Artificial Intelligence in Glaucoma: Advances in Diagnosis, Progression Forecasting, and Surgical Outcome Prediction
Abstract
:1. Introduction
2. Artificial Intelligence in Glaucoma Early Detection and Diagnosis
2.1. AI and Color Fundus Photography in Glaucoma Early Detection and Diagnosis
2.2. AI and OCT in Glaucoma Early Detection and Diagnosis
2.3. AI and Molecular Data Analysis in Glaucoma Diagnosis and Detection
3. AI in Predicting Glaucoma Progression
3.1. AI and OCT in Glaucoma Progression
3.2. AI and Visual Field in Glaucoma Progression
3.3. AI and Molecular Data Analysis in Glaucoma Progression
4. Artificial Intelligence in Glaucoma Surgical Outcome Prediction
5. Discussion and Future Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weinreb, R.N.; Aung, T.; Medeiros, F.A. The pathophysiology and treatment of glaucoma: A review. JAMA 2014, 311, 1901–1911. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.L.; de Los Angeles Ramos Cadena, M.; Schuman, J.S. Glaucoma Diagnosis: From the Artisanal to the Defined. Ophthalmol. Glaucoma 2018, 1, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Lucy, K.A.; Wollstein, G. Structural and Functional Evaluations for the Early Detection of Glaucoma. Expert Rev. Ophthalmol. 2016, 11, 367–376. [Google Scholar] [CrossRef] [PubMed]
- Parmar, U.P.; Surico, P.L.; Singh, R.B.; Romano, F.; Salati, C.; Spadea, L.; Musa, M.; Gagliano, C.; Mori, T.; Zeppieri, M. Artificial Intelligence (AI) for Early Diagnosis of Retinal Diseases. Medicina 2024, 60, 527. [Google Scholar] [CrossRef]
- Tonti, E.; Tonti, S.; Mancini, F.; Bonini, C.; Spadea, L.; D’esposito, F.; Gagliano, C.; Musa, M.; Zeppieri, M. Artificial Intelligence and Advanced Technology in Glaucoma: A Review. J. Pers. Med. 2024, 14, 1062. [Google Scholar] [CrossRef]
- Devalla, S.K.; Liang, Z.; Pham, T.H.; Boote, C.; Strouthidis, N.G.; Thiery, A.H.; Girard, M.J. Glaucoma Management in the Era of Artificial Intelligence. Br. J. Ophthalmol. 2020, 104, 301–311. [Google Scholar] [CrossRef]
- Stead, W.W. Clinical Implications and Challenges of Artificial Intelligence and Deep Learning. JAMA 2018, 320, 1107–1108. [Google Scholar] [CrossRef]
- Wang, Y.; Zhen, L.; Tan, T.E.; Fu, H.; Feng, Y.; Wang, Z.; Xu, X.; Goh, R.S.M.; Ng, Y.; Calhoun, C.; et al. Geometric Correspondence-Based Multimodal Learning for Ophthalmic Image Analysis. IEEE Trans. Med. Imaging 2024, 43, 1945–1957. [Google Scholar] [CrossRef]
- Tsai, C.Y.; Chen, C.T.; Chen, G.A.; Yeh, C.-F.; Kuo, C.-T.; Hsiao, Y.-C.; Hu, H.-Y.; Tsai, I.-L.; Wang, C.-H.; Chen, J.-R.; et al. Necessity of Local Modification for Deep Learning Algorithms to Predict Diabetic Retinopathy. Int. J. Environ. Res. Public Health 2022, 19, 1204. [Google Scholar] [CrossRef]
- Liu, H.; Li, L.; Wormstone, I.M.; Qiao, C.; Zhang, C.; Liu, P.; Li, S.; Wang, H.; Mou, D.; Pang, R.; et al. Development and Validation of a Deep Learning System to Detect Glaucomatous Optic Neuropathy Using Fundus Photographs. JAMA Ophthalmol. 2019, 137, 1353–1360. [Google Scholar] [CrossRef]
- Phene, S.; Dunn, R.C.; Hammel, N.; Liu, Y.; Krause, J.; Kitade, N.; Schaekermann, M.; Sayres, R.; Wu, D.J.; Bora, A.; et al. Deep Learning and Glaucoma Specialists: The Relative Importance of Optic Disc Features to Predict Glaucoma Referral in Fundus Photographs. Ophthalmology 2019, 126, 1627–1639. [Google Scholar] [CrossRef] [PubMed]
- Thakur, A.; Goldbaum, M.; Yousefi, S. Predicting Glaucoma before Onset Using Deep Learning. Ophthalmol. Glaucoma 2020, 3, 262–268. [Google Scholar] [CrossRef]
- Thompson, A.C.; Jammal, A.A.; Medeiros, F.A. A Review of Deep Learning for Screening, Diagnosis, and Detection of Glaucoma Progression. Transl. Vis. Sci. Technol. 2020, 9, 42. [Google Scholar] [CrossRef]
- Li, C.; Chua, J.; Schwarzhans, F.; Husain, R.; Girard, M.J.A.; Majithia, S.; Tham, Y.-C.; Cheng, C.-Y.; Aung, T.; Fischer, G.; et al. Assessing the External Validity of Machine Learning-Based Detection of Glaucoma. Sci. Rep. 2023, 13, 558. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, L.X.; Gao, L.; Dai, W.; Han, X.; Lai, Y.-K.; Chen, Y. GLIM-Net: Chronic Glaucoma Forecast Transformer for Irregularly Sampled Sequential Fundus Images. IEEE Trans. Med. Imaging 2023, 42, 1875–1884. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Jammal, A.A.; Mariottoni, E.B.; Medeiros, F.A. Predicting Glaucoma Development with Longitudinal Deep Learning Predictions from Fundus Photographs. Am. J. Ophthalmol. 2021, 225, 86–94. [Google Scholar] [CrossRef]
