Whole-Exome Sequencing: Discovering Genetic Causes of Granulomatous Mastitis
Abstract
1. Introduction
2. Results
2.1. Population Characteristics
2.2. Next Generation Sequencing Analysis
2.3. Sanger Sequencing Verification
3. Discussion
4. Materials and Methods
4.1. Patients and Study Approval
4.2. Sample Collection
4.3. Whole-Exome Sequencing (WES)
4.4. Sanger Sequencing (SS)
4.5. Statistical Analysis of Genetic Variants
5. Conclusions
Limitations and Future Directions
- Expanding the study population to include diverse ethnicities and larger sample sizes.
- Conducting functional studies to explore the biological effects of the identified variants.
- Investigating the interaction between genetic, hormonal, environmental, and infectious factors in GM development.
- Integrating genetic data with clinical phenotypes to develop personalized treatment strategies.
- Exploring the therapeutic potential of low-dose immunosuppressive drugs in well-designed clinical trials.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lai, E.C.; Chan, W.C.; Ma, T.K.; Tang, A.P.; Poon, C.S.; Leong, H.T. The role of conservative treatment in idiopathic granulomatous mastitis. Breast J. 2005, 11, 454–456. [Google Scholar] [CrossRef] [PubMed]
- Azizi, A.; Prasath, V.; Canner, J.; Gharib, M.; Fattahi, A.S.; Forghani, M.N.; Sajjadi, S.; Farhadi, E.; Vasigh, M.; Kaviani, A.; et al. Idiopathic granulomatous mastitis: Management and predictors of recurrence in 474 patients. Breast J. 2020, 26, 1358–1362. [Google Scholar] [CrossRef] [PubMed]
- Steuer, A.B.; Stern, M.J.; Cobos, G.; Castilla, C.; Joseph, K.-A.; Pomeranz, M.K.; Femia, A.N. Clinical Characteristics and Medical Management of Idiopathic Granulomatous Mastitis. JAMA Dermatol. 2020, 156, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Bayrak, B.Y.; Cam, I.; Eruyar, A.T.; Utkan, N.Z. Clinicopathological evaluation of idiopathic granulomatous mastitis patients: A retrospective analysis from a tertiary care hospital in Türkiye. Ann. Diagn. Pathol. 2021, 55, 151812. [Google Scholar] [CrossRef]
- Benson, J.R.; Dumitru, D. Idiopathic granulomatous mastitis: Presentation, investigation and management. Future Oncol. 2016, 12, 1381–1394. [Google Scholar] [CrossRef]
- Destek, S.; Gul, V.O.; Ahioglu, S. A variety of gene polymorphisms associated with idiopathic granulomatous mastitis. J. Surg. Case Rep. 2016, 12, rjw156. [Google Scholar] [CrossRef]
- Ling, J.; Xie, X.; Wang, Y.; Huang, W.; Luo, J.; Su, J.; Fan, H.; Wu, S.; Liu, L. Differential expression profiles of miRNA in granulomatous lobular mastitis and identification of possible biomarkers. Exp. Ther. Med. 2022, 24, 500. [Google Scholar] [CrossRef]
- Albayrak, M.G.B.; Simsek, T.; Kasap, M.; Akpinar, G.; Canturk, N.Z.; Guler, S.A. Tissue proteome analysis revealed an association between cancer, immune system response, and the idiopathic granulomatous mastitis. Med. Oncol. 2022, 39, 238. [Google Scholar] [CrossRef]
- Sarmadian, R.; Safi, F.; Sarmadian, H.; Shokrpour, M.; Almasi-Hashiani, A. Treatment modalities for granulomatous mastitis, seeking the most appropriate treatment with the least recurrence rate: A systematic review and meta-analysis. Eur. J. Med. Res. 2024, 29, 164. [Google Scholar] [CrossRef]
