Neurofilament Light Protein as a Biomarker in Severe Mental Disorders: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction
3. Results and Discussion
3.1. NfL and SMDs
3.1.1. The Brain Abnormalities
3.1.2. The Symptom Dimension
3.1.3. NfL, SMDs, and Other Elements
3.2. Differential Diagnosis Between SMDs and Neurodegenerative Diseases Using NfL
3.3. Discussion
3.3.1. Role of High-Throughput Technologies, Challenges, and the Need for Longitudinal Studies
3.3.2. Intersection of Neurobiology and Psychiatric Symptomatology
3.3.3. Clinical Implications and Future Directions
3.3.4. Strengths and Limitations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- World Health Organization. Helping People with Severe Mental Disorders Live Longer and Healthier Lives: Policy Brief. 2017. Available online: https://iris.who.int/handle/10665/259575 (accessed on 28 October 2024).
- McPherson, P.; Krotofil, J.; Killaspy, H. Mental health supported accommodation services: A systematic review of mental health and psychosocial outcomes. BMC Psychiatry 2018, 18, 128. [Google Scholar] [CrossRef] [PubMed]
- Eratne, D.; Loi, S.M.; Walia, N.; Farrand, S.; Li, Q.; Varghese, S.; Walterfang, M.; Evans, A.; Mocellin, R.; Dhiman, K.; et al. A pilot study of the utility of cerebrospinal fluid neurofilament light chain in differentiating neurodegenerative from psychiatric disorders: A 'C-reactive protein' for psychiatrists and neurologists? Aust. N. Z. J. Psychiatry 2020, 54, 57–67. [Google Scholar] [CrossRef] [PubMed]
- Lleó, A.; Parnetti, L.; Belbin, O.; Wiltfang, J. Has the time arrived for cerebrospinal fluid biomarkers in psychiatric disorders? Clin. Chim. Acta 2019, 491, 81–84. [Google Scholar] [CrossRef]
- Petzold, A. Neurofilament phosphoforms: Surrogate markers for axonal injury, degeneration and loss. J. Neurol. Sci. 2005, 233, 183–198. [Google Scholar] [CrossRef] [PubMed]
- Gafson, A.R.; Barthélemy, N.R.; Bomont, P.; Carare, R.O.; Durham, H.D.; Julien, J.; Kuhle, J.; Leppert, D.; Nixon, R.A.; Weller, R.O.; et al. Neurofilaments: Neurobiological foundations for biomarker applications. Brain 2020, 143, 1975–1998. [Google Scholar] [CrossRef] [PubMed]
- Bomont, P. Degradation of the Intermediate Filament Family by Gigaxonin. Methods Enzymol. 2016, 569, 215–231. [Google Scholar] [CrossRef]
- Gentil, B.J.; Tibshirani, M.; Durham, H.D. Neurofilament dynamics and involvement in neurological disorders. Cell Tissue Res. 2015, 360, 609–620. [Google Scholar] [CrossRef]
- Yuan, A.; Sershen, H.; Veeranna, N.; Basavarajappa, B.S.; Kumar, A.; Hashim, A.; Berg, M.; Lee, J.-H.; Sato, Y.; Rao, M.V.; et al. Neurofilament subunits are integral components of synapses and modulate neurotransmission and behavior in vivo. Mol. Psychiatry 2015, 20, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Yuan, A.; Veeranna, n.; Sershen, H.; Basavarajappa, B.S.; Smiley, J.F.; Hashim, A.; Bleiwas, C.; Berg, M.; Guifoyle, D.N.; Subbanna, S.; et al. Neurofilament light interaction with GluN1 modulates neurotransmission and schizophrenia-associated behaviors. Transl. Psychiatry 2018, 8, 167. [Google Scholar] [CrossRef]
- Yuan, A.; Nixon, R.A. Specialized roles of neurofilament proteins in synapses: Relevance to neuropsychiatric disorders. Brain Res. Bull. 2016, 126, 334–346. [Google Scholar] [CrossRef]
- Mattsson, N.; Cullen, N.C.; Andreasson, U.; Zetterberg, H.; Blennow, K. Association Between Longitudinal Plasma Neurofilament Light and Neurodegeneration in Patients with Alzheimer Disease. JAMA Neurol. 2019, 76, 791–799. [Google Scholar] [CrossRef]
- Khalil, M.; Teunissen, C.E.; Otto, M.; Piehl, F.; Sormani, M.P.; Gattringer, T.; Barro, C.; Kappos, L.; Comabella, M.; Fazekas, F.; et al. Neurofilaments as biomarkers in neurological disorders. Nat. Rev. Neurol. 2018, 14, 577–589. [Google Scholar] [CrossRef]
- Verde, F.; Steinacker, P.; Weishaupt, J.H.; Kassubek, J.; Oeckl, P.; Halbgebauer, S.; Tumani, H.; von Arnim, C.A.F.; Dorst, J.; Feneberg, E.; et al. Neurofilament light chain in serum for the diagnosis of amyotrophic lateral sclerosis. J. Neurol. Neurosurg. Psychiatry 2019, 90, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Lu, C.; Macdonald-Wallis, C.; Gray, E.; Pearce, N.; Petzold, A.; Norgren, N.; Giovannoni, G.; Fratta, P.; Sidle, K.; Fish, M.; et al. Neurofilament light chain: A prognostic biomarker in amyotrophic lateral sclerosis. Neurology 2015, 84, 2247–2257. [Google Scholar] [CrossRef] [PubMed]
