mitochondria in Diabetic Kidney Disease. Curr. Diabetes Rep. 2016, 16, 61. [Google Scholar] [CrossRef]
- Wei, P.Z.; Kwan, B.C.H.; Chow, K.M.; Cheng, P.M.S.; Luk, C.C.W.; Li, P.K.T.; Szeto, C.C. Urinary Mitochondrial DNA Level Is an Indicator of Intra-Renal Mitochondrial Depletion and Renal Scarring in Diabetic Nephropathy. Nephrol. Dial. Transpl. 2018, 33, 784–788. [Google Scholar] [CrossRef]
- Petrica, L.; Vlad, A.; Gadalean, F.; Muntean, D.M.; Vlad, D.; Dumitrascu, V.; Bob, F.; Milas, O.; Suteanu-Simulescu, A.; Glavan, M.; et al. Mitochondrial DNA Changes in Blood and Urine Display a Specific Signature in Relation to Inflammation in Normoalbuminuric Diabetic Kidney Disease in Type 2 Diabetes Mellitus Patients. Int. J. Mol. Sci. 2023, 24, 9803. [Google Scholar] [CrossRef]
- Petrica, L.; Gadalean, F.; Muntean, D.M.; Jianu, D.C.; Vlad, D.; Dumitrascu, V.; Bob, F.; Milas, O.; Suteanu-Simulescu, A.; Glavan, M.; et al. Mitochondrial DNA and Inflammation Are Associated with Cerebral Vessel Remodeling and Early Diabetic Kidney Disease in Patients with Type 2 Diabetes Mellitus. Biomolecules 2024, 14, 499. [Google Scholar] [CrossRef]
- Shemiakova, T.; Ivanova, E.; Grechko, A.V.; Gerasimova, E.V.; Sobenin, I.A.; Orekhov, A.N. Mitochondrial Dysfunction and DNA Damage in the Context of Pathogenesis of Atherosclerosis. Biomedicines 2020, 8, 166. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Rivero, J.M.; Pastor-Maldonado, C.J.; Povea-Cabello, S.; Álvarez-Córdoba, M.; Villalón-García, I.; Talaverón-Rey, M.; Suárez-Carrillo, A.; Munuera-Cabeza, M.; Sánchez-Alcázar, J.A. From Mitochondria to Atherosclerosis: The Inflammation Path. Biomedicines 2021, 9, 258. [Google Scholar] [CrossRef]
- Song, A.; Jiang, A.; Xuine, W.; Zhang, C. The role of CXCL12 in kidney diseases: A friend or foe? Kidney Dis. 2021, 7, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Ma, J.; Wang, X.; Liu, W.; Ge, X. Serum stromal cell-derived factor-1 levels are associated with diabetic kidney disease in type 2 diabetic patients. Endocr. J. 2021, 68, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Vijay, S.; Hamide, A.; Senthilkumar, G.P.; Mehalingam, V. Utility of urinary biomarkers as a diagnostic tool for early diabetic nephropathy in patients with type 2 diabetes mellitus. Diabetes Metab. Syndr. 2018, 12, 649–652. [Google Scholar] [CrossRef]
- Takashima, S.; Fujita, H.; Fujishima, H.; Shimizu, T.; Sato, T.; Morii, T. Stromal cell-derived factor-1 is upregulated by dipeptidyl peptidase-4 inhibition and has protective roles in progressive diabetic nephropathy. Kidney Int. 2016, 90, 783–796. [Google Scholar] [CrossRef]
- Sayyed, S.G.; Hagelle, H.; Kulkarni, O.P.; Endlich, K.; Segerer, S.; Eulber, D.; Klussmann, S.; Anders, J. Podocytes produce homeostatic chemokine stromal cell-derived factor-1/CXCL12, which contributes to glomerulosclerosis, podocyte loss and albuminuria in a mouse model of type 2 diabetes. Diabetologia 2009, 52, 2445–2454. [Google Scholar] [CrossRef]