- Shojaeian, F.; Haghighat, S.; Abbasvandi, F.; Tehrani, A.H.; Najafi, N.B.N.; Zandi, A.; Olfatbakhsh, A.; Sharifi, M.; Hashemi, E.; Nafissi, N.; et al. Refractory and Recurrent Idiopathic Granulomatous Mastitis Treatment: Adaptive, Randomized Clinical Trial. J. Am. Coll. Surg. 2024, 238, 1153–1165. [Google Scholar] [CrossRef]
- Bes, C.; Soy, M.; Vardi, S.; Sengul, N.; Yilmaz, F. Erythema nodosum associated with granulomatous mastitis: Report of two cases. Rheumatol. Int. 2010, 30, 1523–1525. [Google Scholar] [CrossRef] [PubMed]
- Letourneux, C.; Diemunsch, P.; Korganow, A.S.; Akladios, C.Y.; Bellocq, J.P.; Mathelin, C. First report of granulomatous mastitis associated with Sjögren’s syndrome. World J. Surg. Oncol. 2013, 11, 268. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.N.; Shi, T.Y.; Yang, Y.J.; Zhang, F.C. An SLE patient with prolactinoma and recurrent granulomatous mastitis successfully treated with hydroxychloroquine and bromocriptine. Lupus 2014, 23, 417–420. [Google Scholar] [CrossRef] [PubMed]
- Yazigi, G.; Trieu, B.H.; Landis, M.; Parikh, J.G.; Mangal, M. Granulomatous Mastitis: A Rare Case with Sjogren’s Syndrome and Complications. Cureus 2019, 11, e5359. [Google Scholar] [CrossRef]
- Velidedeoglu, M.; Papila Kundaktepe, B.; Mete, B.; Ugurlu, S. Idiopathic granulomatous mastitis associated with erythema nodosum may indicate a worse prognosis. Int. J. Rheum. Dis. 2021, 24, 1370–1377. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Zhu, Q.; Wang, L.; Wang, P. The Identification of Gene Expression Profiles Associated with Granulomatous Mastitis. Breast Care 2021, 16, 319–327. [Google Scholar] [CrossRef]
- Lazarus, M.N.; Isenberg, D.A. Development of additional autoimmune diseases in a population of patients with primary Sjögren’s syndrome. Ann. Rheum. Dis. 2005, 64, 1062–1064. [Google Scholar] [CrossRef]
- Chambers, S.A.; Charman, S.C.; Rahman, A.; Isenberg, D.A. Development of additional autoimmune diseases in a multiethnic cohort of patients with systemic lupus erythematosus with reference to damage and mortality. Ann. Rheum. Dis. 2007, 66, 1173–1177. [Google Scholar] [CrossRef]
- Matusiewicz, A.; Stróżyńska-Byrska, J.; Olesińska, M. Polyautoimmunity in rheumatological conditions. Int. J. Rheum. Dis. 2019, 22, 386–391. [Google Scholar] [CrossRef]
- Wang, X.; He, X.; Liu, J.; Zhang, H.; Wan, H.; Luo, J.; Yang, J. Immune pathogenesis of idiopathic granulomatous mastitis: From etiology toward therapeutic approaches. Front. Immunol. 2024, 15, 1295759. [Google Scholar] [CrossRef] [PubMed]
- Meng, Y.; Ma, J.; Yao, C.; Ye, Z.; Ding, H.; Liu, C.; Li, J.; Li, G.; He, Y.; Li, J.; et al. The NCF1 variant p.R90H aggravates autoimmunity by facilitating the activation of plasmacytoid dendritic cells. J. Clin. Investig. 2022, 132, e153619. [Google Scholar] [CrossRef] [PubMed]
- Patel, H.; Levine, J.; Weinstein, T. Combination of CFTR gene mutation and autoimmune pancreatitis presenting as necrotizing pancreatitis. Pancreas 2012, 41, 970–971. [Google Scholar] [CrossRef] [PubMed]
