Titanium-Doped Diamond-like Carbon Layers as a Promising Coating for Joint Replacements Supporting Osteogenic Differentiation of Mesenchymal Stem Cells
Abstract
:1. Introduction
2. Results
2.1. Material Characterization
2.1.1. Surface Morphology
2.1.2. Wettability
2.1.3. Surface Free Energy (SFE)
2.1.4. Chemical Composition
2.2. Biological In Vitro Experiments
2.2.1. Cell Proliferation and Metabolic Activity
2.2.2. Cell Spreading Area and Cell Morphology
2.2.3. Immunofluorescence Staining of Osteogenic Markers
2.2.4. Measurements of ALP Activity
2.2.5. Measurements of Calcium Deposition
3. Discussion
3.1. Material Preparation and Characterization
3.2. Biocompatibility—Cell Adhesion, Proliferation, and Differentiation
4. Materials and Methods
4.1. Material Preparation
4.2. Material Characterization
4.2.1. Scanning Electron Microscopy (SEM)
4.2.2. Atomic Force Microscopy (AFM)
4.2.3. Wettability
4.2.4. X-ray Photoelectron Spectroscopy (XPS)
4.2.5. Energy-Dispersive X-ray Spectroscopy (EDS)
4.3. Biological In Vitro Experiments
4.3.1. Cell Models
4.3.2. Culture Conditions
4.3.3. Image Analysis—Cell Numbers and Cell Morphology
4.3.4. Metabolic Activity of the Cells
4.3.5. (Immuno)fluorescence Staining
4.3.6. ALP Activity Assay
4.3.7. Calcium Colorimetric Assay
4.3.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bohara, S.; Suthakorn, J. Surface coating of orthopedic implant to enhance the osseointegration and reduction of bacterial colonization: A review. Biomater. Res. 2022, 26, 26. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Thouas, G.A. Metallic implant biomaterials. Mater. Sci. Eng. R Rep. 2015, 87, 1–57. [Google Scholar] [CrossRef]
- Goodman, S.B.; Yao, Z.; Keeney, M.; Yang, F. The future of biologic coatings for orthopaedic implants. Biomaterials 2013, 34, 3174–3183. [Google Scholar] [CrossRef] [PubMed]
- Ohtake, N.; Hiratsuka, M.; Kanda, K.; Akasaka, H.; Tsujioka, M.; Hirakuri, K.; Hirata, A.; Ohana, T.; Inaba, H.; Kano, M.; et al. Properties and Classification of Diamond-Like Carbon Films. Materials 2021, 14, 315. [Google Scholar] [CrossRef] [PubMed]
- Birkett, M.; Zia, A.W.; Devarajan, D.K.; Soni; Panayiotidis, M.I.; Joyce, T.J.; Tambuwala, M.M.; Serrano-Aroca, Á. Multi-functional bioactive silver- and copper-doped diamond-like carbon coatings for medical implants. Acta Biomater. 2023, 167, 54–68. [Google Scholar] [CrossRef] [PubMed]
- Goodman, S.B.; Gallo, J. Periprosthetic Osteolysis: Mechanisms, Prevention and Treatment. J. Clin. Med. 2019, 8, 2091. [Google Scholar] [CrossRef] [PubMed]
- Abu-Amer, Y.; Darwech, I.; Clohisy, J.C. Aseptic loosening of total joint replacements: Mechanisms underlying osteolysis and potential therapies. Arthritis Res. Ther. 2007, 9 (Suppl. 1), S6. [Google Scholar] [CrossRef]
- Amirtharaj Mosas, K.K.; Chandrasekar, A.R.; Dasan, A.; Pakseresht, A.; Galusek, D. Recent Advancements in Materials and Coatings for Biomedical Implants. Gels 2022, 8, 323. [Google Scholar] [CrossRef]