- Huang, J.; Liu, J.; Liu, W. Correlations of Serum Retinol-Binding Protein and Stromal Cell-Derived Factor-1 with Renal Function in Patients with Diabetic Kidney Disease. Clin. Lab. 2024, 70, 211254. [Google Scholar] [CrossRef]
- Wang, F.; Xing, T.; Wang, N.; Liu, L. Clinical significance of plasma CD146 and P-selectin in patients with type 2 diabetic nephropathy. Cytokine 2012, 57, 127–129. [Google Scholar] [CrossRef]
- Al-Rubeaan, K.; Nawaz, S.S.; Youssef, A.M.; Al Ghonaim, M.; Siddiqui, K. Il-18, Vcam-1 and P-Selectin as Early Biomarkers in Normoalbuminuric Type 2 Diabetes Patients. Biomark Med. 2019, 13, 467–478. [Google Scholar] [CrossRef]
- Iwao, Y.; Anraku, M.; Hiraike, M.; Kawai, K.; Nakajou, K.; Kai, T.; Suenaga, A.; Otagiri, M. The structural and pharmacokinetic properties of oxidized human serum albumin, advanced oxidation protein products (AOPP). Drug. Metab. Pharmacokin 2006, 21, 140–146. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, T.; Geng, J.; Wu, Z.; Xu, L.; Liu, J.; Tian, J.; Zhou, Z.M.; Nie, J.; Bai, X. Advanced oxidation protein products promote lipotoxicity and tubulointerstitial fibrosis via CD36/β-catenin pathway in diabetic nephropathy. Antioxid. Redox Signal. 2019, 31, 521–538. [Google Scholar] [CrossRef]
- Li, X.; Xu, L.; Hou, X.; Geng, J.; Tian, J.; Liu, X.; Bai, X. Advanced oxidation protein products aggravate tubulointerstitial fibrosis through protein kinase C-dependent mitochondrial injury in early diabetic nephropathy. Antioxid. Redox Signal. 2019, 30, 1162–1185. [Google Scholar] [CrossRef] [PubMed]
- Rong, G.; Tang, X.; Guo, T.; Duan, N.; Wang, Y.; Yang, L.; Zhang, J.; Liang, X. Advanced oxidation protein products induce apoptosis in podocytes through induction of endoplasmic reticulum stress. J. Physiol. Biochem. 2015, 71, 455–470. [Google Scholar] [CrossRef]
- Touboul, P.J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Bornstein, N.; Csiba, L.; Desvarieux, M.; Ebrahim, S.; Hernandez Hernandez, R.; et al. Mannheim Carotid Intima-Media Thickness and Plaque Consensus (2004–2006–2011). Cerebrovasc. Dis. 2012, 34, 290–296. [Google Scholar] [CrossRef]
- Valdueza, J.M.; Schreiber, S.J.; Roehl, J.E.; Klingebiel, R. Neurosonology and Neuroimaging of Stroke. Am. J. Neuroradiol. 2009, 30, e52. [Google Scholar] [CrossRef]
- Kweon, S.S.; Shin, M.H.; Lee, Y.H.; Choi, J.S.; Nam, H.S.; Park, K.S.; Kim, D.H.; Jeong, S.K. Higher Normal Ranges of Urine Albumin-to-Creatinine Ratio Are Independently Associated with Carotid Intima-Media Thickness. Cardiovasc. Diabetol. 2012, 11, 112. [Google Scholar] [CrossRef] [PubMed]
- Stumm, R.K.; Rummel, J.; Junker, V.; Culmsee, C.; Pfeiffer, M.; Krieglstein, J.; Höllt, V.; Schulz, S. A dual role for the SDF-1/CXCR4 chemokine receptor system in adult brain: Isoform-selective regulation of SDF-1 expression modulates CXCR4-dependent neuronal plasticity and cerebral leukocyte recruitment after focal ischemia. J. Neurosci. 2002, 22, 5865–5878. [Google Scholar] [CrossRef]