- Steinacker, P.; Anderl-Straub, S.; Diehl-Schmid, J.; Semler, E.; Uttner, I.; von Arnim, C.A.F.; Barthel, H.; Danek, A.; Fassbender, K.; Fliessbach, K.; et al. Serum neurofilament light chain in behavioral variant frontotemporal dementia. Neurology 2018, 91, e1390–e1401. [Google Scholar] [CrossRef] [PubMed]
- Disanto, G.; Barro, C.; Benkert, P.; Naegelin, Y.; Schädelin, S.; Giardiello, A.; Zecca, C.; Blennow, K.; Zetterberg, H.; Leppert, D.; et al. Serum Neurofilament light: A biomarker of neuronal damage in multiple sclerosis. Ann. Neurol. 2017, 81, 857–870. [Google Scholar] [CrossRef]
- Mattsson, N.; Andreasson, U.; Zetterberg, H.; Blennow, K. Association of Plasma Neurofilament Light with Neurodegeneration in Patients with Alzheimer Disease. JAMA Neurol. 2017, 74, 557–566. [Google Scholar] [CrossRef] [PubMed]
- Zanardini, R.; Saraceno, C.; Benussi, L.; Squitti, R.; Ghidoni, R. Exploring Neurofilament Light Chain and Exosomes in the Genetic Forms of Frontotemporal Dementia. Front. Neurosci. 2022, 16, 758182. [Google Scholar] [CrossRef]
- Olsson, B.; Portelius, E.; Cullen, N.C.; Sandelius, Å.; Zetterberg, H.; Andreasson, U.; Höglund, K.; Irwin, D.J.; Grossman, M.; Weintraub, D.; et al. Association of Cerebrospinal Fluid Neurofilament Light Protein Levels with Cognition in Patients with Dementia, Motor Neuron Disease, and Movement Disorders. JAMA Neurol. 2019, 76, 318–325. [Google Scholar] [CrossRef] [PubMed]
- Shahim, P.; Gren, M.; Liman, V.; Andreasson, U.; Norgren, N.; Tegner, Y.; Mattsson, N.; Andreasen, N.; Öst, M.; Zetterberg, H.; et al. Serum neurofilament light protein predicts clinical outcome in traumatic brain injury. Sci. Rep. 2016, 6, 36791. [Google Scholar] [CrossRef] [PubMed]
- Yuan, A.; Rao, M.V.; Veeranna, n.; Nixon, R.A. Neurofilaments and Neurofilament Proteins in Health and Disease. Cold Spring Harb. Perspect. Biol. 2017, 9, a018309. [Google Scholar] [CrossRef] [PubMed]
- Bavato, F.; Cathomas, F.; Klaus, F.; Gütter, K.; Barro, C.; Maceski, A.; Seifritz, E.; Kuhle, J.; Kaiser, S.; Quednow, B.B. Altered neuroaxonal integrity in schizophrenia and major depressive disorder assessed with neurofilament light chain in serum. J. Psychiatr. Res. 2021, 140, 141–148. [Google Scholar] [CrossRef]
- Khalil, M.; Pirpamer, L.; Hofer, E.; Voortman, M.M.; Barro, C.; Leppert, D.; Benkert, P.; Ropele, S.; Enzinger, C.; Fazekas, F.; et al. Serum neurofilament light levels in normal aging and their association with morphologic brain changes. Nat. Commun. 2020, 11, 812. [Google Scholar] [CrossRef] [PubMed]
- Jakimovski, D.; Kuhle, J.; Ramanathan, M.; Barro, C.; Tomic, D.; Hagemeier, J.; Kropshofer, H.; Bergsland, N.; Leppert, D.; Dwyer, M.G.; et al. Serum neurofilament light chain levels associations with gray matter pathology: A 5-year longitudinal study. Ann. Clin. Transl. Neurol. 2019, 6, 1757–1770. [Google Scholar] [CrossRef] [PubMed]
- Kanaan, R.A.; Picchioni, M.M.; McDonald, C.; Shergill, S.S.; McGuire, P.K. White matter deficits in schizophrenia are global and don't progress with age. Aust. N. Z. J. Psychiatry 2017, 51, 1020–1031. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, J.A. Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective. Biol. Psychiatry 1999, 46, 729–739. [Google Scholar] [CrossRef]
- Lawrie, S.M.; Whalley, H.C.; Abukmeil, S.S.; Kestelman, J.N.; Donnelly, L.; Miller, P.; Best, J.J.; Owens, D.G.; Johnstone, E.C. Brain structure, genetic liability, and psychotic symptoms in subjects at high risk of developing schizophrenia. Biol. Psychiatry 2001, 49, 811–823. [Google Scholar] [CrossRef]
- Williams, M.R.; Sharma, P.; Macdonald, C.; Pearce, R.K.B.; Hirsch, S.R.; Maier, M. Axonal myelin decrease in the splenium in major depressive disorder. Eur. Arch. Psychiatry Clin. Neurosci. 2019, 269, 387–395. [Google Scholar] [CrossRef] [PubMed]
- Davis, K.A.; Kwon, A.; Cardenas, V.A.; Deicken, R.F. Decreased cortical gray and cerebral white matter in male patients with familial bipolar I disorder. J. Affect. Disord. 2004, 82, 475–485. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.J.Y.; Eratne, D.; Wannan, C.; Santillo, A.F.; Velakoulis, D.; Pantelis, C.; Cropley, V. Plasma neurofilament light chain is not elevated in people with first-episode psychosis or those at ultra-high risk for psychosis. Schizophr. Res. 2024, 267, 269–272. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- McGowan, J.; Sampson, M.; Salzwedel, D.M.; Cogo, E.; Foerster, V.; Lefebvre, C. PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. J. Clin. Epidemiol. 2016, 75, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Cilia, B.; Eratne, D.; Wannan, C.; Malpas, C.; Janelidze, S.; Hansson, O.; Everall, I.; Bousman, C.; Thomas, N.; Santillo, A.F.; et al. Associations between structural brain changes and blood neurofilament light chain protein in treatment-resistant schizophrenia. medRxiv 2024. medRxiv:2024.04.07.24305362. [Google Scholar] [CrossRef]