- Roy, R.K.; Lee, K.R. Biomedical applications of diamond-like carbon coatings: A review. J. Biomed. Mater. Res. B Appl. Biomater. 2007, 83, 72–84. [Google Scholar] [CrossRef]
- Grill, A. Diamond-like carbon coatings as biocompatible materials–an overview. Diam. Relat. Mater. 2003, 12, 166–170. [Google Scholar] [CrossRef]
- Park, S.J.; Lee, K.R.; Ahn, S.H.; Kim, J.G. Instability of diamond-like carbon (DLC) films during sliding in aqueous environment. Diam. Relat. Mater. 2008, 17, 247–251. [Google Scholar] [CrossRef]
- Hanawa, T. Titanium-Tissue Interface Reaction and Its Control With Surface Treatment. Front. Bioeng. Biotechnol. 2019, 7, 170. [Google Scholar] [CrossRef] [PubMed]
- Wachesk, C.C.; Seabra, S.H.; Dos Santos, T.A.T.; Trava-Airoldi, V.J.; Lobo, A.O.; Marciano, F.R. In vivo biocompatibility of diamond-like carbon films containing TiO(2) nanoparticles for biomedical applications. J. Mater. Sci. Mater. Med. 2021, 32, 117. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhou, F.; Zhou, Z.; Yang, Y.; Yan, C.; Wang, C.; Zhang, W.; Li, L.K.-Y.; Bello, I.; Lee, S.-T. Influence of Ti content on the structure and tribological properties of Ti-DLC coatings in water lubrication. Diam. Relat. Mater. 2012, 25, 163–175. [Google Scholar] [CrossRef]
- Zhang, M.; Xie, T.; Qian, X.; Zhu, Y.; Liu, X. Mechanical Properties and Biocompatibility of Ti-doped Diamond-like Carbon Films. ACS Omega 2020, 5, 22772–22777. [Google Scholar] [CrossRef] [PubMed]
- Jelínek, M.; Zemek, J.; Remsa, J.; Mikšovský, J.; Kocourek, T.; Písařík, P.; Trávníčková, M.; Filová, E.; Bačáková, L. Hybrid laser technology and doped biomaterials. Appl. Surf. Sci. 2017, 417, 73–83. [Google Scholar] [CrossRef]
- Jelinek, M.; Kocourek, T.; Zemek, J.; Mikšovský, J.; Kubinová, Š.; Remsa, J.; Kopeček, J.; Jurek, K. Chromium-doped DLC for implants prepared by laser-magnetron deposition. Mater. Sci. Eng. C 2015, 46, 381–386. [Google Scholar] [CrossRef]
- Qiang, L.; Zhang, B.; Zhou, Y.; Zhang, J. Improving the internal stress and wear resistance of DLC film by low content Ti doping. Solid State Sci. 2013, 20, 17–22. [Google Scholar] [CrossRef]
- Tsai, P.-C.; Hwang, Y.-F.; Chiang, J.-Y.; Chen, W.-J. The effects of deposition parameters on the structure and properties of titanium-containing DLC films synthesized by cathodic arc plasma evaporation. Surf. Coat. Technol. 2008, 202, 5350–5355. [Google Scholar] [CrossRef]
- Xiang, Y.; Cheng-Biao, W.; Yang, L.; De-Yang, Y.; Zhi-Qiang, F. Cr-doped DLC films in three mid-frequency dual-magnetron power modes. Surf. Coat. Technol. 2006, 200, 6765–6769. [Google Scholar] [CrossRef]
- Jelínek, M.; Zemek, J.; Kocourek, T.; Remsa, J.; Miksovsky, J.; Písarík, P.; Jurek, K.; Tolde, Z.; Trávnícková, M.; Vandrovcová, M.; et al. Dual laser deposition of Ti: DLC composite for implants. Laser Phys. 2016, 26, 105605. [Google Scholar] [CrossRef]