- Abi-Younes, S.; Santy, A.; Mach, F.; Sukhova, G.K.; Libby, P.; Luster, A.D. The Stromal Cell–Derived Factor-1 Chemokine Is a Potent Platelet Agonist Highly Expressed in Atherosclerotic Plaques. Circ. Res. 2000, 86, 131–138. [Google Scholar] [CrossRef]
- Merckelbach, S.; van der Vorst, E.P.C.; Kallmayer, M.; Rischpler, C.; Burgkart, R.; Doring, Y.; de Borst, G.J.; Schwaiger, M.; Eckstein, H.H.; Weber, C.; et al. Expression and cellular localization of CXCR4 and CXCL12 in human carotid atherosclerotic plaque. Thromb. Haemost 2018, 118, 195–206. [Google Scholar] [CrossRef]
- Messina-Graham, S.; Broxmeyer, H. SDF-1/CXCL12 modulates mitochondrial respiration of immature blood cells in a bi-phasic manner. Blood Cells Mol. Dis. 2016, 58, 13–18. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Feng, Z.; Zhu, L.; Chen, N.; Wan, Q.; Wu, J. Deletion of SDF-1 or CXCR4 regulates platelet activation linked to glucose metabolism and mitochondrial respiratory reserve. Platelets 2022, 33, 536–542. [Google Scholar] [CrossRef]
- Kalousova, M.; Skrha, J.; Zima, T. Advanced glycation end-products and advanced oxidation protein products in patients with diabetes mellitus. Physiol. Res. 2002, 50, 597–604. [Google Scholar] [CrossRef]
- Liu, S.X.; Hou, F.F.; Guo, Z.J.; Nagai, R.; Zhang, W.R.; Liu, Z.Q.; Zhou, Z.M.; Xie, D.; Wang, G.B.; Zhang, X. Advanced oxidation protein products accelerate atherosclerosis through promoting oxidative stress and inflammation. Arterioscler. Thromb. Vasc. Biol. 2006, 26, 1156–1162. [Google Scholar] [CrossRef] [PubMed]
- Kocak, H.; Gumuslu, S.; Ermis, C.; Mahsereci, E.; Sahin, E.; Gocmen, A.Y.; Ersoy FSuleymanlar, G.; Yakupoglu, G.; Tuncer, M. Oxidative stress and asymmetric dimethylarginine is independently associated with carotid intima media thickness in peritoneal dialysis patients. Am. J. Nephrol. 2007, 28, 91–96. [Google Scholar] [CrossRef]
- Yagi, H.; Sumino, H.; Yoshida, K.; Aoki, T.; Tsunekawa, K.; Araki, O.; Kimura, T.; Nara, M.; Nakajima, K.; Murakami, M. Biological antioxidant potential negatively correlates with carotid artery intima-media thickness. Int. Heart J. 2016, 57, 220–225. [Google Scholar] [CrossRef]
- Lim, S.C.; Caballero, A.E.; Smakowski, P.; LoGerfo, F.W.; Horton, E.S.; Veves, A. Soluble intercellular adhesion molecule, vascular cell adhesion molecule, and impaired microvascular reactivity are early markers of vasculopathy in type 2 diabetic individuals without microalbuminuria. Diabetes Care 1999, 22, 1865–1870. [Google Scholar] [CrossRef] [PubMed]
- Witko-Sarsat, V.; Gausson, V.; Descamps-Latscha, B. Are advanced oxidation protein products potential uremic toxins? Kidney Int. 2003, 48, S11–S14. [Google Scholar] [CrossRef] [PubMed]