- Tizaoui, K.; Shin, J.I.; Jeong, G.H.; Yang, J.W.; Park, S.; Kim, J.H.; Hwang, S.Y.; Park, S.J.; Koyanagi, A.; Smith, L. Genetic Polymorphism of PTPN22 in Autoimmune Diseases: A Comprehensive Review. Medicina 2022, 58, 1034. [Google Scholar] [CrossRef]
- Sareila, O.; Jaakkola, N.; Olofsson, P.; Kelkka, T.; Holmdahl, R. Identification of a region in p47phox/NCF1 crucial for phagocytic NADPH oxidase (NOX2) activation. J. Leukoc. Biol. 2013, 93, 427–435. [Google Scholar] [CrossRef]
- Zhong, J.; Li, Q.; Luo, H.; Holmdahl, R. Neutrophil-derived reactive oxygen species promote tumor colonization. Commun. Biol. 2021, 4, 865. [Google Scholar] [CrossRef]
- Luo, H.; Urbonaviciute, V.; Saei, A.A.; Lyu, H.; Gaetani, M.; Végvári, Á.; Li, Y.; Zubarev, R.A.; Holmdahl, R. NCF1-dependent production of ROS protects against lupus by regulating plasmacytoid dendritic cell development and functions. JCI Insight 2023, 8, e164875. [Google Scholar] [CrossRef]
- Greve, B.; Hoffmann, P.; Vonthein, R.; Kun, J.; Lell, B.; Mycko, M.P.; Selmaj, K.W.; Berger, K.; Weissert, R.; Kremsner, P.G. NCF1 gene and pseudogene pattern: Association with parasitic infection and autoimmunity. Malar. J. 2008, 7, 251. [Google Scholar] [CrossRef]
- Brunson, T.; Wang, Q.; Chambers, I.; Song, Q. A copy number variation in human NCF1 and its pseudogenes. BMC Genet. 2010, 11, 13. [Google Scholar] [CrossRef]
- Proust, M. Inside the USCAP Journals. Mod. Pathol. 2017, 30, 472–473. [Google Scholar] [CrossRef]
- Parisi, G.F.; Papale, M.; Pecora, G.; Rotolo, N.; Manti, S.; Russo, G.; Leonardi, S. Cystic Fibrosis and Cancer: Unraveling the Complex Role of CFTR Gene in Cancer Susceptibility. Cancers 2023, 15, 4244. [Google Scholar] [CrossRef] [PubMed]
- Hegyi, P.; Wilschanski, M.; Muallem, S.; Lukacs, G.L.; Sahin-Tóth, M.; Uc, A.; Gray, M.A.; Rakonczay, Z.; Maléth, J. CFTR: A New Horizon in the Pathomechanism and Treatment of Pancreatitis. Rev. Physiol. Biochem. Pharmacol. 2016, 170, 37–66. [Google Scholar] [CrossRef] [PubMed]
- Erhan, Y.; Veral, A.; Kara, E.; Özdemir, N.; Kapkac, M.; Özdedeli, E.; Yilmaz, R.; Koyuncu, A.; Özbal, O. A clinicopthologic study of a rare clinical entity mimicking breast carcinoma: Idiopathic granulomatous mastitis. Breast 2000, 9, 52–56. [Google Scholar] [CrossRef] [PubMed]
- Emsen, A.; Köksal, H.; Uçaryılmaz, H.; Kadoglou, N.; Artaç, H. The alteration of lymphocyte subsets in idiopathic granulomatous mastitis. Turk. J. Med. Sci. 2021, 51, 1905–1911. [Google Scholar] [CrossRef]
- Polverino, F.; Lu, B.; Quintero, J.R.; Vargas, S.O.; Patel, A.S.; Owen, C.A.; Gerard, N.P.; Gerard, C.; Cernadas, M. CFTR regulates B cell activation and lymphoid follicle development. Respir. Res. 2019, 20, 133. [Google Scholar] [CrossRef]
- Chang, M.-C.; Jan, I.-S.; Liang, P.-C.; Jeng, Y.-M.; Yang, C.-Y.; Tien, Y.-W.; Wong, J.-M.; Chang, Y.-T. Cystic fibrosis transmembrane conductance regulator gene variants are associated with autoimmune pancreatitis and slow response to steroid treatment. J. Cyst. Fibros. 2015, 14, 661–667. [Google Scholar] [CrossRef]
- Schulz, S.; Zimmer, P.; Pütz, N.; Jurianz, E.; Schaller, H.G.; Reichert, S. rs2476601 in PTPN22 gene in rheumatoid arthritis and periodontitis-a possible interface? J. Transl. Med. 2020, 18, 389. [Google Scholar] [CrossRef]
