Whole-Exome Analysis and Osteosarcoma: A Game Still Open
Abstract
1. Introduction
- -
- Pre-existing bone lesions: OS can develop following pre-existing lesions to the bones, such as trauma or bone pathologies.
- -
- Hereditary factors: In some cases, OS may be associated with rare hereditary conditions that increase the risk of developing this type of tumor, such as hereditary retinoblastoma. Indeed, mutations in the RB1 gene have been commonly associated with hereditary OS. The RB1 protein plays a crucial role in cell cycle control, and its dysfunction can lead to uncontrolled cell proliferation, a common trait in tumors [6]. For example, Li–Fraumeni syndrome is linked to mutations in the TP53 gene, which is involved in tumor suppression. People with this syndrome have a higher risk of developing several types of tumors, including OS [7]. Other genetic conditions, such as Rothmund–Thomson syndrome, Bloom syndrome, and Werner syndrome, can increase the risk of developing OS [8].
- -
- Radiation exposure: Ionizing exposure to high doses of radiation may increase the risk of developing OS.
- -
- Rapid growth and development: Because OS often affects growing young people, it is thought that rapid bone growth and development may play a role in its formation.
- -
- -
- Tumor grade: Classifying the tumor based on the degree of aggressiveness can provide information on the growth rate and potential of the cancer to spread.
- -
- Extension of the tumor: The size of the tumor and whether it has spread to surrounding tissues can influence treatment and prognosis.
- -
- Metastasis: The presence or absence of metastases, particularly in the lungs, is an important prognostic factor for OS. Indeed, in patients with metastatic OS treated with neoadjuvant therapy, the “responder” status shows improved survival (82% at 5-years) compared to “non-responder” (70% at 5-years) [13,14].
- -
- Response to neoadjuvant chemotherapy: The response of the tumor to chemotherapy administered before surgery can be a prognostic indicator. A good response may indicate a better prognosis.
- -
- Age: The age of the patient at the time of diagnosis can influence the prognosis. For example, younger patients tend to respond better to treatment.
- -
- Tumor location: The specific location of the tumor within the bone may have prognostic implications [15].
- -
- Clinical data analysis involves analyzing large datasets of clinical information from OS patients to identify patterns or correlations between demographic factors, treatment protocols, and patient outcomes. This could involve retrospective studies or meta-analyses of existing clinical data [27].
- -
- Radiological and imaging markers involve using advanced imaging techniques like MRI, PET-CT scans, or other imaging modalities to identify specific radiological markers associated with tumor aggressiveness, response to treatment, or recurrence. Changes in tumor characteristics visible on imaging might provide insights into prognosis [28].
- -
- Immunohistochemistry studies involve examining tissue samples from OS patients to identify specific protein markers or antigen expressions associated with disease behavior or response to treatment. Immunohistochemistry studies can reveal valuable information about the tumor immune microenvironment, and it has become a recent research hot spot, providing valuable insight into tumor heterogeneity that could influence disease progression [29]. Indeed, in a recent study based on single-cell RNA sequencing (scRNA-seq), He and collaborators showed how changes in the cytotoxicity and immune checkpoint gene expression of CD8+ T cells in OS lung metastasis could explain the complexity of tumor microenvironment of OS lung metastasis, making it possible precision therapeutic approaches [30].
- -
- Molecular biomarkers involve investigating specific genetic mutations or molecular markers associated with OS progression, response to treatment, or recurrence. This also involves analyzing gene expression profiles, identifying oncogenes or tumor suppressor genes, or exploring epigenetic modifications [26,31]. Also, searching for circulating biomarkers in blood, urine, or other bodily fluids that can indicate disease progression, treatment response, or recurrence is involved. This involves analyzing proteins, circulating tumor cells, and circulating tumor DNA (ctDNA) or microRNAs [32].
- -
- Drug sensitivity and resistance studies involve investigating factors that contribute to drug resistance or sensitivity in OS treatments. Understanding why certain tumors respond differently to therapies can lead to the identification of predictive markers [33].
- -
- Multi-Omics approaches involve integrating data from genomics, proteomics, metabolomics, and other omics fields to comprehensively understand the complex molecular landscape of OS. This holistic approach might unveil novel markers or pathways relevant to prognosis and treatment response [34].
- -
- Machine learning and artificial intelligence involve employing computational methods to analyze complex datasets and identify potential prognostic or predictive markers. Machine learning algorithms can help in discovering patterns and associations that might not be immediately apparent through traditional analysis methods [35].