- Bhuiyan, A.; Govindaiah, A.; Smith, R.T. An Artificial-Intelligence- and Telemedicine-Based Screening Tool to Identify Glaucoma Suspects from Color Fundus Imaging. J. Ophthalmol. 2021, 2021, 6694784. [Google Scholar] [CrossRef]
- Hemelings, R.; Elen, B.; Barbosa-Breda, J.; Lemmens, S.; Meire, M.; Pourjavan, S.; Vandewalle, E.; Van de Veire, S.; Blaschko, M.B.; De Boever, P.; et al. Accurate Prediction of Glaucoma from Colour Fundus Images with a Convolutional Neural Network That Relies on Active and Transfer Learning. Acta Ophthalmol. 2020, 98, e94–e100. [Google Scholar] [CrossRef]
- Hemelings, R.; Elen, B.; Barbosa-Breda, J.; Blaschko, M.B.; De Boever, P.; Stalmans, I. Deep Learning on Fundus Images Detects Glaucoma beyond the Optic Disc. Sci. Rep. 2021, 11, 20313. [Google Scholar] [CrossRef]
- Hemelings, R.; Elen, B.; Schuster, A.K.; Blaschko, M.B.; Barbosa-Breda, J.; Hujanen, P.; Junglas, A.; Nickels, S.; White, A.; Pfeiffer, N.; et al. A Generalizable Deep Learning Regression Model for Automated Glaucoma Screening from Fundus Images. npj Digit. Med. 2023, 6, 112. [Google Scholar] [CrossRef]
- Song, R.; Wang, H.; Xing, Y. Deep Learning-Based Glaucoma Detection Using CNN and Digital Fundus Images: A Promising Approach for Precise Diagnosis. Curr. Med. Imaging 2024, 20, 1–18. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, G.; Siddalingaswamy, P.C.; Pandya, M.A. AlterNet-K: A Small and Compact Model for the Detection of Glaucoma. Biomed. Eng. Lett. 2024, 14, 23–33. [Google Scholar] [CrossRef] [PubMed]
- Geevarghese, A.; Wollstein, G.; Ishikawa, H.; Schuman, J.S. Optical Coherence Tomography and Glaucoma. Annu. Rev. Vis. Sci. 2021, 7, 693–726. [Google Scholar] [CrossRef]
- Bussel, I.I.; Wollstein, G.; Schuman, J.S. OCT for Glaucoma Diagnosis, Screening and Detection of Glaucoma Progression. Br. J. Ophthalmol. 2014, 98 (Suppl. S2), ii15–ii19. [Google Scholar] [CrossRef]
- Ran, A.; Cheung, C.Y. Deep Learning-Based Optical Coherence Tomography and Optical Coherence Tomography Angiography Image Analysis: An Updated Summary. Asia-Pac. J. Ophthalmol. 2021, 10, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Hood, D.C.; La Bruna, S.; Tsamis, E.; Thakoor, K.A.; Rai, A.; Leshno, A.; de Moraes, C.G.; Cioffi, G.A.; Liebmann, J.M. Detecting Glaucoma with Only OCT: Implications for the Clinic, Research, Screening, and AI Development. Prog. Retin. Eye Res. 2022, 90, 101052. [Google Scholar] [CrossRef]
- Shin, Y.; Cho, H.; Jeong, H.C.; Seong, M.; Choi, J.W.; Lee, W.J. Deep Learning-Based Diagnosis of Glaucoma Using Wide-Field Optical Coherence Tomography Images. J. Glaucoma 2021, 30, 803–812. [Google Scholar] [CrossRef]
- Thompson, A.C.; Jammal, A.A.; Berchuck, S.I.; Mariottoni, E.B.; Medeiros, F.A. Assessment of a Segmentation-Free Deep Learning Algorithm for Diagnosing Glaucoma from Optical Coherence Tomography Scans. JAMA Ophthalmol. 2020, 138, 333–339. [Google Scholar] [CrossRef]
- Thiéry, A.H.; Braeu, F.; Tun, T.A.; Aung, T.; Girard, M.J.A. Medical Application of Geometric Deep Learning for the Diagnosis of Glaucoma. Transl. Vis. Sci. Technol. 2023, 12, 23. [Google Scholar] [CrossRef]
- Braeu, F.A.; Thiéry, A.H.; Tun, T.A.; Kadziauskiene, A.; Barbastathis, G.; Aung, T.; Girard, M.J. Geometric Deep Learning to Identify the Critical 3D Structural Features of the Optic Nerve Head for Glaucoma Diagnosis. Am. J. Ophthalmol. 2023, 250, 38–48. [Google Scholar] [CrossRef]
- Wu, C.W.; Shen, H.L.; Lu, C.J.; Chen, S.H.; Chen, H.Y. Comparison of Different Machine Learning Classifiers for Glaucoma Diagnosis Based on Spectralis OCT. Diagnostics 2021, 11, 1718. [Google Scholar] [CrossRef] [PubMed]
- Ashtari-Majlan, M.; Masip, D. Spatial-Aware Transformer-GRU Framework for Enhanced Glaucoma Diagnosis from 3D OCT Imaging. IEEE J. Biomed. Health Inform. 2025, 1–11. [Google Scholar] [CrossRef]
- Spaide, R.F.; Fujimoto, J.G.; Waheed, N.K.; Sadda, S.R.; Staurenghi, G. Optical Coherence Tomography Angiography. Prog. Retin. Eye Res. 2018, 64, 1–55. [Google Scholar] [CrossRef]
- Hormel, T.T.; Hwang, T.S.; Bailey, S.T.; Wilson, D.J.; Huang, D.; Jia, Y. Artificial Intelligence in OCT Angiography. Prog. Retin. Eye Res. 2021, 85, 100965. [Google Scholar] [CrossRef]
- Andrade De Jesus, D.; Sánchez Brea, L.; Barbosa Breda, J.; Gozzi, M.; Casteleyn, C.; Elen, B.; Van Keer, K.; Rozema, J.; Stalmans, I. OCTA Multilayer and Multisector Peripapillary Microvascular Modeling for Diagnosing and Staging of Glaucoma. Transl. Vis. Sci. Technol. 2020, 9, 58. [Google Scholar] [CrossRef] [PubMed]