- Ghorban, K.; Ezzeddini, R.; Eslami, M.; Yousefi, B.; Moghaddam, B.S.; Tahoori, M.-T.; Dadmanesh, M.; Farrokhi, A.S. PTPN22 1858 C/T polymorphism is associated with alteration of cytokine profiles as a potential pathogenic mechanism in rheumatoid arthritis. Immunol. Lett. 2019, 216, 106–113. [Google Scholar] [CrossRef]
- Fiorillo, E.; Orrú, V.; Stanford, S.M.; Liu, Y.; Salek, M.; Rapini, N.; Schenone, A.D.; Saccucci, P.; Delogu, L.G.; Angelini, F.; et al. Autoimmune-associated PTPN22 R620W variation reduces phosphorylation of lymphoid phosphatase on an inhibitory tyrosine residue. J. Biol. Chem. 2010, 285, 26506–26518. [Google Scholar] [CrossRef]
- Ucaryilmaz, H.; Koksal, H.; Emsen, A.; Kadoglou, N.; Dixon, J.M.; Artac, H. The Role of Regulatory T and B Cells in the Etiopathogenesis of Idiopathic Granulomatous Mastitis. Immunol. Investig. 2022, 51, 357–367. [Google Scholar] [CrossRef]
- Zheng, B.; Song, J.; Lu, M.; Chen, C.; Sun, S. Current Research Describing the Role of CD4+ T Lymphocyte Subsets in the Pathogenesis of Granulomatous Lobular Mastitis. J. Investig. Surg. 2022, 35, 1790–1795. [Google Scholar] [CrossRef] [PubMed]
- O’Donovan, P.J.; Livingston, D.M. BRCA1 and BRCA2: Breast/ovarian cancer susceptibility gene products and participants in DNA double-strand break repair. Carcinogenesis 2010, 31, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Sagna, T.; Bonora, E.; Ouedraogo, M.N.L.; Fusco, D.; Zoure, A.A.; Bisseye, C.; Djigma, F.; Kafando, J.G.; Zongo, N.; Douamba, Z.; et al. Identification of BRCA1/2 p.Ser1613Gly, p.Pro871Leu, p.Lys1183Arg, p.Glu1038Gly, p.Ser1140Gly, p.Ala2466Val, p.His2440Arg variants in women under 45 years old with breast nodules suspected of having breast cancer in Burkina Faso. Biomol. Concepts 2019, 10, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-C.; Chan, C.-H.; Lim, Y.-B.; Yang, S.-F.; Yeh, L.-T.; Wang, Y.-H.; Chou, M.-C.; Yeh, C.-B. Risk of Breast Cancer in Women with Mastitis: A Retrospective Population-Based Cohort Study. Medicina 2020, 56, 372. [Google Scholar] [CrossRef]
- Berryman, M.A.; Ilonen, J.; Triplett, E.W.; Ludvigsson, J. Important denominator between autoimmune comorbidities: A review of class II HLA, autoimmune disease, and the gut. Front. Immunol. 2023, 14, 1270488. [Google Scholar] [CrossRef]
- Koksal, H. Human leukocyte antigens class I and II in patients with idiopathic granulomatous mastitis. Am. J. Surg. 2019, 218, 605–608. [Google Scholar] [CrossRef]
- Katsumata, Y.; Nelson, P.T.; Estus, S.; Alzheimer’s Disease Neuroimaging Initiative (ADNI); Fardo, D.W. Translating Alzheimer’s disease-associated polymorphisms into functional candidates: A survey of IGAP genes and SNPs. Neurobiol. Aging 2019, 74, 135–146. [Google Scholar] [CrossRef]
- Yu, F.; Zhang, X.; Tian, S.; Geng, L.; Xu, W.; Ma, N.; Wang, M.; Jia, Y.; Liu, X.; Ma, J.; et al. Comprehensive investigation of cytokine- and immune-related gene variants in HBV-associated hepatocellular carcinoma patients. Biosci. Rep. 2017, 37, BSR20171263. [Google Scholar] [CrossRef]