- Knight, M.N.; Hankenson, K.D. Mesenchymal Stem Cells in Bone Regeneration. Adv. Wound Care 2013, 2, 306–316. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Xu, L.; Zwingenberger, S.; Gibon, E.; Goodman, S.B.; Li, G. Mesenchymal stem cells homing to improve bone healing. J. Orthop. Transl. 2017, 9, 19–27. [Google Scholar] [CrossRef] [PubMed]
- Iaquinta, M.R.; Mazzoni, E.; Bononi, I.; Rotondo, J.C.; Mazziotta, C.; Montesi, M.; Sprio, S.; Tampieri, A.; Tognon, M.; Martini, F. Adult Stem Cells for Bone Regeneration and Repair. Front. Cell Dev. Biol. 2019, 7, 268. [Google Scholar] [CrossRef] [PubMed]
- Mende, W.; Götzl, R.; Kubo, Y.; Pufe, T.; Ruhl, T.; Beier, J.P. The Role of Adipose Stem Cells in Bone Regeneration and Bone Tissue Engineering. Cells 2021, 10, 975. [Google Scholar] [CrossRef] [PubMed]
- Le, Q.; Madhu, V.; Hart, J.M.; Farber, C.R.; Zunder, E.R.; Dighe, A.S.; Cui, Q. Current evidence on potential of adipose derived stem cells to enhance bone regeneration and future projection. World J. Stem Cells 2021, 13, 1248–1277. [Google Scholar] [CrossRef]
- Bayón, R.; Igartua, A.; González, J.J.; Ruiz de Gopegui, U. Influence of the carbon content on the corrosion and tribocorrosion performance of Ti-DLC coatings for biomedical alloys. Tribol. Int. 2015, 88, 115–125. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Zhao, B.; Su, X.; Zhang, S.; Wang, S.; Keatch, R.; Zhao, Q. Reduction of bacterial adhesion on titanium-doped diamond-like carbon coatings. Biofouling 2018, 34, 26–33. [Google Scholar] [CrossRef]
- Przekora, A.; Vandrovcova, M.; Travnickova, M.; Pajorova, J.; Molitor, M.; Ginalska, G.; Bacakova, L. Evaluation of the potential of chitosan/β-1,3-glucan/hydroxyapatite material as a scaffold for living bone graft production in vitro by comparison of ADSC and BMDSC behaviour on its surface. Biomed. Mater. 2017, 12, 015030. [Google Scholar] [CrossRef]
- Travnickova, M.; Vandrovcova, M.; Filova, E.; Steinerova, M.; Rackova, J.; Kocourek, T.; Bartova, J.; Suchy, T.; Zaloudkova, M.; Jelinek, M.; et al. Effect of diamond-like carbon doped with chromium on cell differentiation, immune activation and apoptosis. Eur. Cell Mater. 2020, 40, 276–302. [Google Scholar] [CrossRef]
- Li, X.; Klausen, L.H.; Zhang, W.; Jahed, Z.; Tsai, C.T.; Li, T.L.; Cui, B. Nanoscale Surface Topography Reduces Focal Adhesions and Cell Stiffness by Enhancing Integrin Endocytosis. Nano Lett. 2021, 21, 8518–8526. [Google Scholar] [CrossRef]
- Oates, C.J.; Wen, W.; Hamilton, D.W. Role of Titanium Surface Topography and Surface Wettability on Focal Adhesion Kinase Mediated Signaling in Fibroblasts. Materials 2011, 4, 893–907. [Google Scholar] [CrossRef] [PubMed]
- Argentati, C.; Morena, F.; Montanucci, P.; Rallini, M.; Basta, G.; Calabrese, N.; Calafiore, R.; Cordellini, M.; Emiliani, C.; Armentano, I.; et al. Surface Hydrophilicity of Poly(l-Lactide) Acid Polymer Film Changes the Human Adult Adipose Stem Cell Architecture. Polymers 2018, 10, 140. [Google Scholar] [CrossRef] [PubMed]