- Bowd, C.; Belghith, A.; Zangwill, L.M.; Weinreb, R.N.; Medeiros, F.A. Deep Learning Image Analysis of Optical Coherence Tomography Angiography Measured Vessel Density Improves Classification of Healthy and Glaucoma Eyes. Am. J. Ophthalmol. 2022, 236, 298–308. [Google Scholar] [CrossRef]
- Lee, Y.J.; Sun, S.; Kim, Y.K.; Jeoung, J.W.; Park, K.H. Diagnostic Ability of Macular Microvasculature with Swept-Source OCT Angiography for Highly Myopic Glaucoma Using Deep Learning. Sci. Rep. 2023, 13, 5209. [Google Scholar] [CrossRef] [PubMed]
- Dai, M.; Hu, Z.; Kang, Z.; Zheng, Z. Based on multiple machine learning to identify the ENO2 as diagnosis biomarkers of glaucoma. BMC Ophthalmol. 2022, 22, 155. [Google Scholar] [CrossRef]
- Han, X.; Steven, K.; Qassim, A.; Marshall, H.N.; Bean, C.; Tremeer, M.; An, J.; Siggs, O.M.; Gharahkhani, P.; Craig, J.E.; et al. Automated AI Labeling of Optic Nerve Head Enables Insights into Cross-Ancestry Glaucoma Risk and Genetic Discovery in >280,000 Images from UKB and CLSA. Am. J. Hum. Genet. 2021, 108, 1204–1216. [Google Scholar] [CrossRef]
- Alipanahi, B.; Hormozdiari, F.; Behsaz, B.; Cosentino, J.; McCaw, Z.R.; Schorsch, E.; Sculley, D.; Dorfman, E.H.; Foster, P.J.; Peng, L.H.; et al. Large-Scale Machine-Learning-Based Phenotyping Significantly Improves Genomic Discovery for Optic Nerve Head Morphology. Am. J. Hum. Genet. 2021, 108, 1217–1230. [Google Scholar] [CrossRef]
- Sergouniotis, P.I.; Diakite, A.; Gaurav, K.; Birney, E.; Fitzgerald, T. Autoencoder-Based Phenotyping of Ophthalmic Images Highlights Genetic Loci Influencing Retinal Morphology and Provides Informative Biomarkers. Bioinformatics 2024, 41, btae732. [Google Scholar] [CrossRef] [PubMed]
- Rossetti, L.; Goni, F.; Denis, P.; Bengtsson, B.; Martinez, A.; Heijl, A. Focusing on glaucoma progression and the clinical importance of progression rate measurement: A review. Eye 2010, 24, S1–S7. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Dastiridou, A.; Francis, B.A.; Tan, J.C.; Varma, R.; Greenfield, D.S.; Weinreb, R.N.; Zangwill, L.M. Comparison of Glaucoma Progression Detection by Optical Coherence Tomography and Visual Field. Am. J. Ophthalmol. 2017, 184, 63–74. [Google Scholar] [CrossRef]
- Tatham, A.J.; Medeiros, F.A. Detecting Structural Progression in Glaucoma with Optical Coherence Tomography. Ophthalmology 2017, 124, S57–S65. [Google Scholar] [CrossRef] [PubMed]
- Nouri-Mahdavi, K.; Mohammadzadeh, V.; Rabiolo, A.; Edalati, K.; Caprioli, J.; Yousefi, S. Prediction of Visual Field Progression from OCT Structural Measures in Moderate to Advanced Glaucoma. Am. J. Ophthalmol. 2021, 226, 172–181. [Google Scholar] [CrossRef]
- Mandal, S.; Jammal, A.A.; Malek, D.; Medeiros, F.A. Progression or Aging? A Deep Learning Approach for Distinguishing Glaucoma Progression from Age-Related Changes in OCT Scans. Am. J. Ophthalmol. 2024, 266, 46–55. [Google Scholar] [CrossRef]
- Hou, K.; Bradley, C.; Herbert, P.; Wang, S.Y.; Lin, K. Predicting Visual Field Worsening with Longitudinal OCT Data Using a Gated Transformer Network. Ophthalmology 2023, 130, 854–862. [Google Scholar] [CrossRef]
- Hassan, O.N.; Sahin, S.; Mohammadzadeh, V.; Elze, T.; Yousefi, S. Conditional GAN for Prediction of Glaucoma Progression with Macular Optical Coherence Tomography. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI), Lima, Peru, 4–8 October 2020; Springer: Cham, Switzerland, 2020; pp. 761–772. [Google Scholar]
- Lazaridis, G.; Lorenzi, M.; Ourselin, S.; Garway-Heath, D. Improving Statistical Power of Glaucoma Clinical Trials Using an Ensemble of Cyclical Generative Adversarial Networks. Med. Image Anal. 2021, 68, 101906. [Google Scholar] [CrossRef]
- Hussain, S.; Chua, J.; Wong, D.; Tham, Y.C.; Aung, T.; Milea, D. Predicting Glaucoma Progression Using Deep Learning Framework Guided by Generative Algorithm. Sci. Rep. 2023, 13, 19960. [Google Scholar] [CrossRef]
- Bowd, C.; Belghith, A.; Christopher, M.; Goldbaum, M.H.; Fazio, M.A.; Girkin, C.A.; Liebmann, J.M.; de Moraes, C.G.; Weinreb, R.N.; Zangwill, L.M. Individualized Glaucoma Change Detection Using Deep Learning Auto Encoder-Based Regions of Interest. Transl. Vis. Sci. Technol. 2021, 10, 19. [Google Scholar] [CrossRef]