- Pranckėnienė, L.; Urnikytė, A.; Kučinskas, V. Microevolutionary processes analysis in the Lithuanian genome. Sci. Rep. 2023, 13, 11941. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention (CDC). Idiopathic granulomatous mastitis in Hispanic women—Indiana, 2006–2008. MMWR Morb. Mortal. Wkly. Rep. 2019, 58, 1317–1321. [Google Scholar]
- Huyser, M.; Kieran, J.; Myers, S. Review of idiopathic granulomatous mastitis in the Southwest Native American population. In Proceedings of the American Society of Breast Surgeons, 19th Annual Meeting, Orlando, FL, USA, 2–6 May 2018. [Google Scholar]
- Wolfrum, A.; Kümmel, S.; Theuerkauf, I.; Pelz, E.; Reinisch, M. Granulomatous Mastitis: A Therapeutic and Diagnostic Challenge. Breast Care 2018, 13, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Valette, K.; Li, Z.; Bon-Baret, V.; Chignon, A.; Bérubé, J.-C.; Eslami, A.; Lamothe, J.; Gaudreault, N.; Joubert, P.; Obeidat, M.; et al. Prioritization of candidate causal genes for asthma in susceptibility loci derived from UK Biobank. Commun. Biol. 2021, 4, 700. [Google Scholar] [CrossRef] [PubMed]
- Leong, K.P.; Yun Yong, M.; Ling Goh, L.; Mun Woo, C.; Wei Lim, C.; Koh, E.T. Missense variant in interleukin-6 signal transducer identified as susceptibility locus for rheumatoid arthritis in Chinese patients. Arch. Rheumatol. 2021, 36, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Brant, S.R.; Okou, D.T.; Simpson, C.L.; Cutler, D.J.; Haritunians, T.; Bradfield, J.P.; Chopra, P.; Prince, J.; Begum, F.; Kumar, A.; et al. Genome-Wide Association Study Identifies African-Specific Susceptibility Loci in African Americans With Inflammatory Bowel Disease. Gastroenterology 2017, 152, 206–217.e2. [Google Scholar] [CrossRef]
- DeAngelis, M.M.; Margaux, A.M. Allelic Variants Associated with Advanced Age-Related Macular Degeneration. U.S. Patent Application No. 13/141,898, 2012. Available online: https://patents.google.com/patent/WO2010075519A2/en (accessed on 1 June 2024).
- Lokki, A.I.; Kaartokallio, T.; Holmberg, V.; Onkamo, P.; Koskinen, L.L.E.; Saavalainen, P.; Heinonen, S.; Kajantie, E.; Kere, J.; Kivinen, K.; et al. Analysis of Complement C3 Gene Reveals Susceptibility to Severe Preeclampsia. Front. Immunol. 2017, 8, 589. [Google Scholar] [CrossRef]
- Naseer, M.I.; Abdulkareem, A.A.; Muthaffar, O.Y.; Sogaty, S.; Alkhatabi, H.; Almaghrabi, S.; Chaudhary, A.G. Whole Exome Sequencing Identifies Three Novel Mutations in the ASPM Gene From Saudi Families Leading to Primary Microcephaly. Front. Pediatr. 2021, 8, 627122. [Google Scholar] [CrossRef]
- The Genome Aggregation Database (gnomAD). Available online: https://gnomad.broadinstitute.org/ (accessed on 10 May 2024).
- ClinVar. Available online: https://www.ncbi.nlm.nih.gov/clinvar/ (accessed on 10 May 2024).
- Single Nucleotide Polymorphism Database (dbSNP). Available online: https://www.ncbi.nlm.nih.gov/snp/ (accessed on 10 May 2024).
- Online Mendelian Inheritance in Man (OMIM). Available online: https://www.omim.org/ (accessed on 10 May 2024).
- Polymorphism Phenotyping v2 (PolyPhen-2). Available online: http://genetics.bwh.harvard.edu/pph2/ (accessed on 10 May 2024).
- Sorting Intolerant From Tolerant (SIFT). Available online: https://sift.bii.a-star.edu.sg/ (accessed on 10 May 2024).
