Dielectric Barrier Discharge Plasma-Assisted Preparation of Chitosan-Based Hydrogels
Abstract
1. Introduction
2. Results and Discussion
2.1. Plasma-Assisted Dissolution of Chitosan under Different Treatment Voltages and Time
2.2. Active Substance-Assisted Dissolution of Chitosan in Plasma
2.3. Plasma Preparation of Different Types of Hydrogels
2.4. Surface Morphology of Different Types of Hydrogels Prepared by Plasma
2.5. Infrared Spectra of Different Kinds of Hydrogels Prepared by Plasma
2.6. Mechanical Properties of Different Types of Hydrogels Prepared by Plasma
2.7. Porosity of Different Types of Hydrogels Prepared by Plasma
2.8. Water Absorption and Swelling Ratio of Different Types of Hydrogels Prepared by Plasma
2.9. Degradation Properties of Different Types of Hydrogels Prepared by Plasma
2.10. Overall Analysis of Different Types of Hydrogels
3. Materials and Methods
3.1. Reagents
3.2. Plasma Treatment Process
3.3. Preparation of Plasma-Treated Hydrogels
3.3.1. Preparation of Chitosan Hydrogels by Plasma Treatment
3.3.2. Sodium Alginate Hydrogel
3.3.3. Chitosan-Sodium Alginate Composite Hydrogel
3.4. Lyophilisation
3.5. Characterization of Hydrogels
3.5.1. Surface Morphology of Hydrogel Sections
3.5.2. FTIR of Hydrogels
3.5.3. Water Absorption and Swelling Ratio of Hydrogels
3.5.4. Porosity of the Hydrogels
3.5.5. Mechanical Properties of Hydrogels
3.5.6. Degradation of Hydrogels In Vitro
3.6. Methods of Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Divya, K.; Jisha, M.S. Chitosan nanoparticles preparation and applications. Environ. Chem. Lett. 2018, 16, 101–112. [Google Scholar] [CrossRef]
- Zou, P.; Yang, X.; Wang, J.; Li, Y.F.; Yu, H.L.; Zhang, Y.X.; Liu, G.Y. Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food Chem. 2016, 190, 1174–1181. [Google Scholar] [CrossRef]
- Kou, S.; Peters, L.M.; Mucalo, M.R. Chitosan: A review of sources and preparation methods. Int. J. Biol. Macromol. 2021, 169, 85–94. [Google Scholar] [CrossRef]
- Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Chitosan derivatives and their application in biomedicine. Int. J. Mol. Sci. 2020, 21, 487. [Google Scholar] [CrossRef]
- Ways, T.M.M.; Lau, W.M.; Khutoryanskiy, V.V. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 2018, 10, 267. [Google Scholar] [CrossRef]
- Andreica, B.I.; Anisiei, A.; Rosca, I.; Sandu, A.I.; Pasca, A.S.; Tartau, L.M.; Marin, L. Quaternized chitosan/chitosan nanofibrous mats: An approach toward bioactive materials for tissue engineering and regenerative medicine. Carbohydr. Polym. 2023, 302, 120431. [Google Scholar] [CrossRef] [PubMed]
- Biswal, A.; Purohit, S.S.; Swain, S.K. Chitosan based composite scaffolds in skin wound repair: A review. J. Drug Deliv. Sci. Technol. 2023, 84, 104549. [Google Scholar] [CrossRef]
- Deepak, V.; Manunya, O.; Kheng, L.G.; Vijay, K.T.; Nangan, S.; Mohit, S.; Uyama, H. Sustainable functionalized chitosan based nano-composites for wound dressings applications: A review. Environ. Res. 2023, 235, 116580. [Google Scholar]