- Rampichová, M.; Chvojka, J.; Jenčová, V.; Kubíková, T.; Tonar, Z.; Erben, J.; Buzgo, M.; Daňková, J.; Litvinec, A.; Vocetková, K.; et al. The combination of nanofibrous and microfibrous materials for enhancement of cell infiltration and in vivo bone tissue formation. Biomed. Mater. 2018, 13, 025004. [Google Scholar] [CrossRef] [PubMed]
Sample | Contact Angle (°) | Surface Energy (mN/m) | |
---|---|---|---|
Water | Glycerol | Total | |
Glass | 45.6 ± 2.5 * | 37.7 ± 1.2 * | 53.0 ± 7.22 * |
DLC_pure | 76.8 ± 1.4 | 48.3 ± 5.0 | 59.0 ± 13.53 |
DLC_0.4Ti | 27.7 ± 3.1 * | 55.1 ± 1.0 * | 90.3 ± 5.98 * |
DLC_2.1Ti | 78.0 ± 0.9 | 77.3 ± 1.9 * | 26.6 ± 4.68 * |
DLC_3.7Ti | 78.4 ± 1.7 | 77.9 ± 3.0 * | 26.4 ± 7.73 * |
DLC_6.6Ti | 80.5 ± 3.4 | 68.7 ± 1.2 * | 30.1 ± 9.54 * |
DLC_12.8Ti | 86.3 ± 1.5 * | 89.0 ± 3.8 * | 21.7 ± 7.68 * |
Sample | Laser Rate [Hz] | Titanium Content [at.%] a | ||
---|---|---|---|---|
L1 | L2 | Rc | Sp | |
DLC_pure | 26 | - | 0.0 | 0.0 |
DLC_0.4Ti | 26 | 1 | 0.4 | 0.7 |
DLC_2.1Ti | 25 | 3 | 2.1 | 3.3 |
DLC_3.7Ti | 25 | 5 | 3.7 | 5.2 |
DLC_6.6Ti | 26 | 11 | 6.6 | 10.1 |
DLC_12.8Ti | 18 | 23 | 12.8 | 24.5 |
Type, Name | Supplier | Cat. No. | Concentration |
---|---|---|---|
Texas Red C2-maleimide | Invitrogen | T6008 | 10 ng/mL |
Phalloidin-TRITC | Sigma-Aldrich | P1951 | 5 μg/mL |
Hoechst 33258 | Sigma-Aldrich | B1155 | 10 μg/mL |
Anti-vinculin (mouse) | Sigma-Aldrich | V9131 | 1:200 |
Anti-type I collagen (rabbit) | CosmoBio | LSL-LB-1197 | 1:200 |
Anti-type I collagen (mouse) | Sigma-Aldrich | C2456 | 1:200 |
Anti-osteocalcin (rabbit) | Peninsula Laboratories | T-4743 | 1:200 |
Anti-rabbit IgG-Alexa Fluor 488 | Thermo Fisher Scientific | A11070 | 1:400 |
Anti-rabbit IgG-Alexa Fluor 546 | Thermo Fisher Scientific | A11010 | 1:400 |
Anti-mouse IgG-Alexa Fluor 488 | Thermo Fisher Scientific | A11017 | 1:400 |
Anti-mouse IgG-Alexa Fluor 546 | Thermo Fisher Scientific | A11003 | 1:400 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Travnickova, M.; Filova, E.; Slepicka, P.; Slepickova Kasalkova, N.; Kocourek, T.; Zaloudkova, M.; Suchy, T.; Bacakova, L. Titanium-Doped Diamond-like Carbon Layers as a Promising Coating for Joint Replacements Supporting Osteogenic Differentiation of Mesenchymal Stem Cells. Int. J. Mol. Sci. 2024, 25, 2837. https://doi.org/10.3390/ijms25052837
Travnickova M, Filova E, Slepicka P, Slepickova Kasalkova N, Kocourek T, Zaloudkova M, Suchy T, Bacakova L. Titanium-Doped Diamond-like Carbon Layers as a Promising Coating for Joint Replacements Supporting Osteogenic Differentiation of Mesenchymal Stem Cells. International Journal of Molecular Sciences. 2024; 25(5):2837. https://doi.org/10.3390/ijms25052837
Chicago/Turabian StyleTravnickova, Martina, Elena Filova, Petr Slepicka, Nikola Slepickova Kasalkova, Tomas Kocourek, Margit Zaloudkova, Tomas Suchy, and Lucie Bacakova. 2024. "Titanium-Doped Diamond-like Carbon Layers as a Promising Coating for Joint Replacements Supporting Osteogenic Differentiation of Mesenchymal Stem Cells" International Journal of Molecular Sciences 25, no. 5: 2837. https://doi.org/10.3390/ijms25052837