- Jiang, L.; Shen, Z.; Cheng, Y.; Lu, J.; He, B.; Xu, J.; Jiang, H.; Liu, F.; Li, N.; Lu, Y.; et al. Elevated serum neurofilament levels in young first-episode and medication-naïve major depressive disorder patients with alterative white matter integrity. Psychiatry Res. Neuroimaging 2021, 317, 111351. [Google Scholar] [CrossRef]
- Jakobsson, J.; Bjerke, M.; Ekman, C.J.; Sellgren, C.; Johansson, A.G.; Zetterberg, H.; Blennow, K.; Landïn, M. Elevated Concentrations of Neurofilament Light Chain in the Cerebrospinal Fluid of Bipolar Disorder Patients. Neuropsychopharmacology 2014, 39, 2349. [Google Scholar] [CrossRef]
- Chen, M.; Liu, Y.; Kuo, H.; Tsai, S.; Hsu, J.; Huang, K.; Tu, P.; Bai, Y. Neurofilament Light Chain Is a Novel Biomarker for Major Depression and Related Executive Dysfunction. Int. J. Neuropsychopharmacol. 2022, 25, 99–105. [Google Scholar] [CrossRef] [PubMed]
- Gudmundsson, P.; Skoog, I.; Waern, M.; Blennow, K.; Zetterberg, H.; Rosengren, L.; Gustafson, D. Is there a CSF biomarker profile related to depression in elderly women? Psychiatry Res. 2010, 176, 174–178. [Google Scholar] [CrossRef] [PubMed]
- Aggio, V.; Fabbella, L.; Finardi, A.; Mazza, E.B.; Colombo, C.; Falini, A.; Benedetti, F.; Furlan, R. Neurofilaments light: Possible biomarker of brain modifications in bipolar disorder. J. Affect. Disord. 2022, 300, 243–248. [Google Scholar] [CrossRef]
- Ramezani, M.; Simani, L.; Fard, M.G.; Abbaszadeh, F.; Shadnia, S. Increased levels of neurofilament light chain in suicide attempters' serum. Transl. Neurosci. 2022, 13, 218–223. [Google Scholar] [CrossRef] [PubMed]
- Al Shweiki, M.R.; Steinacker, P.; Oeckl, P.; Hengerer, B.; Danek, A.; Fassbender, K.; Diehl-Schmid, J.; Jahn, H.; Anderl-Straub, S.; Ludolph, A.C.; et al. Neurofilament light chain as a blood biomarker to differentiate psychiatric disorders from behavioural variant frontotemporal dementia. J. Psychiatr. Res. 2019, 113, 137–140. [Google Scholar] [CrossRef]
- Katisko, K.; Cajanus, A.; Jääskeläinen, O.; Kontkanen, A.; Hartikainen, P.; Korhonen, V.E.; Helisalmi, S.; Haapasalo, A.; Koivumaa-Honkanen, H.; Herukka, S.; et al. Serum neurofilament light chain is a discriminative biomarker between frontotemporal lobar degeneration and primary psychiatric disorders. J. Neurol. 2020, 267, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Rolstad, S.; Jakobsson, J.; Sellgren, C.; Ekman, C.; Blennow, K.; Zetterberg, H.; Pålsson, E.; Landén, M. Cognitive performance and cerebrospinal fluid biomarkers of neurodegeneration: A study of patients with bipolar disorder and healthy controls. PLoS ONE 2015, 10, e0127100. [Google Scholar] [CrossRef] [PubMed]
- Knorr, U.; Simonsen, A.H.; Zetterberg, H.; Blennow, K.; Willkan, M.; Forman, J.; Miskowiak, K.; Hasselbalch, S.G.; Kessing, L.V. Biomarkers for neurodegeneration impact cognitive function: A longitudinal 1-year case-control study of patients with bipolar disorder and healthy control individuals. Int. J. Bipolar Disord. 2024, 12, 2. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Chiu, C.; Huang, C.; Cheng, Y.; Huang, M.; Kuo, P.; Chen, W. Cluster analysis dissecting cognitive deficits in older adults with major depressive disorder and the association with neurofilament light chain. BMC Geriatr. 2024, 24, 344. [Google Scholar] [CrossRef]
- Lin, W.; Su, T.; Li, C.; Wu, H.; Bai, Y.; Liu, Y.; Tu, P.; Chen, M. Association of Neurofilament Light Chain with the Antidepressant Effects of Low-Dose Ketamine Infusion Among Patients with Treatment-Resistant Depression. Int. J. Neuropsychopharmacol. 2023, 26, 649–653. [Google Scholar] [CrossRef]
- Steinacker, P.; Al Shweiki, M.R.; Oeckl, P.; Graf, H.; Ludolph, A.C.; Schönfeldt-Lecuona, C.; Otto, M. Glial fibrillary acidic protein as blood biomarker for differential diagnosis and severity of major depressive disorder. J. Psychiatr. Res. 2021, 144, 54–58. [Google Scholar] [CrossRef]