2. Relevant Sections
3. Discussion
4. Conclusions and Future Directions
Funding
Conflicts of Interest
References
- Raymond, A.K.; Ayala, A.G.; Knuutila, S.; Conventional, O.S. World Health Organization Classification of Tumors Pathology and Genetics of Tumors of Soft Tissue and Bone; Fletcher, C.D.M., Unni, K.K., Mertens, F., Eds.; IARC Press: Lyon, Paris, 2002; pp. 264–270. [Google Scholar]
- Damron, T.A.; Ward, W.G.; Stewart, A. OS chondrosarcoma and Ewing’s sarcoma: National Cancer Data Base report. Clin. Orthop. Relat. Res. 2007, 459, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.G.; Sanders, A.J.; Katoh, M.; Ungefroren, H.; Gieseler, F.; Prince, M.; Thompson, S.K.; Zollo, M.; Spano, D.; Dhawan, P.; et al. Tissue invasion and metastasis: Molecular, biological and clinical perspectives. Semin. Cancer Biol. 2015, 35, S244–S275. [Google Scholar] [CrossRef] [PubMed]
- Durfee, R.A.; Mohammed, M.; Luu, H.H. Review of OS and Current Management. Rheumatol. Ther. 2016, 3, 221–243. [Google Scholar] [CrossRef] [PubMed]
- Morrowa, J.J.; Khanna, C. OS Genetics and Epigenetics: Emerging Biology and Candidate Therapies. Crit. Rev. Oncog. 2015, 20, 173–197. [Google Scholar] [CrossRef]
- Yun, J.; Li, Y.; Xu, C.T.; Pan, B.R. Epidemiology and Rb1 gene of retinoblastoma. Int. J. Ophthalmol. 2011, 4, 103–109. [Google Scholar]
- Rocca, V.; Blandino, G.; D’Antona, L.; Iuliano, R.; Di Agostino, S. Li–Fraumeni Syndrome: Mutation of TP53 Is a Biomarker of Hereditary Predisposition to Tumor: New Insights and Advances in the Treatment. Cancers 2022, 14, 3664. [Google Scholar] [CrossRef]
- Hameed, M.; Mandelker, D. Tumor Syndromes Predisposing to OS. Adv. Anat. Pathol. 2018, 25, 217–222. [Google Scholar] [CrossRef]
- Marina, N.M.; Smeland, S.; Bielack, S.S.; Bernstein, M.; Jovic, G.; Krailo, M.D.; Hook, J.M.; Arndt, C.; van den Berg, H.; Brennan, B.; et al. Comparison of MAPIE versus MAP in patients with a poor response to preoperative chemotherapy for newly diagnosed high-grade OS (EURAMOS-1): An open-label, international, randomized controlled trial. Lancet Oncol. 2016, 17, 1396–1408. [Google Scholar] [CrossRef]
- Baldini, N. Multidrug resistance a multiplex phenomenon. Nat. Med. 1997, 3, 1380–1385. [Google Scholar] [CrossRef]
- Dorfman, H.D.; Czerniak, B. Bone Tumors; Mosby: St. Louis, MO, USA, 1998. [Google Scholar]
- Whelan, J.S.; Bielack, S.S.; Marina, N.; Smeland, S.; Jovic, G.; Hook, J.M.; Krailo, M.; Anninga, J.; Butterfass-Bahloul, T.; Bohling, T.; et al. EURAMOS-1, an international randomised study for OS: Results from pre-randomisation treatment. Ann. Oncol. 2015, 26, 407–414. [Google Scholar] [CrossRef]
- Ren, L.; Mendoza, A.; Zhu, J.; Briggs, J.W.; Halsey, C.; Hong, E.S.; Burkett, S.S.; Morrow, J.; Lizardo, M.M.; Osborne, T.; et al. Characterization of the metastatic phenotype of a panel of established OS cells. Oncotarget 2015, 6, 29469–29481. [Google Scholar] [CrossRef] [PubMed]
- Wittig, J.C.; Bickels, J.; Priebat, D.; Jelinek, J.; KellarGraney, K.; Shmookler, B.; Malawer, M.M. OS: A multidisciplinary approach to diagnosis and treatment. Am. Fam. Physician 2002, 65, 1123–1132. [Google Scholar] [PubMed]
- Xina, S.; Weia, G. Prognostic factors in OS: A study level meta-analysis and systematic review of current practice. J. Bone Oncol. 2020, 21, 100281. [Google Scholar] [CrossRef] [PubMed]