Clinical Features | Erythema Nodosum | Ultrasound Features | Drug-Taking History | Recurrence | |
---|---|---|---|---|---|
1 | Bilateral multiple abscesses with sinus tracts | Yes | Multiple breast abscesses | Methylprednisolone per oral + intralesional | Yes—repeated drug therapy than surgical excision |
2 | Unilateral, large, inflamed, hard, painful breast mass | No | Diffuse hypoechoic heterogenous lesion with multiple abscesses | Methylprednisolone per oral | Yes—intralesional ozone therapy |
3 | Unilateral big mass with abscess | No | Huge abscess with inflammation around | Abscess drainage + Methylprednisolone per oral | No |
4 | Unilateral, large, inflamed, hard, painful breast mass | No | Leafy-type irregular hypoechoic lesion | Methylprednisolone per oral + intralesional | No |
5 | Bilateral, multiple, inflamed, hard, painful breast lesions with sinus tracts | No | Leafy-type multiple irregular hypoechoic lesions with small abscesses | Methylprednisolone per oral + intralesional | No |
6 | Unilateral, hard, painless breast mass | No | Localized hypoechoic mass | Observation | No |
7 | Unilateral, large, inflamed, hard, painful breast mass with sinus tract | No | Leafy-type irregular hypoechoic lesion with small abscesses | Methylprednisolone per oral | Yes—repeated drug therapy with per oral methylprednisolone |
8 | Unilateral, large, inflamed, hard, painful breast mass | No | Leafy-type irregular hypoechoic lesion | Methylprednisolone per oral | No |
9 | Bilateral, multiple, inflamed, hard, painful breast lesions | No | Leafy-type multiple irregular hypoechoic lesions | Methylprednisolone per oral | Yes—Colchicine treatment |
10 | Bilateral, multiple, inflamed, hard, painful breast lesions with sinus tracts | No | Leafy-type multiple irregular hypoechoic lesions with small abscesses | Methylprednisolone per oral | Yes—repeated drug therapy with per oral methylprednisolone |
11 | Unilateral, large, inflamed, hard, painful breast mass | No | Leafy-type irregular hypoechoic lesion | Methylprednisolone per oral | No |
12 | Unilateral, inflamed, painful breast mass | No | Heterogenous irregular hypoechoic lesion | Observation | No |
13 | Unilateral, large, inflamed, hard, painful breast mass | No | Leafy-type irregular hypoechoic lesion | Methylprednisolone per oral | No |
14 | Unilateral, large, hard breast mass | No | Large hypoechoic heterogenous irregular lesion | Methylprednisolone per oral | Yes—repeated drug therapy with per oral methylprednisolone |
15 | Unilateral, large, inflamed, hard, painful breast mass | No | Leafy-type irregular hypoechoic lesion | Methylprednisolone per oral | Yes—repeated drug therapy with per oral methylprednisolone |
16 | Unilateral, hard breast mass with no inflammation | No | Hypoechoic irregular mass lesion | Surgical excision | No |
17 | Unilateral, inflamed, painful breast mass | No | Heterogenous irregular hypoechoic lesion | Methylprednisolone per oral | No |
18 | Unilateral, large, inflamed, hard, painful breast mass with abscess | No | Leafy-type irregular hypoechoic lesion with abscess | Abscess drainage + Methylprednisolone intralesional | Yes—methotrexate ebewe per oral |
19 | Bilateral, multiple, inflamed, hard, painful breast lesions with sinus tracts | No | Leafy-type multiple irregular hypoechoic lesions with small abscesses | Triamcinolone acetonide intralesionally + externally | Yes—repeated drug therapy with per oral methylprednisolone + triamsinolon asetonid intralesional than methotrexate ebewe per oral |
20 | Unilateral, multiple, inflamed, hard, painful breast lesions with sinus tracts | No | Leafy-type multiple irregular hypoechoic lesions with small abscesses | Triamcinolone acetonide intralesionally + externally | Yes—repeated drug therapy with per oral methylprednisolone + triamsinolon asetonid intralesional than methotrexate ebewe per oral |