- Al-Hakeim, H.K.; Al-Naqeeb, T.H.; Almulla, A.F.; Maes, M. The physio-affective phenome of major depression is strongly associated with biomarkers of astroglial and neuronal projection toxicity which in turn are associated with peripheral inflammation, insulin resistance and lowered calcium. J. Affect. Disord. 2023, 331, 300–312. [Google Scholar] [CrossRef]
- Knorr, U.; Simonsen, A.H.; Jensen, C.S.; Zetterberg, H.; Blennow, K.; Akhøj, M.; Forman, J.; Hasselbalch, S.G.; Kessing, L.V. Alzheimer's disease related biomarkers in bipolar disorder—A longitudinal one-year case-control study. J. Affect. Disord. 2022, 297, 623–633. [Google Scholar] [CrossRef] [PubMed]
- Ceylan, M.F.; Tural Hesapcioglu, S.; Kanoğlu Yüksekkaya, S.; Erçin, G.; Yavas, C.P.; Neşelioğlu, S.; Erel, O. Changes in neurofilament light chain protein (NEFL) in children and adolescents with Schizophrenia and Bipolar Disorder: Early period neurodegeneration. J. Psychiatr. Res. 2023, 161, 342–347. [Google Scholar] [CrossRef]
- Nisha Aji, K.; Cisbani, G.; Weidenauer, A.; Koppel, A.; Hafizi, S.; Da Silva, T.; Kiang, M.; Rusjan, P.M.; Bazinet, R.P.; Mizrahi, R. Neurofilament light-chain (NfL) and 18 kDa translocator protein in early psychosis and its putative high-risk. Brain Behav. Immun. Health 2024, 37, 100742. [Google Scholar] [CrossRef] [PubMed]
- Liao, Y.; Huang, X.; Wu, Q.; Yang, C.; Kuang, W.; Du, M.; Lui, S.; Yue, Q.; Chan, R.C.K.; Kemp, G.J.; et al. Is depression a disconnection syndrome? Meta-analysis of diffusion tensor imaging studies in patients with MDD. J. Psychiatry Neurosci. 2013, 38, 49–56. [Google Scholar] [CrossRef]
- Sacher, J.; Neumann, J.; Fünfstück, T.; Soliman, A.; Villringer, A.; Schroeter, M.L. Mapping the depressed brain: A meta-analysis of structural and functional alterations in major depressive disorder. J. Affect. Disord. 2012, 140, 142–148. [Google Scholar] [CrossRef]
- Wolkin, A.; Choi, S.J.; Szilagyi, S.; Sanfilipo, M.; Rotrosen, J.P.; Lim, K.O. Inferior frontal white matter anisotropy and negative symptoms of schizophrenia: A diffusion tensor imaging study. Am. J. Psychiatry 2003, 160, 572–574. [Google Scholar] [CrossRef] [PubMed]
- Surbeck, W.; Hänggi, J.; Scholtes, F.; Viher, P.V.; Schmidt, A.; Stegmayer, K.; Studerus, E.; Lang, U.E.; Riecher-Rössler, A.; Strik, W.; et al. Anatomical integrity within the inferior fronto-occipital fasciculus and semantic processing deficits in schizophrenia spectrum disorders. Schizophr. Res. 2020, 218, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Karbasforoushan, H.; Duffy, B.; Blackford, J.U.; Woodward, N.D. Processing speed impairment in schizophrenia is mediated by white matter integrity. Psychol. Med. 2015, 45, 109–120. [Google Scholar] [CrossRef]
- Jamieson, A.; Goodwill, A.M.; Termine, M.; Campbell, S.; Szoeke, C. Depression related cerebral pathology and its relationship with cognitive functioning: A systematic review. J. Affect. Disord. 2019, 250, 410–418. [Google Scholar] [CrossRef] [PubMed]
- Konarski, J.Z.; McIntyre, R.S.; Kennedy, S.H.; Rafi-Tari, S.; Soczynska, J.K.; Ketter, T.A. Volumetric neuroimaging investigations in mood disorders: Bipolar disorder versus major depressive disorder. Bipolar Disord. 2008, 10, 1–37. [Google Scholar] [CrossRef] [PubMed]
- Altshuler, L.L.; Curran, J.G.; Hauser, P.; Mintz, J.; Denicoff, K.; Post, R. T2 hyperintensities in bipolar disorder: Magnetic resonance imaging comparison and literature meta-analysis. Am. J. Psychiatry 1995, 152, 1139–1144. [Google Scholar] [CrossRef]
- McDonald, C.; Zanelli, J.; Rabe-Hesketh, S.; Ellison-Wright, I.; Sham, P.; Kalidindi, S.; Murray, R.M.; Kennedy, N. Meta-analysis of magnetic resonance imaging brain morphometry studies in bipolar disorder. Biol. Psychiatry 2004, 56, 411–417. [Google Scholar] [CrossRef]
- Kempton, M.J.; Geddes, J.R.; Ettinger, U.; Williams, S.C.R.; Grasby, P.M. Meta-analysis, Database, and Meta-regression of 98 Structural Imaging Studies in Bipolar Disorder. Arch. Gen. General Psychiatry 2008, 65, 1017–1032. [Google Scholar] [CrossRef]
- Isgren, A.; Sellgren, C.; Ekman, C.; Holmén-Larsson, J.; Blennow, K.; Zetterberg, H.; Jakobsson, J.; Landén, M. Markers of neuroinflammation and neuronal injury in bipolar disorder: Relation to prospective clinical outcomes. Brain Behav. Immun. 2017, 65, 195–201. [Google Scholar] [CrossRef]