- Perry, J.A.; Kiezun, A.; Tonzi, P.; Van Allen, E.M.; Carter, S.L.; Baca, S.C.; Cowley, G.S.; Bhatt, A.S.; Rheinbay, E.; Pedamallu, C.S.; et al. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in OS. Proc. Natl. Acad. Sci. USA 2014, 111, E5564–E5573. [Google Scholar] [CrossRef]
- Rickel, K.; Fang, F.; Tao, J. Molecular genetics of OS. Bone 2017, 102, 69–79. [Google Scholar] [CrossRef]
- Fang, F.; VanCleave, A.; Helmuth, R.; Torres, H.; Rickel, K.; Wollenzien, H.; Sun, H.; Zeng, E.; Zhao, J.; Tao, J. Targeting the Wnt/β-catenin pathway in human OS cells. Oncotarget 2018, 9, 36780–36792. [Google Scholar] [CrossRef]
- Liu, H.; Nazmun, N.; Hassan, S.; Liu, X.; Yang, J. BRAF mutation and its inhibitors in sarcoma treatment. Cancer Med. 2020, 9, 4881–4896. [Google Scholar] [CrossRef]
- Martin, J.W.; Squire, J.A.; Zielenska, M. The Genetics of OS. Sarcoma 2012, 2012, 627254. [Google Scholar] [CrossRef]
- Ji, Z.; Shen, J.; Lan, Y.; Yi, Q.; Liu, H. Targeting signaling pathways in OS: Mechanisms and clinical studies. MedComm 2023, 4, e308. [Google Scholar] [CrossRef]
- Gianferante, D.M.; Mirabello, L.; Savage, S.A. Germline and somatic genetics of OS—Connecting aetiology, biology and therapy. Nat. Rev. Endocrinol. 2017, 13, 480–491. [Google Scholar] [CrossRef]
- Liu, J.; Shang, G. The Roles of Noncoding RNAs in the Development of OS Stem Cells and Potential Therapeutic Targets. Front. Cell Dev. Biol. 2022, 10, 773038. [Google Scholar]
- Liao, X.; Wei, R.; Zhou, J.; Wu, K.; Li, J. Emerging roles of long non-coding RNAs in OS. Front. Mol. Biosci. 2024, 11, 1327459. [Google Scholar] [CrossRef] [PubMed]
- Batanian, J.R.; Cavalli, L.R.; Aldosari, N.M.; Ma, E.; SoteloAvila, C.; Ramos, M.B.; Rone, J.D.; Thorpe, C.M.; Haddad, B.R. Evaluation of pediatric OSs by classic cytogenetic and CGH analyses. Mol. Pathol. 2002, 55, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Zamborsky, R.; Kokavec, M.; Harsanyi, S.; Danisovic, L. Identification of Prognostic and Predictive OS Biomarkers. Med. Sci. 2019, 7, 28. [Google Scholar]
- Li, W.; Jin, G.; Wu, H.; Wu, R.; Xu, C.; Wang, B.; Liu, Q.; Hu, Z.; Wang, H.; Dong, S.; et al. Interpretable clinical visualization model for prediction of prognosis in OS: A large cohort data study. Front. Oncol. 2022, 12, 945362. [Google Scholar]
- Kubo, T.; Furuta, T.; Johan, M.P.; Ochi, M.; Adachi, N. Value of diffusion-weighted imaging for evaluating chemotherapy response in OS: A meta-analysis. Mol. Clin. Oncol. 2017, 7, 88–92. [Google Scholar] [CrossRef]
- Zhu, T.; Han, J.; Yang, L.; Cai, Z.; Sun, W.; Hua, Y.; Xu, J. Microenvironment in OS: Components, Therapeutic Strategies and Clinical Applications. Front. Immunol. 2022, 13, 907550. [Google Scholar]
- He, M.; Jiang, X.; Miao, J.; Feng, W.; Xie, T.; Liao, S.; Qin, Z.; Tang, H.; Lin, C.; Li, B.; et al. A new insight of immunosuppressive microenvironment in OS lung metastasis. Exp. Biol. Med. 2023, 248, 1056–1073. [Google Scholar] [CrossRef]
- Sun, J.; Xu, H.; Qi, M.; Zhang, C.; Shi, J. Identification of key genes in OS by meta-analysis of gene expression microarray. Mol. Med. Rep. 2019, 20, 3075–3084. [Google Scholar]
- Raimondi, L.; De Luca, A.; Costa, V.; Amodio, N.; Carina, V.; Bellavia, D.; Tassone, P.; Pagani, S.; Fini, M.; Alessandro, R.; et al. Circulating biomarkers in OS: New translational tools for diagnosis and treatment. Oncotarget 2017, 8, 100831–100851. [Google Scholar] [CrossRef]