- Yamashita, Y.; Ohzuno, Y.; Saito, Y.; Fujiwara, Y.; Yoshida, M.; Takei, T. Autoclaving-triggered hydrogelation of chitosan-gluconic acid conjugate aqueous solution for wound healing. Gels 2023, 9, 280. [Google Scholar] [CrossRef]
- Jing, X.; Mi, H.-Y.; Napiwocki, B.N.; Peng, X.-F.; Turng, L.-S. Mussel-inspired electroactive chitosan/graphene oxide composite hydrogel with rapid self-healing and recovery behavior for tissue engineering. Carbon 2017, 125, 557–570. [Google Scholar] [CrossRef]
- Sabadini, R.C.; Martins, V.C.; Pawlicka, A. Synthesis and characterization of gellan gum: Chitosan biohydrogels for soil humidity control and fertilizer release. Cellulose 2015, 22, 2045–2054. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Appunni, S.; Chinthala, M.; Jacob, M.M.; Vo, D.V.N.; Reddy, S.S.; Kunnel, E.S. Chitosan-based beads as sustainable adsorbents for wastewater remediation: A review. Environ. Chem. Lett. 2023, 21, 1881–1905. [Google Scholar] [CrossRef]
- Nkoh, J.N.; Guan, P.; Li, J.Y.; Xu, R.K. Effect of carbon and nitrogen mineralization of chitosan and its composites with hematite/gibbsite on soil acidification of an Ultisol induced by urea. Chemosphere 2024, 349, 140896. [Google Scholar] [CrossRef]
- Le, H.Q.; Sekiguchi, Y.; Ardiyanta, D.; Shimoyama, Y. CO2-activated adsorption: A new approach to dye removal by chitosan hydrogel. ACS Omega 2018, 3, 14103–14110. [Google Scholar] [CrossRef]
- Reghioua, A.; Barkat, D.; Jawad, A.H.; Abdulhameed, A.S.; Rangabhashiyam, S.; Khan, M.R.; ALOthman, Z.A. Magnetic chitosan-glutaraldehyde/zinc oxide/Fe3O4 nanocomposite: Optimization and adsorptive mechanism of remazol brilliant blue R dye removal. J. Polym. Environ. 2021, 29, 3932–3947. [Google Scholar] [CrossRef]
- Dragan, E.S.; Dinu, M.V. Advances in porous chitosan-based composite hydrogels: Synthesis and applications. React. Funct. Polym. 2020, 146, 104372. [Google Scholar] [CrossRef]
- Musarurwa, H.; Tavengwa, N.T. Application of carboxymethyl polysaccharides as bio-sorbents for the sequestration of heavy metals in aquatic environments. Carbohydr. Polym. 2020, 237, 116142. [Google Scholar] [CrossRef] [PubMed]
- Niculescu, A.G.; Grumezescu, A.M. Applications of chitosan-alginate-based nanoparticles—An up-to-date review. Nanomaterials 2022, 12, 186. [Google Scholar] [CrossRef]
- Tang, S.; Yang, J.; Lin, L.; Peng, K.; Chen, Y.; Jin, S.; Yao, W. Construction of physically crosslinked chitosan/sodium alginate/calcium ion double-network hydrogel and its application to heavy metal ions removal. Chem. Eng. J. 2020, 393, 124728. [Google Scholar] [CrossRef]
- Adamovich, I.; Baalrud, S.; Bogaerts, A.; Bruggeman, P.; Cappelli, M.; Colombo, V.; Czarnetzki, U.; Ebert, U.; Eden, J.G.; Favia, P. The 2017 plasma roadmap: Low temperature plasma science and technology. J. Phys. D Appl. Phys. 2017, 50, 323001. [Google Scholar] [CrossRef]
- Gilliam, M.A. A plasma polymerization investigation and low temperature cascade arc plasma for polymeric surface modification. Ph.D. Thesis, University of Missouri, Columbia, MO, USA, 2006. [Google Scholar]