- Queissner, R.; Buchmann, A.; Demjaha, R.; Tafrali, C.; Benkert, P.; Kuhle, J.; Jerkovic, A.; Dalkner, N.; Fellendorf, F.; Birner, A.; et al. Serum neurofilament light as a potential marker of illness duration in bipolar disorder. J. Affect. Disord. 2024, 350, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Walia, N.; Eratne, D.; Loi, S.M.; Farrand, S.; Li, Q.; Malpas, C.B.; Varghese, S.; Walterfang, M.; Evans, A.H.; Parker, S.; et al. Cerebrospinal fluid neurofilament light and cerebral atrophy in younger-onset dementia and primary psychiatric disorders. Intern. Med. J. 2023, 53, 1564–1569. [Google Scholar] [CrossRef] [PubMed]
- Schuurmans, I.K.; Ghanbari, M.; Cecil, C.A.M.; Ikram, M.A.; Luik, A.I. Plasma neurofilament light chain in association to late-life depression in the general population. Psychiatry Clin. Neurosci. 2024, 78, 97–103. [Google Scholar] [CrossRef]
- Wannan, C.M.J.; Eratne, D.; Santillo, A.F.; Malpas, C.; Cilia, B.; Dean, O.M.; Walker, A.; Berk, M.; Bousman, C.; Everall, I.; et al. Plasma neurofilament light protein is differentially associated with age in individuals with treatment-resistant schizophrenia and bipolar affective disorder compared to controls. Psychiatry Res. 2024, 339, 116073. [Google Scholar] [CrossRef] [PubMed]
- van Heeringen, K.; Mann, J.J. The neurobiology of suicide. Lancet Psychiatry 2014, 1, 63–72. [Google Scholar] [CrossRef]
- Besse, M.; Belz, M.; Folsche, T.; Vogelgsang, J.; Methfessel, I.; Steinacker, P.; Otto, M.; Wiltfang, J.; Zilles, D. Serum neurofilament light chain (NFL) remains unchanged during electroconvulsive therapy. World J. Biol. Psychiatry 2020, 21, 148–154. [Google Scholar] [CrossRef]
- Chancel, R.; Lopez-Castroman, J.; Baca-Garcia, E.; Mateos Alvarez, R.; Courtet, P.; Conejero, I. Biomarkers of Bipolar Disorder in Late Life: An Evidence-Based Systematic Review. Curr. Psychiatry Rep. 2024, 26, 78–103. [Google Scholar] [CrossRef] [PubMed]
- Clementz, B.A.; Sweeney, J.A.; Hamm, J.P.; Ivleva, E.I.; Ethridge, L.E.; Pearlson, G.D.; Keshavan, M.S.; Tamminga, C.A. Identification of Distinct Psychosis Biotypes Using Brain-Based Biomarkers. Am. J. Psychiatry 2016, 173, 373–384. [Google Scholar] [CrossRef]
- Wolfers, T.; Doan, N.T.; Kaufmann, T.; Alnæs, D.; Moberget, T.; Agartz, I.; Buitelaar, J.K.; Ueland, T.; Melle, I.; Franke, B.; et al. Mapping the Heterogeneous Phenotype of Schizophrenia and Bipolar Disorder Using Normative Models. JAMA Psychiatry 2018, 75, 1146–1155. [Google Scholar] [CrossRef] [PubMed]
- Kochunov, P.; Hong, L.E. Neurodevelopmental and neurodegenerative models of schizophrenia: White matter at the center stage. Schizophr. Bull. 2014, 40, 721–728. [Google Scholar] [CrossRef]
- Rodrigues-Amorim, D.; Rivera-Baltanás, T.; Del Carmen Vallejo-Curto, M.; Rodriguez-Jamardo, C.; de Las Heras, E.; Barreiro-Villar, C.; Blanco-Formoso, M.; Fernández-Palleiro, P.; Álvarez-Ariza, M.; López, M.; et al. Plasma β-III tubulin, neurofilament light chain and glial fibrillary acidic protein are associated with neurodegeneration and progression in schizophrenia. Sci. Rep. 2020, 10, 14271. [Google Scholar] [CrossRef] [PubMed]
- Eratne, D.; Janelidze, S.; Malpas, C.B.; Loi, S.; Walterfang, M.; Merritt, A.; Diouf, I.; Blennow, K.; Zetterberg, H.; Cilia, B.; et al. Plasma neurofilament light chain protein is not increased in treatment-resistant schizophrenia and first-degree relatives. Aust. N. Z. J. Psychiatry 2022, 56, 1295–1305. [Google Scholar] [CrossRef]
- Travica, N.; Berk, M.; Marx, W. Neurofilament light protein as a biomarker in depression and cognitive function. Curr. Opin. Psychiatry 2022, 35, 30–37. [Google Scholar] [CrossRef]
- Jaeger, J. Digit Symbol Substitution Test: The Case for Sensitivity Over Specificity in Neuropsychological Testing. J. Clin. Psychopharmacol. 2018, 38, 513–519. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Chen, A.; Chen, R.; Zheng, W. Association between depressive symptoms and cognitive function in the older population, and the mediating role of neurofilament light chain: Evidence from NHANES 2013-2014. J. Affect. Disord. 2024, 360, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, P.; Goozee, K.; Sohrabi, H.R.; Shen, K.; Shah, T.; Asih, P.R.; Dave, P.; ManYan, C.; Taddei, K.; Chung, R.; et al. Association of Plasma Neurofilament Light Chain with Neocortical Amyloid-β Load and Cognitive Performance in Cognitively Normal Elderly Participants. J. Alzheimers Dis. 2018, 63, 479–487. [Google Scholar] [CrossRef]