- Mohammadzadeh, V.; Wu, S.; Besharati, S.; Yousefi, S.; Caprioli, J. Prediction of Visual Field Progression with Baseline and Longitudinal Structural Measurements Using Deep Learning. Am. J. Ophthalmol. 2024, 262, 141–152. [Google Scholar] [CrossRef] [PubMed]
- Mohammadzadeh, V.; Wu, S.; Davis, T.; Elze, T.; Yousefi, S. Prediction of Visual Field Progression with Serial Optic Disc Photographs Using Deep Learning. Br. J. Ophthalmol. 2024, 108, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Yousefi, S.; Elze, T.; Pasquale, L.R.; Chen, T.C.; Demeestere, J.; Liu, G.; Heisler, M.; Wiggs, J.L.; Belghith, A.; Weinreb, R.N.; et al. Monitoring Glaucomatous Functional Loss Using an Artificial Intelligence–Enabled Dashboard. Ophthalmology 2020, 127, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Dixit, A.; Yohannan, J.; Boland, M.V. Assessing Glaucoma Progression Using Machine Learning Trained on Longitudinal Visual Field and Clinical Data. Ophthalmology 2021, 128, 1016–1026. [Google Scholar] [CrossRef]
- Saeedi, O.; Boland, M.V.; D’Acunto, L.; Yousefi, S. Development and Comparison of Machine Learning Algorithms to Determine Visual Field Progression. Transl. Vis. Sci. Technol. 2021, 10, 27. [Google Scholar] [CrossRef]
- Shuldiner, S.R.; Boland, M.V.; Ramulu, P.Y.; West, S.K.; Friedman, D.S. Predicting Eyes at Risk for Rapid Glaucoma Progression Based on an Initial Visual Field Test Using Machine Learning. PLoS ONE 2021, 16, e0249856. [Google Scholar] [CrossRef]
- Sabharwal, J.; Hou, K.; Herbert, P.; Lin, K.; Proudfoot, J.A. A Deep Learning Model Incorporating Spatial and Temporal Information Successfully Detects Visual Field Worsening Using a Consensus Based Approach. Sci. Rep. 2023, 13, 1041. [Google Scholar] [CrossRef]
- Chen, L.; Tseng, V.S.; Tsung, T.H.; Lu, D.W. A Multi-Label Transformer-Based Deep Learning Approach to Predict Focal Visual Field Progression. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 262, 2227–2235. [Google Scholar] [CrossRef]
- Li, S.; Ren, J.; Jiang, Z.; Qiu, Y.; Shao, M.; Li, Y.; Wu, J.; Song, Y.; Sun, X.; Gao, S.; et al. Metabolomics identifies and validates serum androstenedione as novel biomarker for diagnosing primary angle closure glaucoma and predicting the visual field progression. eLife 2024, 12, e91407. [Google Scholar] [CrossRef]
- Elgin, C.Y. Democratizing glaucoma care: A framework for AI-driven progression prediction across diverse healthcare settings. J. Ophthalmol. 2025, 2025, 9803788. [Google Scholar] [CrossRef]
- Salazar, H.; Misra, V.; Swaminathan, S.S. Artificial Intelligence and Complex Statistical Modeling in Glaucoma Diagnosis and Management. Curr. Opin. Ophthalmol. 2021, 32, 105–117. [Google Scholar] [CrossRef] [PubMed]
- Banna, H.U.; Zanabli, A.; McMillan, B.; Shalaby, A.; El-Sayed, A.M. Evaluation of Machine Learning Algorithms for Trabeculectomy Outcome Prediction in Patients with Glaucoma. Sci. Rep. 2022, 12, 2473. [Google Scholar] [CrossRef] [PubMed]
- Barry, S.; Wang, S.Y. Predicting Glaucoma Surgical Outcomes Using Neural Networks and Machine Learning on Electronic Health Records. Transl. Vis. Sci. Technol. 2024, 13, 15. [Google Scholar] [CrossRef]
- Lin, W.C.; Chen, A.; Song, X.; Weiskopf, N.G.; Chiang, M.F.; Hribar, M.R. Prediction of Multiclass Surgical Outcomes in Glaucoma Using Multimodal Deep Learning Based on Free-Text Operative Notes and Structured EHR Data. J. Am. Med. Inform. Assoc. 2024, 31, 456–464. [Google Scholar] [CrossRef] [PubMed]
- Agnifili, L.; Figus, M.; Porreca, A.; Brescia, L.; Oddone, F.; Mastropasqua, L. A Machine Learning Approach to Predict the Glaucoma Filtration Surgery Outcome. Sci. Rep. 2023, 13, 18157. [Google Scholar] [CrossRef]
- Mastropasqua, L.; Agnifili, L.; Brescia, L.; Fasanella, V.; Oddone, F.; Mastropasqua, R. A Deep Learning Approach to Investigate the Filtration Bleb Functionality after Glaucoma Surgery: A Preliminary Study. Graefes Arch. Clin. Exp. Ophthalmol. 2024, 262, 149–160. [Google Scholar] [CrossRef]
- Yousefi, S.; Pasquale, L.R.; Boland, M.V. Artificial Intelligence and Glaucoma: Illuminating the Black Box. Ophthalmol. Glaucoma 2020, 3, 311–313. [Google Scholar] [CrossRef]
Study | Year | Study Design | Data Type | Data Size | AI Type | Task | Performance |
---|---|---|---|---|---|---|---|
Liu et al. [10] | 2019 | Cross-sectional | Color fundus photographs. | 274,413 images. | GD-CNN (ResNet-based). | Detects glaucomatous optic neuropathy (GON). | AUROC: 0.996; Sensitivity: 96.2%; Specificity: 97.7%. |