- Hattinger, C.M.; Patrizio, M.P.; Fantoni, L.; Casotti, C.; Riganti, C.; Serra, M. Drug Resistance in OS: Emerging Biomarkers, Therapeutic Targets and Treatment Strategies. Cancers 2021, 13, 2878. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.; Roberts, R.D.; Cheng, L.; Li, L. OS Multi-Omics Landscape and Subtypes. Cancers 2023, 15, 4970. [Google Scholar] [CrossRef] [PubMed]
- Vezakis, I.A.; Lambrou, G.I.; Matsopoulos, G.K. Deep Learning Approaches to OS Diagnosis and Classification: A Comparative Methodological Approach. Cancers 2023, 15, 2290. [Google Scholar] [CrossRef] [PubMed]
- Tirtei, E.; Campello, A.; Asaftei, S.D.; Mareschi, K.; Cereda, M.; Fagioli, F.; Santucci, A. Precision Medicine in OS: MATCH Trial and Beyond. Cells 2021, 10, 281. [Google Scholar] [CrossRef] [PubMed]
- Morganti, S.; Tarantino, P.; Ferraro, E.; D’Amico, P.; Duso, B.A.; Curigliano, G. Next Generation Sequencing (NGS): A Revolutionary Technology in Pharmacogenomics and Personalized Medicine in Cancer. In Translational Research and Onco-Omics Applications in the Era of Cancer Personal Genomics; Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland, 2019; Volume 1168, pp. 9–30. [Google Scholar]
- Crabtree, J.S.; Miele, L. Chapter Two—Precision diagnostics in cancer: Predict, prevent, and personalize. Prog. Mol. Biol. Transl. Sci. 2022, 190, 39–56. [Google Scholar]
- Glotov, O.S.; Chernov, A.N.; Glotov, A.S. Human Exome Sequencing and Prospects for Predictive Medicine: Analysis of International Data and Own Experience. J. Pers. Med. 2023, 13, 1236. [Google Scholar] [CrossRef]
- Seaby, E.G.; Pengelly, R.J.; Ennis, S. Exome sequencing explained: A practical guide to its clinical application. Brief. Funct. Genom. 2016, 15, 374–384. [Google Scholar] [CrossRef]
- Suwinski, P.; Ong, C.K.; Ling, M.H.T.; Poh, Y.M.; Khan, A.M.; Ong, H.S. Advancing Personalized Medicine Through the Application of Whole Exome Sequencing and Big Data Analytics. Front. Genet. 2019, 10, 49. [Google Scholar] [CrossRef]
- Passaro, A.; Al Bakir, M.; Hamilton, E.G.; Diehn, M.; André, F.; Roy-Chowdhuri, S.; Mountzios, G.; Witsuba, I.; Swanton, C.; Peters, S. Cancer Biomarkers—Emerging Trends and Clinical Implications for personalized treatment. Cell 2024, 187, 1617–1635. [Google Scholar] [CrossRef]
- Crouigneau, R.; Li, Y.F.; Auxillos, J.; Goncalves-Alves, E.; Marie, R.; Sandelin, A.; Pedersen, S.F. Mimicking and analyzing the tumor microenvironment. Cell Rep. Methods 2024, 4, 100866. [Google Scholar] [CrossRef]
- Das, S.; Dey, M.K.; Devireddy, R.; Gartia, M.R. Biomarkers in Cancer Detection, Diagnosis, and Prognosis. Sensors 2024, 24, 37. [Google Scholar] [CrossRef] [PubMed]
- Chiappetta, C.; Mancini, M.; Lessi, F.; Aretini, P.; De Gregorio, V.; Puggioni, C.; Carletti, R.; Petrozza, V.; Civita, P.; Franceschi, S.; et al. Whole-exome analysis in OS to identify a personalized therapy. Oncotarget 2017, 8, 80416–80428. [Google Scholar] [CrossRef] [PubMed]
- PosthumaDeBoer, J.; Witlox, M.A.; Kaspers, G.J.; van Royen, B.J. Molecular alterations as target for therapy in metastatic OS: A review of literature. Clin. Exp. Metastasis 2011, 28, 493–503. [Google Scholar] [CrossRef] [PubMed]
- Assi, A.; Farhat, M.; Hachem, M.C.R.; Zalaquett, Z.; Aoun, M.; Daher, M.; Sebaaly, A.; Kourie, H.R. Tyrosine kinase inhibitors in OS: Adapting treatment strategies. J. Bone Oncol. 2023, 43, 100511. [Google Scholar] [CrossRef]