- Kidney Disease: Improving Global Outcomes (KDIGO) CKD Work Group. KDIGO 2024 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2024, 105, S117–S314. [Google Scholar] [CrossRef]
- Busnelli, A.; Lattuada, D.; Rossetti, R.; Paffoni, A.; Persani, L.; Fedele, L.; Somigliana, E. Mitochondrial DNA Copy Number in Peripheral Blood: A Potential Non-Invasive Biomarker for Female Subfertility. J. Assist. Reprod Genet. 2018, 35, 1987–1994. [Google Scholar] [CrossRef]
- Fukuhara, T.; Hida, K. Pulsatility Index at the Cervical Internal Carotid Artery as a Parameter of Microangiopathy in Patients with Type 2 Diabetes. J. Ultrasound Med. 2006, 25, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Markus, H.S.; Harrison, M.J.G. Estimation of Cerebrovascular Reactivity Using Transcranial Doppler, Including the Use of Breath-Holding as the Vasodilatory Stimulus. Stroke 1992, 23, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Fülesdi, B.; Limburg, M.; Bereczki, D.; Káplár, M.; Molnár, C.; Kappelmayer, J.; Neuwirth, G.; Csiba, L. Cerebrovascular Reactivity and Reserve Capacity in Type II Diabetes Mellitus. J. Diabetes Complicat. 1999, 13, 191–199. [Google Scholar] [CrossRef] [PubMed]
Parameter | Controls (N = 39) | Normoalbuminuric Patients (N = 64) | Microalbuminuric Patients (N = 59) | Macroalbuminuric Patients (N = 61) | p-Value |
---|---|---|---|---|---|
N | 39 (17.5%) | 64 (28.7%) | 59 (26.5%) | 61 (27.4%) | <0.0001 |
Age (years) | 67.47 (64; 69) | 68.33 (65; 72) | 69.23 (65; 74) | 69.8 (67; 73) | <0.0001 |
BMI (kg/m2) | 25.2 (23; 27) #,* | 29.26 (26.5; 31.5) ⌂ | 31.47 (28; 34) | 30.8 (27; 32) | <0.0001 |
SBP (mmHg) | 117.17 (110; 120) #,* | 138.37 (120; 150) | 141.42 (130; 152.5) | 147.8 (140; 165) | <0.0001 |
DBP (mmHg) | 69 (65; 70) #,* | 79.15 (70; 90) | 80.2 (70; 90) | 81.5 (70; 90) | <0.0001 |
DM duration (years) | - | 15.22 (10; 16.5) | 17.73 (12; 23) ♦ | 21.04 (16; 26) | <0.0001 |
Serum creatinine (mg/dL) | 0.80 (0.71–0.85) #,* | 1.17 (1.11–1.25) | 1.20 (1.08–1.28) ■ | 1.26 (1.15–1.50) | <0.0001 |
eGFR (mL/min/1.73 m2) | 83.33 (80.96–87.85) #,* | 57.13 (56.17–58.51) ♣ | 54.66 (52.14–58.51) ⁑ | 50.60 (44.59–56.73) | <0.0001 |
HbA1c (%) | 5.00 (4.80–5.20) #,* | 7.00 (6.55–7.90) ♣ | 8.20 (7.50–9.60) | 8.20 (7.90–9.10) | <0.0001 |
Cholesterol (mg/dL) | 122 (115–153) # | 160(134–193) | 167(132–202) ⁑ | 201(172–223) | <0.0001 |
Triglycerides (mg/dL) | 97(88–102) #,* | 145(108–172) | 150(119–215) ♦ | 194(156–281) | <0.0001 |
UACR (mg/g) | 11(10–17) #,* | 23(15–27) ♣ | 89(61–131) ■ | 693(463–1312) | <0.0001 |
Synaptopodin/cr (mg/g) | 0.84 (0.62–0.95) #,* | 1.73 (1.28–1.90) ♣ | 2.41 (2.20–2.57) ■ | 5.36 (3.08–8.25) | <0.0001 |
Podocalyxin/creat (mg/g) | 0.26 (0.22–0.50) #,* | 1.15 (1.03–1.25) ♣ | 3.40 (3.25–4.19) ■ | 8.20 (7.02–9.07) | <0.0001 |
NAG/creat (ng/g) | 2.52 (2.26–2.86) #,* | 4.92 (3.04–9.32) ♣ | 11.68 (10.51–17.77) ■ | 17.78 (17.18–19.79) | <0.0001 |
KIM-1/creat (pg/g) | 43.82 (37.83–47.36) #,* | 78.77 (66.93–94.42) ♣ | 141.33 (130.34–149.14) ■ | 425.75 (338.06–482.49) | <0.0001 |