Phene et al. [11] | 2019 | Retrospective | Color fundus photographs. | 86,618 images. | Deep convolutional neural network with the Inception-v3 architecture. | Predicts referable GON and optic nerve head (ONH) features. | AUROC: 0.945. |
Thakur et al. [12] | 2020 | Prospective longitudinal study | Color fundus photographs. | 66,721 images (from 1636 patients). | Convolutional neural network (MobileNetV2). | 1. Glaucoma diagnosis 2. Predict conversion 1–3 yrs prior 3. Predict conversion 4–7 yrs prior. | 1. Diagnosis: AUC 0.945; 2. Prediction 1–3 years prior onset: AUC 0.88; 3. Prediction 4–7 years prior onset: AUC 0.77. |
Hu et al. [15] | 2023 | Retrospective evaluation of existing sequential-image datasets | Sequential fundus images. | 3671 images (from 405 eyes). | Transformer (GLIM-Net). | Glaucoma detection and progression forecast. | Accuracy 89.5%; Sensitivity 87.6%; Specificity 89.6%; AUC 93.6%. |
Lee et al. [16] | 2021 | Retrospective cohort study | Color fundus photographs, standard automated perimetry (SAP). | 1072 eyes of 827 glaucoma-suspect patients. | Convolutional neural network (M2M model); joint longitudinal survival model. | Predict future development of glaucomatous visual field defects. | Survival Prediction Results: HR for conversion risk: 1.56 per 10 μm lower baseline predicted RNFL thickness. HR for conversion risk: 1.99 per 1 μm/year faster loss in predicted RNFL thickness. |
Study | Year | Study Design | Data Type | Data Size | AI Type | Task | Performance |
---|---|---|---|---|---|---|---|
Braeu et al. [30] | 2023 | Retrospective (comparison and evaluation of deep learning diagnostic algorithms) | OCT scans of the optic nerve head (ONH). | 4506 OCT scans (2247 non-glaucoma, 2259 glaucoma) from 1725 participants. | PointNet; dynamic graph CNN (DGCNN). | Identifies critical 3D structural features of the ONH for glaucoma diagnosis. | DGCNN: AUC 0.97; PointNet: AUC 0.95. |
Wu et al. [31] | 2021 | Cross-sectional | Spectralis spectral-domain OCT. | 470 eyes (224 healthy, 246 glaucoma). | Conditional inference trees (CIT); logistic model tree (LMT); C5.0 decision tree; random forest (RF); extreme gradient boosting (XGBoost). | Glaucoma diagnosis (discriminating normal from glaucomatous eyes and distinguishing between early, moderate, and severe glaucoma from normal conditions). | Best performer: random forest Accuracy (Mean): 0.8818 Sensitivity (Mean): 0.9166 Specificity (Mean): 0.8507 AUC (Mean): 0.9459 |
Ashtari-Majlan et al. [32] | 2025 | Retrospective | 3D OCT images. | 1110 scans (from 624 patients; 263 healthy, 847 glaucoma). | Spatial-aware transformer–gated recurrent unit (GRU) framework. | To enable early detection of optic nerve structural damage in glaucoma patients. | AUC: 0.942; F1 score: 93.01%; Accuracy: 89.19%; Sensitivity: 91.83%; Specificity: 79.67%. |
Li et al. [14] | 2023 | Prospective, cross-sectional study | Peripapillary RNFL thickness from OCT images. | 514 participants (257 glaucoma; 257 controls). | Logistic regression (LR), support vector machines (SVM), random forests (RF), gradient boosting (GB); models combined using Soft Voting Ensembling (SVE). | To classify eyes as glaucomatous or normal. | AUC: 0.96. |
De Jesus et al. [35] | 2020 | Retrospective | OCTA imaging, averaged circumpapillary RNFL thickness. | 121 participants (39 glaucoma; 82 healthy). | Support vector machine (SVM), random forest (RF), and gradient boosting (xGB). | Classifying and staging glaucomatous vascular damage. | Healthy vs. glaucoma (AUROC): SVM: 0.89, RF: 0.86, xGB: 0.85, RNFL: 0.85. |
Bowd et al. [36] | 2022 | Cross-sectional comparison of diagnostic approaches | OCTA (en face vessel density images) and SD-OCT (RNFL thickness). | 405 eyes of 265 participants (130 eyes of 80 healthy individuals, 275 eyes of 185 glaucoma patients). | Convolutional neural network (CNN), specifically VGG16 (fine-tuned). Gradient-boosting classifier (GBC). | Classifying healthy and glaucomatous eyes. | AUPRC: 0.97. |
Lee et al. [37] | 2023 | Retrospective | Macular OCTA and OCT images. | 260 eyes (203 eyes with highly myopic glaucoma, 57 eyes with healthy high myopia). | Transformer. | Distinguishing highly myopic glaucoma eyes from healthy high myopia eyes. | AUC 0.946 |
Study | Year | Study Design | Data Type | Data Size | AI Type | Task | Performance |
---|---|---|---|---|---|---|---|