- Chen, C.; Shi, Q.; Xu, J.; Ren, T.; Huang, Y.; Guo, W. Current progress and open challenges for applying tyrosine kinase inhibitors in OS. Cell Death Discov. 2022, 8, 488. [Google Scholar] [CrossRef]
- Teleanu, R.I.; Chircov, C.; Grumezescu, A.M.; Teleanu, D.N. Tumor Angiogenesis and Anti-Angiogenic Strategies for Cancer Treatment. J. Clin. Med. 2020, 9, 84. [Google Scholar] [CrossRef]
- Corre, I.; Verrecchia, F.; Crenn, V.; Redini, F.; Trichet, V. The OS Microenvironment: A Complex but Targetable Ecosystem. Cells 2020, 9, 976. [Google Scholar] [CrossRef]
- Xie, L.; Ji, T.; Guo, W. Anti-angiogenesis target therapy for advanced OS. Oncol. Rep. 2017, 38, 625–636. [Google Scholar] [CrossRef]
- Liu, D.; Liu, C.; Qing, B.; Yang, T.; Wang, R.; Yu, H.; Dou, B.; Li, Z. mTOR: An attractive therapeutic target for OS? Oncotarget 2016, 7, 50805–50813. [Google Scholar]
- Chamcheu, J.C.; Roy, T.; Uddin, M.B.; Banang-Mbeumi, S.; Chamcheu, R.C.; Walker, A.L.; Liu, Y.Y.; Huang, S. Role and Therapeutic Targeting of the PI3K/Akt/mTOR Signaling Pathway in Skin Cancer: A Review of Current Status and Future Trends on Natural and Synthetic Agents Therapy. Cells 2019, 8, 803. [Google Scholar] [CrossRef]
- Rathore, R.; Van Tine, B.A. Pathogenesis and Current Treatment of OS: Perspectives for Future Therapies. J. Clin. Med. 2021, 10, 1182. [Google Scholar] [CrossRef] [PubMed]
- Yahiro, K.; Matsumoto, Y. Immunotherapy for OS. Hum. Vaccines Immunother. 2021, 17, 1294–1295. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Tan, X.; Jiang, Z.; Wang, H.; Yuan, H. Immune checkpoint inhibitors in OS: A hopeful and challenging future. Front. Pharmacol. 2022, 13, 1031527. [Google Scholar]
- Supra, R.; Agrawal, D.K. Immunotherapeutic Strategies in the Management of OS. J. Orthop. Sports Med. 2023, 5, 32–40. [Google Scholar] [CrossRef]
- Köksal, H.; Müller, E.; Inderberg, E.M.; Bruland, O.; Wälchli, S. Treating OS with CAR T cells. Scand. J. Immunol. 2019, 89, e12741. [Google Scholar] [CrossRef]
- Hazewinkel, A.D.; Lancia, C.; Anninga, J.; van de Sande, M.; Whelan, J.; Gelderblom, H.; Fiocco, M. Disease progression in OS: A multistate model for the EURAMOS-1 (European and American OS Study) randomised clinical trial. BMJ Open 2022, 12, e053083. [Google Scholar] [CrossRef]
- Heipertz, A.-E.; Pajtler, K.W.; Pfaff, E.; Schramm, K.; Blattner-Johnson, M.; Milde, T.; Jones, B.C.; Zuliani, C.; Hutter, C.; Lohi, O.; et al. Outcome of Children and Adolescents With Relapsed/Refractory/Progressive Malignancies Treated With Molecularly Informed Targeted Drugs in the Pediatric Precision Oncology Registry INFORM. JCO Precis. Oncol. 2023, 7, e2300015. [Google Scholar] [CrossRef]
- Davis, L.E.; Bolejack, V.; Ryan, C.W.; Ganjoo, K.N.; Loggers, E.T.; Chawla, S.; Agulnik, M.; Livingston, M.B.; Reed, D.; Keedy, V.; et al. Randomized Double-Blind Phase II Study of Regorafenib in Patients With Metastatic OS. J. Clin. Oncol. 2019, 37, 1424–1443. [Google Scholar] [CrossRef]
- Davis, K.L.; Fox, E.; Merchant, M.S.; Reid, J.M.; Kudgus, R.A.; Liu, X.; Minard, C.G.; Voss, S.; Berg, S.L.; Weigel, B.J.; et al. Nivolumab in children and young adults with relapsed or refractory solid tumours or lymphoma (ADVL1412): A multicentre, open-label, single-arm, phase 1-2 trial. Lancet Oncol. 2020, 21, 541–550. [Google Scholar] [CrossRef]
- Collier, C.D.; Getty, P.J.; Greenfield, E.M. Targeting the Cancer Epigenome with Histone Deacetylase Inhibitors in Osteosarcoma. Adv. Exp. Med. Biol. 2020, 1258, 55–75. [Google Scholar]