Serum-P-selectin | 0.52 (0.46–0.71) #,* | 1.33 (1.17–1.49) ♣ | 4.45 (4.16–4.64) ■ | 8.37 (7.20–9.20) | <0.0001 |
Urinary-P-selectin | 0.33 (0.24–0.41) #,* | 1.00 (0.80–1.31) ♣ | 3.39 (3.09–3.64) ■ | 7.07 (5.92–7.72) | <0.0001 |
Serum-SDF1 | 0.89 (0.51–1.42) #,* | 2.57 (1.69–3.23) ♣ | 4.77 (4.15–6.02) ■ | 7.04 (6.54–7.62) | <0.0001 |
Urinary-SDF-1 | 0.56 (0.28–0.92) # | 1.65 (1.32–1.93) ♣ | 3.52 (2.69–4.85) ■ | 5.27 (4.63–5.84) | <0.0001 |
Serum-AOPP | 46.48 (39.35–48.22) #,* | 81.90 (69.46–87.86 ♣ | 145.02 (136.31–168.94) ■ | 294.48 (198.6–355.1) | <0.0001 |
Urinary-AOPP | 32.63 (24.09–37.55) #,* | 52.00 (44.34–75.96) ♣ | 111.79 (86.78–132.06) ■ | 269.08 (174.2–328.6) | <0.0001 |
Serum mtDNA | 14.98 (12.91–17.78) #,* | 9.84 (8.39–12.38) ♣ | 6.49 (5.28–7.12) ■ | 3.21 (1.85–4.52) | <0.0001 |
Urinary mtDNA | 2.97 (1.70–4.66) ↂ,* | 4.00 (2.57–5.61) ♣ | 8.51 (7.06–10.10) ■ | 12.38 (10.78–13.99) | <0.0001 |
IMT-CCA | 0.65 (0.62–0.71) #,* | 0.81 (0.77–0.92) ♣ | 0.97 (0.88–1.10) ■ | 1.22 (1.14–1.35) | <0.0001 |
PI-ICA | 0.77 (0.69–0.89) #,* | 0.94 (0.79–1.02) ♣ | 1.04 (0.88–1.22) ■ | 1.29 (1.11–1.33) | <0.0001 |
PI-MCA | 1(1–10.60 (0.56–0.67) #,* | 0.82 (0.68–0.89) ♣ | 0.92 (0.78–1.11) ■ | 1.17 (0.98–1.21) | <0.0001 |
RI-ICA | 0.62 (0.55–0.65) #,* | 0.72 (0.66–0.78) ♣ | 0.89 (0.84–0.97) ■ | 1.23 (1.06–1.35) | <0.0001 |
RI-MCA | 0.53 (0.51–0.55) #,* | 0.66 (0.61–0.70) ♣ | 0.96 (0.89–1.04) ■ | 1.21 (1.12–1.26) | <0.0001 |
BHI | 1.07 (1.05–1.21) #,* | 0.79 (0.72–0.92) ♣ | 0.52 (0.49–0.62) ■ | 0.41 (0.37–0.48) | <0.0001 |
Parameter | Variable | R2 | Coef β | p |
---|---|---|---|---|
Serum mtDNA | eRFG | 0.437 | 0.258 | <0.001 |
UACR | 0.223 | −0.004 | <0.001 | |
Serum P-selectin | 0.573 | −1.258 | <0.001 | |
Serum SDF-1 | 0.564 | −1.486 | <0.001 | |
AOPP | 0.459 | −0.033 | <0.001 | |
Synaptopodin | 0.3207 | −1.244 | <0.001 | |
Podocalyxin | 0.552 | −1.219 | <0.001 | |
KIM-1 | 0.446 | −0.022 | <0.001 | |
NAG | 0.398 | −0.418 | <0.001 | |
Urinary mtDNA | eRFG | 0.227 | −0.160 | <0.001 |
UACR | 0.3105 | 0.004 | <0.001 | |
Urinary P-selectin | 0.5841 | 1.282 | <0.001 | |
Urinary SDF-1 | 0.5261 | 0.029 | <0.001 | |
Urinary AOPP | 0.445 | 1.638 | <0.001 | |
Synaptopodin | 0.364 | 1.145 | <0.001 | |
Podocalyxin | 0.604 | 1.101 | <0.001 | |
KIM-1 | 0.527 | 0.021 | <0.001 | |
NAG | 0.407 | 0.364 | <0.001 |
Parameters | Variables | Coef β | p | 95% CI | Prob > F | R2 |
---|---|---|---|---|---|---|
Serum mtDNA | eGFR | 0.1114 | <0.0001 | 0.072 to 0.15 | 0.0000 | 0.656 |
Serum P-selectin | −0.6282 | <0.0001 | −0.891 to −0.365 | |||
Serum SDF-1 | −6.4502 | <0.0001 | −0.8 to −0.1402 | |||
Urinary mtDNA | Podocalyxin | 1.866 | <0.0001 | 0.947 to 2.785 | 0.0000 | 0.628 |
Urinary P-selectin | 1.324 | <0.0001 | 2.458 to 0.912 | 0.022 | ||
Urinary SDF-1 | 0.646 | <0.0001 | 0.28 to 1.011 | 0.001 |
Parameter | Variable | R2 | Coef β | p |
---|---|---|---|---|