Dai et al. [38] | 2022 | Retrospective | Transcriptome sequencing data. | GEO database (GSE9944 and GSE2378). | Logistic regression (LR), random forest (RF), and lasso regression (LASSO). | Identify diagnostic biomarkers of glaucoma (specifically ENO2) based on gene expression; construct diagnostic models and screen diagnostic markers for glaucoma diagnosis. | 1. Machine learning models (LR-RF, LASSO) identified key gene biomarkers (core 3: NAMPT, ADH1C, and ENO2) for glaucoma diagnosis. 2. Potential therapeutic compounds targeting ENO2 were explored via molecular docking. |
Han et al. [39] | 2021 | Retrospective study with multi-dataset and cross-ancestry validation (using UK Biobank and CLSA data) | Retinal fundus images. | UKB images: 175,770 from 85,736 participants; CLSA images: 106,330 from 29,635 participants. | Convolutional neural network (CNN). | 1. Automated AI labeling (grading) of optic nerve head parameters: Vertical cup-to-disc ratio (VCDR) and Vertical disc diameter (VDD) from retinal fundus images. 2. Enabling large-scale cross-ancestry epidemiological studies and genetic discovery (GWAS) for ONH parameters. | 1. Pearson’s correlation (AI vs. clinician): VCDR 0.81 (UKB), 0.84 (CLSA); VDD 0.84 (UKB), 0.88 (CLSA). 2. Increased heritability estimates: 50% for VCDR/VDD. Identified >200 GWAS loci for VCDR/VDD. |
Alipanahi et al. [40] | 2021 | Retrospective | Color fundus photographs. | 65,680 patients. | Machine learning model. | 1. To predict glaucomatous optic nerve head features from color fundus photographs. 2. Use ML-based VCDR predictions to improve genomic discovery (GWAS) for VCDR and polygenic prediction for VCDR and POAG | 1. Identified 299 independent genome-wide significant (GWS) hits in 156 loci in ML-based VCDR GWAS. 2. Replicated 62 out of 65 GWS loci from the previous manual VCDR GWAS, and identified 93 novel loci. |
Sergounitis et al. [41] | 2024 | Retrospective | Retinal OCT images. | 31,135 UK Biobank participants (left eye thickness maps). | Autoencoder; U-Net. | 1. Autoencoder-based phenotyping (feature extraction/representation) of retinal OCT images. 2. Highlighting genetic loci influencing retinal morphology and providing informative biomarkers. | Autoencoder phenotyping of OCT images enabled identification of 118 significant genetic loci (41 replicated). |
Study | Year | Study Design | Data Type | Data Size | AI Type | Task | Performance |
---|---|---|---|---|---|---|---|
Mandal et al. [46] | 2024 | Retrospective longitudinal study | Peripapillary OCT circle scans and sequences of OCT B-scans. | 8785 follow-up sequences of 5 consecutive OCT tests from 3253 eyes. | Convolutional neural networks (CNN)-long short-term memory (LSTM) model. | 1. Distinguishing glaucoma progression from age-related changes in OCT scans. 2. Classifying whether sequences of OCT B-scans showed glaucoma progression. | AUROC: 0.894; Hit ratio (at 95% specificity): 0.498. |
Hou et al. [47] | 2023 | Retrospective longitudinal cohort study | Longitudinal OCT data. | 8785 follow-up sequences of 5 consecutive OCT tests from 3253 eyes. | Gated transformer network. | To predict visual field worsening from longitudinal optical coherence tomography data. | AUC: 0.97. |
Hassan et al. [48] | 2020 | Retrospective longitudinal study | Longitudinal macular OCT images. | 109 eyes. | Conditional generative. adversarial network (GAN). | Predict glaucoma progression over time by reconstructing future macular cross-sectional OCT images. | 1. Predicting from 3 prior visits: Average Structural Similarity Index Measure (SSIM) = 0.8325. 2. Predicting from 2 prior visits: Average SSIM = 0.8336. |
Lazaridis et al. [49] | 2021 | Retrospective study | Time-domain OCT (TDOCT) and spectral-domain OCT (SDOCT). | 4902 TDOCT and 1789 SDOCT (RAPID study). | Generative adversarial networks (CycleGANs). | To improve the statistical power of glaucoma clinical trials utilizing TDOCT by converting TDOCT to synthesized SDOCT and obtaining improved RNFL segmentation. | 1. 95% Limits of Agreement (LOA) improved from [26.64, −22.95] μm (original TDOCT) to [6.57, −5.79] μm (synthesized SDOCT). 2. Required sample size falls from 7356 (original TDOCT) to 578 (synthesized SDOCT). |
Hussain et al. [50] | 2023 | Retrospective longitudinal study | OCT images, visual field (VF) values, demographic data, and clinical data. | 86 glaucoma patients with five visits over 12 months. | Combining a convolutional neural network (CNN) and a long short-term memory (LSTM) network, guided by a generative adversarial network (GAN). | To predict VF changes 12 months after the first visit. | Best AUC: 0.83 (for predicting progression 6 months early). |