- Torres, H.M.; VanCleave, A.M.; Vollmer, M.; Callahan, D.L.; Smithback, A.; Conn, J.M.; Rodezno-Antunes, T.; Gao, Z.; Cao, Y.; Afeworki, Y.; et al. Selective Targeting of Class I Histone Deacetylases in a Model of Human Osteosarcoma. Cancers 2021, 13, 4199. [Google Scholar] [CrossRef] [PubMed]
- McGuire, J.J.; Nerlakanti, N.; Hao Lo, C.; Tauro, M.; Utset-Ward, T.J.; Reed, D.R.; Lynch, C.C. Histone deacetylase inhibition prevents the growth of primary and metastatic osteosarcoma. Int. J. Cancer 2020, 147, 2811–2823. [Google Scholar] [CrossRef] [PubMed]
- Reed, D.E.; Shokat, K.M. Targeting OS. Proc. Natl. Acad. Sci. USA 2014, 111, 18100–18101. [Google Scholar] [CrossRef] [PubMed]
- Shyr, D.; Liu, Q. Next generation sequencing in cancer research and clinical application. Biol. Proced. Online 2013, 15, 4. [Google Scholar] [CrossRef] [PubMed]
- Chiappetta, C.; Puggioni, C.; Carletti, R.; Petrozza, V.; Della Rocca, C.; Di Cristofano, C. The nuclear-cytoplasmic trafficking of a chromatin-modifying and remodelling protein (KMT2C), in OS. Oncotarget 2018, 9, 30624–30634. [Google Scholar] [CrossRef]
- Shilatifard, A. The COMPASS family of histone H3K4 methylases: Mechanisms of regulation in development and disease pathogenesis. Annu. Rev. Biochem. 2012, 81, 65–95. [Google Scholar] [CrossRef]
- Herz, H.M. Enhancer deregulation in cancer and other diseases. Bioessays 2016, 38, 1003–1015. [Google Scholar] [CrossRef]
- Gaeta, R.; Morelli, M.; Lessi, F.; Mazzanti, C.M.; Menicagli, M.; Capanna, R.; Andreani, L.; Coccoli, L.; Aretini, P.; Franchi, A. Identification of New Potential Prognostic and Predictive Markers in High-Grade OS Using Whole Exome Sequencing. Int. J. Mol. Sci. 2023, 24, 10086. [Google Scholar] [CrossRef]
- Xie, X.; Bian, Y.; Li, H.; Yin, J.; Tian, L.; Jiang, R.; Zeng, Z.; Shi, X.; Lei, Z.; Hou, C.; et al. Comprehensive Understanding of the Genomic Bone Tumor Landscape: A Multicenter Prospective Study. Front. Oncol. 2022, 8, 835004. [Google Scholar] [CrossRef]
- Vyse, S.; Thway, K.; Huang, P.H.; Jones, R.L. Next-generation sequencing for the management of sarcomas with no known driver mutations. Curr. Opin. Oncol. 2021, 33, 315–322. [Google Scholar] [CrossRef]
- Chudasama, P.; Mughal, S.S.; Sanders, M.A.; Hübschmann, D.; Chung, I.; Deeg, K.I.; Wong, S.H.; Rabe, S.; Hlevnjak, M.; Zapatka, M.; et al. Integrative genomic and transcriptomic analysis of leiomyosarcoma. Nat. Commun. 2018, 9, 144. [Google Scholar] [CrossRef] [PubMed]
- Kovac, M.; Blattmann, C.; Ribi, S.; Smida, J.; Mueller, N.S.; Engert, F.; Castro-Giner, F.; Weischenfeldt, J.; Kovacova, M.; Krieg, A.; et al. Exome sequencing of OS reveals mutation signatures reminiscent of BRCA deficiency. Nat. Commun. 2015, 6, 8940. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.; Yang, Y.; Guo, W.; Che, D.; Xu, J.; Sun, X.; Liu, K.; Ren, T.; Liu, X.; Yang, Y.; et al. The Clinical Implications of Tumor Mutational Burden in OS. Front. Oncol. 2021, 7, 595527. [Google Scholar]
- Guimarães, G.M.; Tesser-Gambaa, F.; Petrilli, A.S.; Donato-Macedoa, C.R.P.; Alves, M.T.S.; de Limaa, F.T.; Garcia-Filhoa, R.J.; Oliveiraa, R.; Toledoa, S.R.C. Molecular profiling of OS in children and adolescents from different age groups using a next-generation sequencing panel. Cancer Genet. 2021, 258–259, 85–92. [Google Scholar] [CrossRef] [PubMed]