- Kulkarni, S. Plasma assisted polymer synthesis and processing. In Non-Thermal Plasma Technology for Polymeric Materials: Applications in Composites, Nanostructured Materials, and Biomedical Fields; Thomas, S., Mozetič, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 67–93. [Google Scholar]
- Taaca, K.L.M.; Prieto, E.I.; Vasquez, J.M.R. Current trends in biomedical hydrogels: From traditional crosslinking to plasma-assisted synthesis. Polymers 2022, 14, 2560. [Google Scholar] [CrossRef]
- Bruggeman, P.J.; Kushner, M.J.; Locke, B.R.; Gardeniers, J.G.; Graham, W.; Graves, D.B.; Hofman-Caris, R.; Maric, D.; Reid, J.P.; Ceriani, E. Plasma–liquid interactions: A review and roadmap. Plasma Sources Sci. Technol. 2016, 25, 053002. [Google Scholar] [CrossRef]
- Mariotti, D.; Patel, J.; Švrček, V.; Maguire, P. Plasma–liquid interactions at atmospheric pressure for nanomaterials synthesis and surface engineering. Plasma Process. Polym. 2012, 9, 1074–1085. [Google Scholar] [CrossRef]
- Molina, R.; Jovancic, P.; Vilchez, S.; Tzanov, T.; Solans, C. In situ chitosan gelation initiated by atmospheric plasma treatment. Carbohydr. Polym. 2014, 103, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Chokradjaroen, C.; Niu, J.; Panomsuwan, G.; Saito, N. Insight on solution plasma in aqueous solution and their application in modification of chitin and chitosan. Int. J. Mol. Sci. 2021, 22, 4308. [Google Scholar] [CrossRef]
- Miyazaki, S.; Nakayama, A.; Oda, M.; Takada, M.; Attwood, D. Chitosan and sodium alginate based bioadhesive tablets for intraoral drug delivery. Biol. Pharm. Bull. 1994, 17, 745–747. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, X.; Jin, X. Preparation and properties of minocycline-loaded carboxymethyl chitosan gel/alginate nonwovens composite wound dressings. Mar. Drugs 2019, 17, 575. [Google Scholar] [CrossRef] [PubMed]
- Dalei, G.; Das, S.; Jena, S.R.; Nayak, J.; Samanta, L.; Das, S.P. Improved chemosensitization activity of carboxymethyl chitosan/PVA hydrogels by plasma surface modification. J. Polym. Environ. 2021, 29, 1663–1679. [Google Scholar] [CrossRef]
- Punith, N.; Singh, A.K.; Ananthanarasimhan, J.; Boopathy, B.; Chatterjee, R.; Hemanth, M.; Chakravortty, D.; Rao, L. Generation of neutral pH high-strength plasma-activated water from a pin to water discharge and its bactericidal activity on multidrug-resistant pathogens. Plasma Process. Polym. 2022, 20, e2200133. [Google Scholar]
- Nikitin, D.; Choukourov, A.; Titov, V.; Kuzmicheva, L.; Lipatova, I.; Mezina, E.; Aleksandriiskii, V.; Shelemin, A.; Khalakhan, I.; Slavinska, D. In situ coupling of chitosan onto polypropylene foils by an atmospheric pressure air glow discharge with a liquid cathode. Carbohydr. Polym. 2016, 154, 30–39. [Google Scholar] [CrossRef]
- Liu, K.; Ren, W.; Ran, C.; Zhou, R.; Tang, W.; Zhou, R.; Yang, Z.; Ostrikov, K.K. Long-lived species in plasma-activated water generated by an AC multi-needle-to-water discharge: Effects of gas flow on chemical reactions. J. Phys. D Appl. Phys. 2020, 54, 065201. [Google Scholar] [CrossRef]