IMT-rCCA | eGFR | 0.41 | −0.0116 | <0.001 |
UACR | 0.36 | 0.0002 | <0.001 | |
Serum P-selectin | 0.62 | 0.06 | <0.001 | |
Serum SDF-1 | 0.604 | 0.071 | <0.001 | |
Serum AOPP | 0.56 | 0.001 | <0.001 | |
KIM-1 | 0.53 | 0.001 | <0.001 | |
NAG | 0.43 | 0.02 | <0.001 | |
Synaptopodin | 0.38 | 0.063 | <0.001 | |
Podocalyxin | 0.61 | 0.059 | <0.001 | |
PI-rICA | eGFR | 0.27 | −0.008 | <0.001 |
UACR | 0.299 | 0.0002 | <0.001 | |
Serum P-selectin | 0.47 | 0.048 | <0.001 | |
Serum SDF-1 | 0.47 | 0.057 | <0.001 | |
Serum AOPP | 0.41 | 0.001 | <0.001 | |
KIM-1 | 0.38 | 0.008 | <0.001 | |
NAG | 0.341 | 0.016 | <0.001 | |
Synaptopodin | 0.299 | 0.05 | <0.001 | |
Podocalyxin | 0.46 | 0.046 | <0.001 | |
PI-rMCA | eGFR | 0.38 | −0.01 | <0.001 |
UACR | 0.302 | 0.0002 | <0.001 | |
Serum P-selectin | 0.51 | 0.051 | <0.001 | |
Serum SDF-1 | 0.52 | 0.622 | <0.001 | |
Serum AOPP | 0.45 | 0.0014 | <0.001 | |
KIM-1 | 0.404 | 0.0009 | <0.001 | |
NAG | 0.402 | 0.018 | <0.001 | |
Synaptopodin | 0.32 | 0.054 | <0.001 | |
Podocalyxin | 0.49 | 0.05 | <0.001 | |
RI-rICA | eGFR | 0.34 | −0.011 | <0.001 |
UACR | 0.53 | 0.0003 | <0.001 | |
Serum P selectin | 0.65 | 0.653 | <0.001 | |
Serum SDF-1 | 0.67 | 0.794 | <0.001 | |
Serum AOPP | 0.61 | 0.0019 | <0.001 | |
KIM-1 | 0.603 | 0.001 | <0.001 | |
NAG | 0.56 | 0.024 | <0.001 | |
Synaptopodin | 0.49 | 0.075 | <0.001 | |
Podocalyxin | 0.64 | 0.064 | <0.001 | |
RI-rMCA | eGFR | 0.39 | −0.013 | <0.001 |
UACR | 0.37 | 0.0003 | <0.001 | |
Serum P-selectin | 0.79 | 0.079 | <0.001 | |
Serum SDF-1 | 0.75 | 0.092 | <0.001 | |
Serum AOPP | 0.67 | 0.0022 | <0.001 | |
KIM-1 | 0.67 | 0.001 | <0.001 | |
NAG | 0.62 | 0.028 | <0.001 | |
Synaptopodin | 0.49 | 0.082 | <0.001 | |
Podocalyxin | 0.77 | 0.767 | <0.001 | |
BHI | eGFR | 0.55 | 0.015 | <0.001 |
UACR | 0.25 | −0.0002 | <0.001 | |
Serum P-selectin | 0.66 | −0.071 | <0.001 | |
Serum SDF-1 | 0.67 | −0.086 | <0.001 | |
Serum AOPP | 0.56 | −0.002 | <0.001 | |
KIM-1 | 0.52 | −0.071 | <0.001 | |
NAG | 0.55 | −0.026 | <0.001 | |
Synaptopodin | 0.38 | −0.072 | <0.001 | |
Podocalyxin | 0.63 | −0.069 | <0.001 |
Parameter | Variable | Coef β | p | 95% CI | Prob > F | R2 |
---|---|---|---|---|---|---|
IMT-rCCA | eGFR | −0.0047 | <0.0001 | −0.0063 to −0.0031 | 0.000 | 0.702 |
UACR | 0.00007 | 0.00002 to 0.0001 | 0.002 | |||
Serum AOPP | 0.0007 | 0.0002 to 0.001 | 0.002 | |||
Serum P-selectin | 0.034 | 0.021 to 0.047 | 0.000 | |||
Synaptopodin | 0.029 | 0.046 to 0.0122 | 0.001 | |||
PI-rICA | eGFR | −0.002 | <0.0001 | −0.004 to −0.00007 | 0.042 | 0.511 |
Serum P-selectin | 0.023 | 0.0101 to 0.0366 | 0.001 | |||
Serum SDF-1 | 0.026 | 0.0096 to 0.0428 | 0.002 | |||
PI-rMCA | eGFR | −0.004 | <0.0001 | −0.0061 to −0.0023 | 0.000 | 0.589 |
Serum P-selectin | 0.023 | 0.0106 to 0.036 | 0.000 | |||
Serum SDF-1 | 0.024 | 0.0085 to 0.0399 | 0.003 | |||
RI-rICA | eGFR | −0.0018 | <0.0001 | −0.0035 to −0.00023 | 0.026 | 0.763 |