- Ferreira Pires, S.; Sobral de Barros, J.; Souza da Costa, S.; Bandeira do Carmo, G.; de Oliveira Scliar, M.; van Helvoort Lengert, A.; Boldrini, E.; Regini Morini da Silva, S.; Onofre Vidal, D.; Maschietto, M.; et al. Analysis of the Mutational Landscape of OSs Identifies Genes Related to Metastasis and Prognosis and Disrupted Biological Pathways of Immune Response and Bone Development. Int. J. Mol. Sci. 2023, 24, 10463. [Google Scholar] [CrossRef]
- Hintzsche, J.D.; Robinson, W.A.; Choon Tan, A. A Survey of Computational Tools to Analyze and Interpret Whole Exome Sequencing Data. Int. J. Genom. 2016, 2016, 7983236. [Google Scholar] [CrossRef]
- Zhu, L.; Jiang, M.; Wang, H.; Sun, H.; Zhu, J.; Zhao, W.; Fang, Q.; Yu, Y.; Chen, P.; Wu, S.; et al. A narrative review of tumor heterogeneity and challenges to tumor drug therapy. Ann. Transl. Med. 2021, 9, 1351. [Google Scholar] [CrossRef]
- Thoenen, E.; Curl, A.; Iwakuma, T. TP53 in bone and soft tissue sarcomas. Pharmacol. Ther. 2019, 2, 149–164. [Google Scholar] [CrossRef]
- Ballatori, S.E.; Hinds, P.W. Osteosarcoma: Prognosis plateau warrants retinoblastoma pathway targeted therapy. Signal Transduct. Target. Ther. 2016, 25, 16001. [Google Scholar] [CrossRef]
- Barghi, F.; Shannon, H.E.; Saadatzadeh, M.R.; Bailey, B.J.; Riyahi, N.; Bijangi-Vishehsaraei, K.; Just, M.; Ferguson, M.J.; Pandya, P.H.; Pollok, K.E. Precision Medicine Highlights Dysregulation of the CDK4/6 Cell Cycle Regulatory Pathway in Pediatric, Adolescents and Young Adult Sarcomas. Cancer 2022, 14, 3611. [Google Scholar] [CrossRef]
- Vimalraj, S.; Sekaran, S. RUNX Family as a Promising Biomarker and a Therapeutic Target in Bone Cancers: A Review on Its Molecular Mechanism(s) behind Tumorigenesis. Cancers 2023, 15, 3247. [Google Scholar] [CrossRef] [PubMed]
- Nakano, K. The Future of HER2-Targeted Treatment for Osteosarcoma: Lessons from the Negative Trastuzumab Deruxtecan Results. Int. J. Mol. Sci. 2023, 24, 16823. [Google Scholar] [CrossRef] [PubMed]
- Planas-Paz, L.; Pliego-Mendieta, A.; Hagedorn, C.; Aguilera-Garcia, D.; Haberecker, M.; Arnold, F.; Herzog, M.; Bankel, L.; Guggenberger, R.; Steiner, S.; et al. Unravelling homologous recombination repair deficiency and therapeutic opportunities in soft tissue and bone sarcoma. EMBO Mol. Med. 2023, 15, e16863. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.W.; Kostine, M.; de Miranda, N.F.C.C.; Schöffski, P.; Lee, C.J.; Morreau, H.; Bovée, J.V.M.G. Mismatch repair deficiency is rare in bone and soft tissue tumors. Histopathology 2021, 79, 509–520. [Google Scholar] [CrossRef] [PubMed]
Clinical Trial | Clinical Trials ID | Sponsor | Official Title |
---|---|---|---|
EURAMOS-1 | NCT00134030 | Children’s Oncology Group | “A Randomized Trial of the European and American Osteosarcoma Study Group to Optimize Treatment Strategies for Resectable Osteosarcoma Based on Histological Response to Pre-Operative Chemotherapy” |
INFORM2 | NCT03838042 | University Hospital Heidelberg | “INFORM2 Exploratory Multinational Phase I/II Combination Study of Nivolumab and Entinostat in Children and Adolescents with Refractory High-risk Malignancies (INFORM2-NivEnt)” |
SARC024 | NCT02048371 | Sarcoma Alliance for Research through Collaboration | “SARC024: A Blanket Protocol to Study Oral Regorafenib in Patients with Selected Sarcoma Subtypes” |