- Spanier, S.; Kilian, H.M.; Meyer, D.M.; Schlaepfer, T.E. Treatment resistance in major depression is correlated with increased plasma levels of neurofilament light protein reflecting axonal damage. Med. Hypotheses 2019, 127, 159–161. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Huang, M.; Chiu, C.C.; Cheng, Y.; Kuo, C.; Chen, P.; Kuo, P. The interactions between vitamin D and neurofilament light chain levels on cognitive domains in bipolar disorder. BJPsych Open 2022, 8, e207. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Chen, C.; Liu, T.; Chung, A.; Liu, Y.; Quednow, B.B.; Bavato, F. Comorbidity of ketamine dependence with major depressive disorder increases the vulnerability to neuroaxonal pathology. J. Psychiatr. Res. 2023, 158, 360–364. [Google Scholar] [CrossRef]
- Bai, Y.; Liu, Y.; Kuo, H.; Tsai, S.; Hsu, J.; Huang, K.; Tu, P.; Chen, M. Procollagen type 1 N-terminal propeptide, neurofilament light chain, proinflammatory cytokines, and cognitive function in bipolar and major depressive disorders: An exploratory study of brain- bone axis and systemic inflammation. J. Psychiatr. Res. 2023, 158, 403–408. [Google Scholar] [CrossRef] [PubMed]
- Hviid, C.V.B.; Benros, M.E.; Krogh, J.; Nordentoft, M.; Christensen, S.H. Serum glial fibrillary acidic protein and neurofilament light chain in treatment-naïve patients with unipolar depression. J. Affect. Disord. 2023, 338, 341–348. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Liu, D.; Xiang, J.; Yang, M. Combining Glial Fibrillary Acidic Protein and Neurofilament Light Chain for the Diagnosis of Major Depressive Disorder. Anal. Chem. 2024, 96, 1693–1699. [Google Scholar] [CrossRef]
- Forgrave, L.M.; Ma, M.; Best, J.R.; DeMarco, M.L. The diagnostic performance of neurofilament light chain in CSF and blood for Alzheimer's disease, frontotemporal dementia, and amyotrophic lateral sclerosis: A systematic review and meta-analysis. Alzheimers Dement. 2019, 11, 730–743. [Google Scholar] [CrossRef] [PubMed]
- Ashton, N.J.; Janelidze, S.; Al Khleifat, A.; Leuzy, A.; van der Ende, E.L.; Karikari, T.K.; Benedet, A.L.; Pascoal, T.A.; Lleó, A.; Parnetti, L.; et al. A multicentre validation study of the diagnostic value of plasma neurofilament light. Nat. Commun. 2021, 12, 3400. [Google Scholar] [CrossRef]
- Eratne, D.; Loi, S.M.; Li, Q.; Stehmann, C.; Malpas, C.B.; Santillo, A.; Janelidze, S.; Cadwallader, C.; Walia, N.; Ney, B.; et al. Cerebrospinal fluid neurofilament light chain differentiates primary psychiatric disorders from rapidly progressive, Alzheimer's disease and frontotemporal disorders in clinical settings. Alzheimers Dement. 2022, 18, 2218–2233. [Google Scholar] [CrossRef] [PubMed]
- Ducharme, S.; Dols, A.; Laforce, R.; Devenney, E.; Kumfor, F.; van den Stock, J.; Dallaire-Théroux, C.; Seelaar, H.; Gossink, F.; Vijverberg, E.; et al. Recommendations to distinguish behavioural variant frontotemporal dementia from psychiatric disorders. Brain 2020, 143, 1632–1650. [Google Scholar] [CrossRef] [PubMed]
- Light, V.; Jones, S.L.; Rahme, E.; Rousseau, K.; de Boer, S.; Vermunt, L.; Soltaninejad, M.; Teunissen, C.; Pijnenburg, Y.; Ducharme, S.; et al. Clinical Accuracy of Serum Neurofilament Light to Differentiate Frontotemporal Dementia from Primary Psychiatric Disorders is Age-Dependent. Am. J. Geriatr. Psychiatry 2024, 32, 988–1001. [Google Scholar] [CrossRef]
- Eratne, D.; Kang, M.; Malpas, C.; Simpson-Yap, S.; Lewis, C.; Dang, C.; Grewal, J.; Coe, A.; Dobson, H.; Keem, M.; et al. Plasma neurofilament light in behavioural variant frontotemporal dementia compared to mood and psychotic disorders. Aust. N. Z. J. Psychiatry 2024, 58, 70–81. [Google Scholar] [CrossRef]
- Salwierz, P.; Thapa, S.; Taghdiri, F.; Vasilevskaya, A.; Anastassiadis, C.; Tang-Wai, D.F.; Golas, A.C.; Tartaglia, M.C. Investigating the association between a history of depression and biomarkers of Alzheimer’s disease, cerebrovascular disease, and neurodegeneration in patients with dementia. Geroscience 2024, 46, 783–793. [Google Scholar] [CrossRef]
- van Engelen, M.E.; Heijst, H.; Willemse, E.A.J.; Oudega, M.L.; Vermunt, L.; Scheltens, P.; Vijverberg, E.G.B.; Pijnenburg, Y.A.L.; Teunissen, C.E. Urine as matrix for analysis of neurofilament light chain is not suitable to distinguish frontotemporal dementia from psychiatric diseases. Brain Commun. 2023, 5, fcad120. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 5th ed.; American Psychiatric Association Publishing: Washington, DC, USA, 2022. [Google Scholar]
- Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet 2016, 388, 86–97. [Google Scholar] [CrossRef]
- Dattani, S.; Ritchie, H.; Roser, M. Mental Health. 2021. Available online: https://ourworldindata.org/ (accessed on 6 November 2024).