- Chokradjaroen, C.; Rujiravanit, R.; Watthanaphanit, A.; Theeramunkong, S.; Saito, N.; Yamashita, K.; Arakawa, R. Enhanced degradation of chitosan by applying plasma treatment in combination with oxidizing agents for potential use as an anticancer agent. Carbohydr. Polym. 2017, 167, 1–11. [Google Scholar] [CrossRef]
- Chokradjaroen, C.; Rujiravanit, R.; Theeramunkong, S.; Saito, N. Degradation of chitosan hydrogel dispersed in dilute carboxylic acids by solution plasma and evaluation of anticancer activity of degraded products. Jpn. J. Appl. Phys. 2017, 57, 0102B5. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.Q.; Wan, Q.; Zhang, L.; Lei, H.N. Preparation of chitosan/polyvinyl alcohol electrospinning nano-membranes using the green solvent, plasma acid. J. Macromol. Sci. Part B Phys. 2020, 59, 731–746. [Google Scholar] [CrossRef]
- Zhou, R.; Zhou, R.; Wang, P.; Xian, Y.; Mai-Prochnow, A.; Lu, X.; Cullen, P.; Ostrikov, K.K.; Bazaka, K. Plasma-activated water: Generation, origin of reactive species and biological applications. J. Phys. D Appl. Phys. 2020, 53, 303001. [Google Scholar] [CrossRef]
- He, X.; Lin, J.; He, B.; Xu, L.; Li, J.; Chen, Q.; Yue, G.; Xiong, Q.; Liu, Q.H. The formation pathways of aqueous hydrogen peroxide in a plasma-liquid system with liquid as the cathode. Plasma Sources Sci. Technol. 2018, 27, 085010. [Google Scholar] [CrossRef]
- Chokradjaroen, C.; Theeramunkong, S.; Yui, H.; Saito, N.; Rujiravanit, R. Cytotoxicity against cancer cells of chitosan oligosaccharides prepared from chitosan powder degraded by electrical discharge plasma. Carbohydr. Polym. 2018, 201, 20–30. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Liu, Z.; Chen, C.; Yang, A.; Li, D.; Rong, M.; Chen, H.; Kong, M. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways. Sci. Rep. 2016, 6, 23737. [Google Scholar] [CrossRef]
- Winter, J.; Brandenburg, R.; Weltmann, K. Atmospheric pressure plasma jets: An overview of devices and new directions. Plasma Sources Sci. Technol. 2015, 24, 064001. [Google Scholar] [CrossRef]
- Zhang, N.Y.; Zhang, Q.S.; Gao, X.F.; Chen, L. Effect of sodium alginate content on the properties of chemical-ionic cross-linked hydrogel. In Proceedings of the 8th China National Conference on Functional Materials and Applications, Harbin, China, 23–26 August 2013. [Google Scholar]
- Akakuru, O.U.; Isiuku, B.O. Chitosan hydrogels and their glutaraldehyde-crosslinked counterparts as potential drug release and tissue engineering systems–synthesis, characterization, swelling kinetics and mechanism. J. Phys. Chem. Biophys. 2017, 7, 3. [Google Scholar]
- Zhang, L.P.; Wang, G.H.; Lian, X.L.; Li, Y.N.; Dai, X.H. Preparation and cytotoxicity evaluation of sodium alginate/chitosan composite gel. Chin. J. Tissue Eng. Res. 2014, 18, 21. [Google Scholar]
- Liang, H.; Zhou, B.; Li, J.; He, Y.; Pei, Y.; Li, B. Engineering functional alginate beads for encapsulation of Pickering emulsions stabilized by colloidal particles. RSC Adv. 2016, 6, 101267–101276. [Google Scholar] [CrossRef]
- Li, X.; Xie, H.; Lin, J.; Xie, W.; Ma, X. Characterization and biodegradation of chitosan–alginate polyelectrolyte complexes. Polym. Degrad. Stabil. 2009, 94, 1–6. [Google Scholar] [CrossRef]