NCT02304458 | National Cancer Institute (NCI) | “A Phase 1/2 Study of Nivolumab in Children, Adolescents, and Young Adults with Recurrent or Refractory Solid Tumors as a Single Agent and in Combination with Ipilimumab” |
Genes/Complex Biomarker | Prevalence | Clinical Significance |
---|---|---|
TP53 | ~50–60% | Tumor suppressor gene responsible for cell cycle regulation and apoptosis |
Mutations are associated with poor prognosis and increased tumor aggressiveness | ||
Loss of p53 function contributes to genomic instability and reduced DNA repair mechanisms | ||
Often an early event in OS tumorigenesis | ||
RB1 | ~30–40% | Regulates cell cycle progression and prevents uncontrolled cell proliferation |
Alterations lead to disrupted cell cycle checkpoints | ||
Associated with increased risk of metastasis | ||
Potential therapeutic target for cell cycle intervention | ||
CDKN2A | ~20–30% | Encodes p16 protein, which inhibits cyclin-dependent kinases |
Deletions or mutations can lead to uncontrolled cell proliferation | ||
Serves as a potential prognostic marker | ||
Contributes to understanding tumor-progression mechanisms | ||
MYC | ~10–20% | Regulates cell proliferation, apoptosis, and metabolic processes |
Overexpression associated with more aggressive tumor behavior | ||
Potential therapeutic target for molecular interventions | ||
RUNX2 | ~40–50% | Plays a critical role in OS cell differentiation |
Can promote tumor progression and metastasis | ||
Potential biomarker for understanding tumor development | ||
HER2/ERBB2 | ~10–20% | Associated with increased tumor proliferation |
Potential target for targeted therapies | ||
Correlates with metastatic potential | ||
Homologous Recombination Deficiency (HRD): | ~10–15% | OS often demonstrate genomic instability, which can be partially attributed to defects in DNA repair mechanisms |
Some cases of OS exhibit alterations in DNA repair genes, including BRCA1, BRCA2, and other homologous recombination-associated genes | ||
Microsatellite Instability (MSI) | ~5% | When present, MSI is often associated with more complex genomic landscapes |
Limited clinical significance has been definitively established in OS | ||
Tumor Mutational Burden (TMB) | TMB in OS can vary widely between individual patients; Estimated TMB ranges typically fall between 5 and 20 mutations per megabase (mut/Mb) | Potential increased responsiveness to immunotherapies |
More complex genetic alterations | ||
Potentially worse prognosis in some cases |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiappetta, C.; Della Rocca, C.; Di Cristofano, C. Whole-Exome Analysis and Osteosarcoma: A Game Still Open. Int. J. Mol. Sci. 2024, 25, 13657. https://doi.org/10.3390/ijms252413657
Chiappetta C, Della Rocca C, Di Cristofano C. Whole-Exome Analysis and Osteosarcoma: A Game Still Open. International Journal of Molecular Sciences. 2024; 25(24):13657. https://doi.org/10.3390/ijms252413657
Chicago/Turabian StyleChiappetta, Caterina, Carlo Della Rocca, and Claudio Di Cristofano. 2024. "Whole-Exome Analysis and Osteosarcoma: A Game Still Open" International Journal of Molecular Sciences 25, no. 24: 13657. https://doi.org/10.3390/ijms252413657
APA StyleChiappetta, C., Della Rocca, C., & Di Cristofano, C. (2024). Whole-Exome Analysis and Osteosarcoma: A Game Still Open. International Journal of Molecular Sciences, 25(24), 13657. https://doi.org/10.3390/ijms252413657