- Hasin, D.S.; Sarvet, A.L.; Meyers, J.L.; Saha, T.D.; Ruan, W.J.; Stohl, M.; Grant, B.F. Epidemiology of Adult DSM-5 Major Depressive Disorder and Its Specifiers in the United States. JAMA Psychiatry 2018, 75, 336–346. [Google Scholar] [CrossRef] [PubMed]
- Isometsä, E. Suicidal behaviour in mood disorders—Who, when, and why? Can. J. Psychiatry 2014, 59, 120–130. [Google Scholar] [CrossRef] [PubMed]
- Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1789–1858. [CrossRef]
- Wu, C.; Dougan, T.J.; Walt, D.R. High-Throughput, High-Multiplex Digital Protein Detection with Attomolar Sensitivity. ACS Nano 2022, 16, 1025–1035. [Google Scholar] [CrossRef]
- Bavato, F.; Barro, C.; Schnider, L.K.; Simrén, J.; Zetterberg, H.; Seifritz, E.; Quednow, B.B. Introducing neurofilament light chain measure in psychiatry: Current evidence, opportunities, and pitfalls. Mol. Psychiatry 2024, 29, 2543–2559. [Google Scholar] [CrossRef] [PubMed]
References | Control Samples, n | Age (SD) [IQR] | Sex (Percentage%) M; F | Blood NfL, pg/mL (SD) [IQR] | CSF NfL, pg/mL (SD) [IQR] {SE} | Case Samples, n (Disease) | Age (SD) [IQR] | Sex (Percentage%) M; F | Blood NfL, pg/mL (SD) [IQR] | CSF NfL, pg/mL (SD) [IQR] {SE} | Patients’ Conditions | Sex Concordance Between Case Samples and HC |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[3] Eratne D. et al., 2020 | 21 | 66.00 [65.00–67.00] | 5 (23.8); 16 (76.2) | n.a. | 1036.00 [908.00–1165.00] ELISA | 77 (NND) | 57.00 [55.00–59.00] | 49 (63.6); 28 (36.4) | n.a. | 3560.00 [2918.00–4601.00] ELISA | NND, PSY, HC | No |
31 (PSY) | 51.00 [47.00–55.00] | 19 (61.3); 12 (38.7) | 949.00 [830.00–1108.00] ELISA | No | ||||||||
[34] Cilia B. et al., 2024 | 43 | 39.60 (11.40) | 27 (62.8); 16 (37.2) | 6.10 [5.30–6.80] SIMOA® | n.a. | 39 | 37.90 (8.40) | 31 (79.5); 8 (20.5) | 5.50 [4.60–6.40] SIMOA® | n.a. | TRS, HC | Yes |
[35] Jiang L. et al., 2021 | 72 | 34.00 (12.00) | 37 (51.4); 35 (48.6) | 143.50 [73.60–339.30] ELISA | n.a. | 82 | 34.00 (11.00) | 32 (39.0); 50 (61.0) | 405.80 [281.50–625.50] ELISA | n.a. | MDD, HC | No |
[36] Jakobsson J. et al., 2014 | 86 | 35.00 [28.00–46.00] | 39 (45.3); 47 (54.7) | n.a. | 359.00 {34.00} ELISA | 133 | 35.00 [28.00–50.00] | 52 (39.1); 81 (60.9) | n.a. | 480.00 {25} ELISA | BD, HC | Yes |
[37] Chen M. et al., 2022 | 40 | 28.25 (14.08) | 13 (32.5); 27 (67.5) | 16.65 (8.07) ELISA | n.a. | 40 | 28.25 (14.35) | 13 (32.5); 27 (67.5) | 28.76 (22.53) ELISA | n.a. | MDD, HC | Yes |
[38] Gudmundsson P. et al., 2010 | 13 | n.a. | 0 (0.0); 13 (100.0) | n.a. | 277.00 (186.00) ELISA | 11 | n.a. | 0 (0.0); 11 (100.0) | n.a. | 427.00 (318.00) ELISA | MDD, no DP as control | Yes |
[39] Aggio V. et al., 2022 | 29 | 41.72 (10.19) | 13 (44.8); 16 (55.2) | 4.28 (2.39) SIMOA® | n.a. | 45 | 48.20 (11.87) | 10 (22.2); 35 (77.8) | 9.13 (4.78) SIMOA® | n.a. | BD, HC | Yes |
[40] Ramezani M. et al., 2022 | 35 | 30.00 (6.27) | 10 (28.6); 25 (71.4) | 13,730.00 (5,110.00) ELISA | n.a. | 50 (22 MDD + 28 BD) | 28.92 (11.34) | 11 (22.0); 39 (78.0) | 40,520.00 (33,540.00) ELISA | n.a. | MDD and BD with suicide attempts, HC | Yes |
[41] Al Shweiki M.R. et al., 2019 | 27 | 46.80 [39.10–54.10] | 10 (37.0); 17 (63.0) | 15.10 [11.30–19.10] SIMOA® | n.a. | 28 (DP) | 52.10 [46.20–58.40] | 13 (46.4); 15 (53.6) | 15.70 [12.40–25.00] SIMOA® | n.a. | DP, BD, SZ, bvFTD, HC | Yes |