- Sharmin, N.; Sone, I.; Walsh, J.L.; Sivertsvik, M.; Fernandez, E.N. Effect of citric acid and plasma activated water on the functional properties of sodium alginate for potential food packaging applications. Food Packag. Shelf Life 2021, 29, 100733. [Google Scholar] [CrossRef]
- Louf, J.-F.; Lu, N.B.; O’Connell, M.G.; Cho, H.J.; Datta, S.S. Under pressure: Hydrogel swelling in a granular medium. Sci. Adv. 2021, 7, eabd2711. [Google Scholar] [CrossRef]
- Pele, K.G.; Amaveda, H.; Mora, M.; Marcuello, C.; Lostao, A.; Alamán-Díez, P.; Pérez-Huertas, S.; Ángeles Pérez, M.; García-Aznar, J.M.; García-Gareta, E. Hydrocolloids of egg white and gelatin as a platform for hydrogel-based tissue engineering. Gels 2023, 9, 505. [Google Scholar] [CrossRef]
- Sutthavas, P.; Schumacher, M.; Zheng, K.; Habibović, P.; Boccaccini, A.R.; van Rijt, S. Zn-loaded and calcium phosphate-coated degradable silica nanoparticles can effectively promote osteogenesis in human mesenchymal stem cells. Nanomaterials 2022, 12, 2918. [Google Scholar] [CrossRef]
Hydrogel Name | Formula |
---|---|
Chitosan hydrogel | 2% chitosan (dissolved in acetic acid) + glutaraldehyde |
2% chitosan (DBD) + glutaraldehyde | |
Sodium alginate hydrogel | 2% sodium alginate + calcium chloride |
2% sodium alginate (DBD) + calcium chloride | |
Chitosan-sodium alginatecomposite hydrogel | 2% chitosan (dissolved in acetic acid) + 2% sodium alginate |
2% chitosan (DBD) + 2% sodium alginate |
Group | Compression Modulus (kPa) | Porosity (%) | Water Absorption Ratio (%) | Swelling Ratio (%) | E/E0 (%) | f-Value |
---|---|---|---|---|---|---|
CTS | 3.22 | 96.33 | 98.64 | 7248.60 | 13.12 | 0.206 |
CTS (DBD) | 3.85 | 94.28 | 98.47 | 6456.73 | 21.56 | 0.335 |
SA | 2.58 | 96.64 | 97.09 | 3339.09 | 0.00 | 0.184 |
SA (DBD) | 2.98 | 93.32 | 96.86 | 3086.00 | 7.84 | 0.253 |
CTS + SA | 8.08 | 96.57 | 95.81 | 2284.21 | 40.16 | 0.856 |
CTS (DBD) + SA | 8.82 | 95.13 | 95.17 | 1969.84 | 46.28 | 0.983 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, R.; Zhang, D.; Guo, J.; Bian, S.; Yang, C.; A, L.; Zhang, W.; Huang, F. Dielectric Barrier Discharge Plasma-Assisted Preparation of Chitosan-Based Hydrogels. Int. J. Mol. Sci. 2024, 25, 2418. https://doi.org/10.3390/ijms25042418
Liang R, Zhang D, Guo J, Bian S, Yang C, A L, Zhang W, Huang F. Dielectric Barrier Discharge Plasma-Assisted Preparation of Chitosan-Based Hydrogels. International Journal of Molecular Sciences. 2024; 25(4):2418. https://doi.org/10.3390/ijms25042418
Chicago/Turabian StyleLiang, Runing, Dan Zhang, Junwei Guo, Shaohuang Bian, Cheng Yang, Lusi A, Weiwei Zhang, and Feng Huang. 2024. "Dielectric Barrier Discharge Plasma-Assisted Preparation of Chitosan-Based Hydrogels" International Journal of Molecular Sciences 25, no. 4: 2418. https://doi.org/10.3390/ijms25042418
APA StyleLiang, R., Zhang, D., Guo, J., Bian, S., Yang, C., A, L., Zhang, W., & Huang, F. (2024). Dielectric Barrier Discharge Plasma-Assisted Preparation of Chitosan-Based Hydrogels. International Journal of Molecular Sciences, 25(4), 2418. https://doi.org/10.3390/ijms25042418