21 | Unilateral, large, inflamed, hard, painful breast mass | No | Leafy-type irregular hypoechoic lesion | Triamcinolone acetonide intralesionally + externally | Lost in follow-up |
22 | Unilateral, inflamed, painful breast mass | No | Heterogenous irregular hypoechoic lesion | Methylprednisolone intralesional | No |
Gene Symbol | Chromosome | Genotype | dbSNP | Population Frequency | Translation Impact | ACMG | ClinVar | OMIM |
---|---|---|---|---|---|---|---|---|
BRCA2 | 13 | Hom (141/141) | rs169547 | 0.982 | nonsynonymous SNV | Benign | breast cancer | Male breast cancer, medulloblastoma, prostate cancer, pancreatic cancer |
CFTR | 7 | Het (40/93) | rs4727853 | 0.307 | nonsynonymous SNV | Benign | cystic fibrosis | Cystic fibrosis, hereditary pancreatitis |
NCF1 | 7 | Hom (121/130) | rs10614 | 0.709 | nonsynonymous SNV | Benign | not specified | Chronic granulomatous disease |
PTPN22 | 1 | Hom (59/59) | rs2476601 | 0.918 | nonsynonymous SNV | Benign | no information | Systemic lupus erythematosus, diabetes mellitus type 1, and rheumatoid arthritis susceptibility |
HLA-DRB1 | 6 | Hom (322/322) | rs9270303 | 0.76 | nonsynonymous SNV | Benign | no information | Multiple sclerosis and sarcoidosis susceptibility |
HLA-DRB1 | 6 | Het (139/316) | rs2308760 | 0.384 | nonsynonymous SNV | Benign | no information | Multiple sclerosis and sarcoidosis susceptibility |
HLA-DRB1 | 6 | Het (159/173) | rs3830130 | 0.709 | intron | Benign | no information | Multiple sclerosis and sarcoidosis susceptibility |
HLA-DRB1 | 6 | Het (134/299) | rs707953 | 0.481 | nonsynonymous SNV | Benign | no information | Multiple sclerosis and sarcoidosis susceptibility |
HLA-DRB1 | 6 | Hom (317/317) | rs701829 | 0.839 | nonsynonymous SNV | Benign | no information | Multiple sclerosis and sarcoidosis susceptibility |
HLA-DRB1 | 6 | Het (35/85) | rs9269958 | 0.467 | stopgain | Benign | no information | Multiple sclerosis and sarcoidosis susceptibility |
HLA-DRB1 | 6 | Hom (214/214) | rs9270299 | 0.839 | nonsynonymous SNV | Benign | no information | Multiple sclerosis and sarcoidosis susceptibility |
C3 | 19 | Hom (106/106) | rs406514 | 0.761 | intron | Benign | complement component 3 deficiency | Age-related macular degeneration, C3 deficiency |
Genes with Accession Number | Variant | Amino Acid Change | Primers |
---|---|---|---|
BRCA2 (NM_000059) | c.7397T > C | p.V2466A | F: TTTCACAGAGTTGAACAGTGTGT R: AGGGCTTTAAAATTACCACCACC |
CFTR (NM_000492) | c.1251C > A | p. N417K | F: CATGGGCCATGTGCTTTTCA R: CTTGCCTGCTCCAGTGGATC |
NCF1 (NM_000265) | c.295G > A | p.G99S | F:CTGCCCTCCCAGCCCCTCTCGGGCTT R: CGCACCTTGAAGAAGTCGAGGAG INT: CGCACCTTGAAGAAGTCGAGGAG |
PTPN22 (NM_015967) | c.1858T > C | p.W620R | F: ACTGATAATGTTGCTTCAACGGA R: AGGCTCACACATCAGCTTCC |
C3 (NM_000064) | c.2246-8C > T | F: CTCCAACTCCTGGCCTCAAG R: CGGTGGCTCTTTCAAGTCCT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ozcinar, B.; Ocak, Z.; Billur, D.; Ertugrul, B.; Timirci-Kahraman, O. Whole-Exome Sequencing: Discovering Genetic Causes of Granulomatous Mastitis. Int. J. Mol. Sci. 2025, 26, 425. https://doi.org/10.3390/ijms26010425
Ozcinar B, Ocak Z, Billur D, Ertugrul B, Timirci-Kahraman O. Whole-Exome Sequencing: Discovering Genetic Causes of Granulomatous Mastitis. International Journal of Molecular Sciences. 2025; 26(1):425. https://doi.org/10.3390/ijms26010425
Chicago/Turabian StyleOzcinar, Beyza, Zeynep Ocak, Deryanaz Billur, Baris Ertugrul, and Ozlem Timirci-Kahraman. 2025. "Whole-Exome Sequencing: Discovering Genetic Causes of Granulomatous Mastitis" International Journal of Molecular Sciences 26, no. 1: 425. https://doi.org/10.3390/ijms26010425
APA StyleOzcinar, B., Ocak, Z., Billur, D., Ertugrul, B., & Timirci-Kahraman, O. (2025). Whole-Exome Sequencing: Discovering Genetic Causes of Granulomatous Mastitis. International Journal of Molecular Sciences, 26(1), 425. https://doi.org/10.3390/ijms26010425