Bowd et al. [51] | 2021 | Prospective longitudinal cohort study | 3D OCT images and segmented RNFL thickness maps. | 44 progressing glaucoma eyes, 189 nonprogressing glaucoma eyes, 109 healthy eyes. | Deep-learning autoencoders (DL-AEs). | To compare individualized OCT RNFL-based region of interest (ROI) maps to conventional global circumpapillary RNFL (cpRNFL) thickness for detecting progression. | Sensitivity for detecting change in progressing eyes: DL-AE ROIs = 0.90 vs. cpRNFL annulus = 0.63. |
Study | Year | Study Design | Data Type | Data Size | AI Type | Task | Performance |
---|---|---|---|---|---|---|---|
Mohammadzadeh et al. [52] | 2024 | Retrospective longitudinal study | Serial optic disc photographs and baseline retinal nerve fiber layer (RNFL) thickness from OCT, serial visual field. | 3079 eyes (1765 patients). | Siamese Neural Network with ResNet-152 backbone pretrained on ImageNet. | To predict visual field progression based on baseline and longitudinal structural measurements. | Predicting fast progression (MD rate < 1.0 dB/year): AUC: 0.911. |
Mohammadzadeh et al. [53] | 2024 | Prospective longitudinal cohort study | Longitudinal pairs of optic disc photographs, visual field, and RNFL thickness maps from SD-OCT. | 3919 eyes (2259 patients). | Twin-neural network with ResNet50-backbone. | To predict visual field progression based on longitudinal pairs of optic disc photographs. | Predicting fast progression (MD rate < −1.0 dB/year): AUC: 0.926; Sensitivity: 100%; Specificity: 80.0%; Accuracy = 80.4%. |
Yoesef et al. [54] | 2020 | Retrospective, cross-sectional, longitudinal cohort study | Visual fields (VFs) from standard automated perimetry (SAP). | 13,231 VFs from the most recent visit of each patient (from a total of 31,591 VFs on 8077 subjects). | Artificial intelligence (AI) dashboard enabled. Pipeline included principal component analysis (PCA), manifold learning, and unsupervised clustering. Density-based clustering and archetypal analysis were used for annotation. | To develop an AI dashboard for monitoring glaucomatous functional loss. | Dashboard identified 32 nonoverlapping clusters corresponding to global functional severity, extent of VF loss, and characteristic local patterns. Specificity for detecting “likely nonprogression”: 94% Sensitivity for detecting “likely progression”: 77%. |
Dixit et al. [55] | 2021 | Retrospective study | Longitudinal visual field (VF) data and clinical data. Clinical data include baseline cup-to-disc ratio, central corneal thickness, and intraocular pressure (IOP). | 11,242 eyes. | Convolutional long short-term memory (LSTM) neural network. | To detect when glaucoma progression is occurring based on longitudinal VF and clinical data. | Accuracy: 91% to 93%; AUC: 0.89–0.93. |
Saeeedi et al. [56] | 2021 | Retrospective study | Visual fields. | 90,713 visual fields from 13,156 eyes. | Logistic regression, random forest, extreme gradient boosting, support vector classifier, convolutional neural network, fully connected neural network. | To classify each eye as progressing or stable. | Accuracy: 87% to 91%; Sensitivity: 0.83–0.88; Specificity: 0.92–0.96; Precision: 0.90–0.95; NPV: 0.84–0.88; F1 score: 0.87–0.91. |
Shuldiner et al. [57] | 2021 | Retrospective study | Visual fields. | 22,925 initial VFs from 14,217 patients. | Support vector machine (SVM), random forest (RF), naïve Bayes, logistic regression, fully connected neural network, and hybrid model. | Predicting future rapid glaucoma progression based on an initial visual field test. | Support vector machine model AUC: 0.72. |
Sabharwal et al. [58] | 2023 | Retrospective study | Visual field testing data and clinician assessment from health records. | 5099 patients (8705 eyes). | Deep learning model. | Detection of visual field worsening in glaucoma patients. | AUC: 0.94. |
Chen et al. [59] | 2024 | Retrospective study | Visual fields. | 2430 eyes of 1283 patients. | Multi-label transformer-based network (MTN). | Prediction of focal visual field progression in six VF regions. | Macro-average AUCs for detecting focal VF progression (5+ VFs): 0.884. |
Study | Year | Study Design | Data Type | Data Size | AI Type | Task | Performance |
---|---|---|---|---|---|---|---|