UACR | 0.00013 | 0.00008 to 0.00017 | 0.000 | |||
NAG | 0.0058 | 0.002 to 0.0095 | 0.003 | |||
Serum P-selectin | 0.0154 | 0.0033 to 0.028 | 0.013 | |||
Serum SDF-1 | 0.024 | 0.0098 to 0.387 | 0.001 | |||
RI-rMCA | eGFR | −0.0017 | <0.0001 | −0.0032 to- 0.00031 | 0.018 | 0.848 |
Synaptopodin | 0.016 | 0.0274 to 0.0038 | 0.010 | |||
Podocalyxin | 0.056 | 0.098 to 0.0153 | 0.007 | |||
KIM-1 | 0.0003 | 0.00008 to 0.00062 | 0.009 | |||
NAG | 0.0044 | 0.00098 to 0.0078 | 0.013 | |||
Serum P-selectin | 0.096 | 0.055 to 0.136 | 0.000 | |||
Serum SDF-1 | 0.27 | 0.0145 to 0.0394 | 0.000 | |||
BHI | eGFR | 0.007 | <0.0001 | 0.0058 to 0.0091 | 0.000 | 0.789 |
Podocalyxin | −0.061 | −0.188 to −0.104 | 0.005 | |||
Serum P-selectin | −0.096 | −0.142 to −0.0507 | 0.000 | |||
Serum SDF-1 | −0.024 | −0.038 to −0.0102 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrica, L.; Gadalean, F.; Vlad, A.; Muntean, D.M.; Vlad, D.; Dumitrascu, V.; Bob, F.; Milas, O.; Suteanu-Simulescu, A.; Glavan, M.; et al. Stromal Cell-Derived Factor-1, P-Selectin, and Advanced Oxidation Protein Products with Mitochondrial Dysfunction Concurrently Impact Cerebral Vessels in Patients with Normoalbuminuric Diabetic Kidney Disease and Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2025, 26, 4481. https://doi.org/10.3390/ijms26104481
Petrica L, Gadalean F, Vlad A, Muntean DM, Vlad D, Dumitrascu V, Bob F, Milas O, Suteanu-Simulescu A, Glavan M, et al. Stromal Cell-Derived Factor-1, P-Selectin, and Advanced Oxidation Protein Products with Mitochondrial Dysfunction Concurrently Impact Cerebral Vessels in Patients with Normoalbuminuric Diabetic Kidney Disease and Type 2 Diabetes Mellitus. International Journal of Molecular Sciences. 2025; 26(10):4481. https://doi.org/10.3390/ijms26104481
Chicago/Turabian StylePetrica, Ligia, Florica Gadalean, Adrian Vlad, Danina Mirela Muntean, Daliborca Vlad, Victor Dumitrascu, Flaviu Bob, Oana Milas, Anca Suteanu-Simulescu, Mihaela Glavan, and et al. 2025. "Stromal Cell-Derived Factor-1, P-Selectin, and Advanced Oxidation Protein Products with Mitochondrial Dysfunction Concurrently Impact Cerebral Vessels in Patients with Normoalbuminuric Diabetic Kidney Disease and Type 2 Diabetes Mellitus" International Journal of Molecular Sciences 26, no. 10: 4481. https://doi.org/10.3390/ijms26104481
APA StylePetrica, L., Gadalean, F., Vlad, A., Muntean, D. M., Vlad, D., Dumitrascu, V., Bob, F., Milas, O., Suteanu-Simulescu, A., Glavan, M., Ursoniu, S., Balint-Marcu, L., Mogos-Stefan, M., Ienciu, S., Cretu, O. M., Popescu, R., Gluhovschi, C., Iancu, L., & Jianu, D. C. (2025). Stromal Cell-Derived Factor-1, P-Selectin, and Advanced Oxidation Protein Products with Mitochondrial Dysfunction Concurrently Impact Cerebral Vessels in Patients with Normoalbuminuric Diabetic Kidney Disease and Type 2 Diabetes Mellitus. International Journal of Molecular Sciences, 26(10), 4481. https://doi.org/10.3390/ijms26104481