11 (BD) | 51.40 [33.50–58.10] | 7 (63.6); 4 (36.4) | 17.80 [12.60–23.10] SIMOA® | No | ||||||||
11 (SZ) | 41.10 [31.40–48.50] | 5 (45.5); 6 (54.5) | 11.60 [9.80–23.50] SIMOA® | Yes | ||||||||
20 (bvFTD) | 50.60 [44.90–52.50] | 10 (50.0); 10 (50.0) | 72.70 [28.30–90.00] SIMOA® | No | ||||||||
[42] Katisko K. et al., 2020 | 34 | 55.70 (9.40) | 14 (41.2); 20 (58.8) | 15.50 (9.50) SIMOA® | n.a. | 91 | 65.00 (8.70) | 44 (48.4); 47 (51.6) | 43.70 (36.30) SIMOA® | n.a. | FTLD, PPD as control | Yes |
[43] Rolstad S. et al., 2015 | 71 | 37.80 (14.60) | 27 (38.0); 44 (62.0) | n.a. | 254.38 (55.42) ELISA | 82 | 38.30 (12.50) | 34 (41.5); 48 (58.5) | n.a. | 485.73 (425.62) ELISA | BD, HC | Yes |
[44] Knorr U. et al., 2024 | 44 | 30.50 [24.00–40.50] | 25 (56.8); 19 (43.2) | 5.73 [4.50–7.84] SIMOA® | 354.50 [214.75–566.75] ELISA | 85 | 33.00 [26.00–42.00] | 44 (51.8); 41 (48.2) | 6.87 [4.98–9.11] SIMOA® | 336.50 [246.50–490.50] ELISA | BD, HC | Yes |
[45] Chen C.Y. et al., 2024 | 17 | 77.12 (8.75) | 3 (17.6); 14 (82.4) | 26.21 (16.59) SIMOA® | n.a. | 37 | 70.05 (7.10) | 8 (21.6); 29 (78.4) | 16.95 (10.19) SIMOA® | n.a. | MDD, MCI/AD | Yes |
[46] Lin W. et al., 2023 | 17 | 43.94 (9.67) | 8 (47.1); 9 (52.9) | 22.72 (8.07) ELISA | n.a. | 24 | 48.63 (8.12) | 9 (37.5); 15 (62.5) | 47.92 (21.23) ELISA | n.a. | TRD saline-treated, HC | Yes |
[47] Steinacker P. et al., 2021 | 16 | 45.00 [27.00–64.00] | 4 (25.0); 12 (75.0) | 15.20 (7.10) SIMOA® | n.a. | 45 (MDD) | 48.00 [19.00–69.00] | 16 (35.6); 29 (64.4) | 29.30 (35.30) SIMOA® | n.a. | MDD, SZ, BD, HC | Yes |
9 (SZ) | 33.00 [23.00–56.00] | 4 (44.4); 5 (55.6) | 15.60 (8.10) SIMOA® | Yes | ||||||||
11 (BD) | 48.00 [18.00–56.00] | 8 (72.7); 3 (27.3) | 21.20 (16.60) SIMOA® | No | ||||||||
[48] Al-Hakeim H.K. et al., 2023 | 47 | 38.00 (7.90) | 22 (46.8); 25 (53.2) | 11.10 (1.19) ELISA | n.a. | 53 | 37.20 (11.10) | 19 (35.8); 34 (64.2) | 23.00 (1.13) ELISA | n.a | MDD, HC | Yes |
[49] Knorr U. et al., 2022 | 44 | 30.00 [25.00–42.00] | (47.0); (53.0) | 5.73 [4.50–7.84] SIMOA® | 354.00 [214.00–566.00] ELISA | 85 | 33.00 [26.00–42.00] | (50.0); (50.0) | 6.81 [4.97–9.07] SIMOA® | 332.00 [246.00–479.00] ELISA | BD, HC | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Squitti, R.; Fiorenza, A.; Martinelli, A.; Brembati, V.; Crescenti, D.; Rongioletti, M.; Ghidoni, R. Neurofilament Light Protein as a Biomarker in Severe Mental Disorders: A Systematic Review. Int. J. Mol. Sci. 2025, 26, 61. https://doi.org/10.3390/ijms26010061
Squitti R, Fiorenza A, Martinelli A, Brembati V, Crescenti D, Rongioletti M, Ghidoni R. Neurofilament Light Protein as a Biomarker in Severe Mental Disorders: A Systematic Review. International Journal of Molecular Sciences. 2025; 26(1):61. https://doi.org/10.3390/ijms26010061
Chicago/Turabian StyleSquitti, Rosanna, Antonio Fiorenza, Alessandra Martinelli, Viviana Brembati, Daniela Crescenti, Mauro Rongioletti, and Roberta Ghidoni. 2025. "Neurofilament Light Protein as a Biomarker in Severe Mental Disorders: A Systematic Review" International Journal of Molecular Sciences 26, no. 1: 61. https://doi.org/10.3390/ijms26010061
APA StyleSquitti, R., Fiorenza, A., Martinelli, A., Brembati, V., Crescenti, D., Rongioletti, M., & Ghidoni, R. (2025). Neurofilament Light Protein as a Biomarker in Severe Mental Disorders: A Systematic Review. International Journal of Molecular Sciences, 26(1), 61. https://doi.org/10.3390/ijms26010061