Banna et al. [63] | 2022 | Retrospective cohort study | Preoperative systemic data, demographic data, and ocular data. | 230 trabeculectomy surgeries performed on 184 patients. | Random forest (RF), support vector machine (SVM), artificial neural networks, and multivariable logistic regression. | To predict the complete success of trabeculectomy surgery at 1 year. | Top performing model (random forest): Accuracy: 0.68; AUC: 0.74. |
Barry et al. [64] | 2024 | Retrospective study | Structured data from electronic health records (EHRs), including demographics, prior diagnosis and procedure codes, medications, and eye exam findings (intraocular pressure, visual acuity, central corneal thickness, and refraction spherical equivalent). | 2398 glaucoma surgeries of 1571 patients. | Benchmarked classical ML classifiers (decision trees, random forest, XGBoost, penalized logistic regression, multilayer perceptron, k-nearest neighbors, Gaussian naive Bayes, linear discriminant analysis, support vector machines) and feedforward deep learning models. Random forest and a neural network performed best for overall surgical failure. | To predict glaucoma surgical outcomes, including postoperative intraocular pressure, use of ocular antihypertensive medications, and need for repeat surgery. Predict overall surgical failure (composite criteria) and individual failure criteria (IOP failure, medication failure, and follow-up surgery failure). | Random forest: Accuracy 75.5%; AUROC 76.7%; F1 0.850; Sensitivity 0.955; Specificity 0.223; Precision 0.765; NPV 0.660. Neural network (with embedding): Accuracy 75.5%; AUROC 76.6%; F1 0.837; Sensitivity 0.870; Specificity 0.452; Precision 0.807; NPV 0.570. |
Lin et al. [65] | 2024 | Retrospective study | Multimodal data: structured EHR data (demographics, diagnoses, medications, eye exam findings, etc.) and free-text operative notes (intraoperative information, findings, techniques, complications, etc.). | 1540 eyes from 1326 patients who underwent primary trabeculectomies. | Multimodal deep learning models (neural networks). Combines structured data input with processed free-text operative notes. Text processing models evaluated: transformer encoder blocks, LSTM units, and pretrained Bio-Clinical BERT. | To predict multiclass surgical outcomes for glaucoma trabeculectomy surgery at 1 year. | Surgical success: Precision 0.884 (highest precision), F1 score 0.775. |
Agnifili et al. [66] | 2023 | Prospective cohort study | Preoperative clinical parameters: ocular surface clinical tests (OSCTs), surgical site-related biometric parameters (SSPs), and conjunctival vascularization. AS-OCT measurements: conjunctival epithelial and stromal (CET, CST) thickness and reflectivity (ECR, SCR). Baseline intraocular pressure (IOP). | 102 glaucomatous patients undergoing filtration surgery. | Classification tree. | To predict the filtration surgery outcome (success vs. failure). | AUC: 0.784. |
Mastropasqua et al. [67] | 2023 | Retrospective, cross-sectional study | Slit-lamp images of filtration blebs (FBs) after trabeculectomy. | 119 post-trabeculectomy filtration blebs images. | Deep learning model; artificial intelligence classification algorithm. | To distinguish functioning from failed filtration blebs using deep learning on slit-lamp images. | Accuracy: 74%; Overall sensitivity: 74; Overall specificity: 87%; AUROC: 0.8; AUPRC: 0.74. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lan, C.-H.; Chiu, T.-H.; Yen, W.-T.; Lu, D.-W. Artificial Intelligence in Glaucoma: Advances in Diagnosis, Progression Forecasting, and Surgical Outcome Prediction. Int. J. Mol. Sci. 2025, 26, 4473. https://doi.org/10.3390/ijms26104473
Lan C-H, Chiu T-H, Yen W-T, Lu D-W. Artificial Intelligence in Glaucoma: Advances in Diagnosis, Progression Forecasting, and Surgical Outcome Prediction. International Journal of Molecular Sciences. 2025; 26(10):4473. https://doi.org/10.3390/ijms26104473
Chicago/Turabian StyleLan, Chiao-Hsin, Ta-Hung Chiu, Wei-Ting Yen, and Da-Wen Lu. 2025. "Artificial Intelligence in Glaucoma: Advances in Diagnosis, Progression Forecasting, and Surgical Outcome Prediction" International Journal of Molecular Sciences 26, no. 10: 4473. https://doi.org/10.3390/ijms26104473
APA StyleLan, C.-H., Chiu, T.-H., Yen, W.-T., & Lu, D.-W. (2025). Artificial Intelligence in Glaucoma: Advances in Diagnosis, Progression Forecasting, and Surgical Outcome Prediction. International Journal of Molecular Sciences, 26(10), 4473. https://doi.org/10.3390/ijms26104473