Immune Cell Distributions in the Blood of Healthy Individuals at High Genetic Risk of Parkinson’s Disease
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Study Participants
4.2. Generation and Quality Control of Immune Cell Data by Flow Cytometry
4.3. Processing of Genome-Wide SNP Data and Generation of PGS
4.4. Statistical Analyses
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cossu, D.; Hatano, T.; Hattori, N. The Role of Immune Dysfunction in Parkinson’s Disease Development. Int. J. Mol. Sci. 2023, 24, 16766. [Google Scholar] [CrossRef]
- Tansey, M.G.; Wallings, R.L.; Houser, M.C.; Herrick, M.K.; Keating, C.E.; Joers, V. Inflammation and immune dysfunction in Parkinson disease. Nat. Rev. Immunol. 2022, 22, 657–673. [Google Scholar] [CrossRef] [PubMed]
- Tan, E.-K.; Chao, Y.-X.; West, A.; Chan, L.-L.; Poewe, W.; Jankovic, J. Parkinson disease and the immune system—Associations, mechanisms and therapeutics. Nat. Rev. Neurol. 2020, 16, 303–318. [Google Scholar] [CrossRef] [PubMed]
- Contaldi, E.; Magistrelli, L.; Comi, C. T Lymphocytes in Parkinson’s Disease. J. Parkinsons Dis. 2022, 12, S65–S74. Available online: https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/JPD-223152 (accessed on 10 December 2024). [CrossRef] [PubMed]
- Nalls, M.A.; Blauwendraat, C.; Vallerga, C.L.; Heilbron, K.; Bandres-Ciga, S.; Chang, D.; Tan, M.; Kia, D.A.; Noyce, A.J.; Xue, A.; et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: A meta-analysis of genome-wide association studies. Lancet Neurol. 2019, 18, 1091–1102. [Google Scholar] [CrossRef] [PubMed]
- Saunders, J.A.H.; Estes, K.A.; Kosloski, L.M.; Allen, H.E.; Dempsey, K.M.; Torres-Russotto, D.R.; Meza, J.L.; Santamaria, P.M.; Bertoni, J.M.; Murman, D.L.; et al. CD4+ Regulatory and Effector/Memory T Cell Subsets Profile Motor Dysfunction in Parkinson’s Disease. J. Neuroimmune Pharmacol. 2012, 7, 927–938. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Xie, X.; Cai, Y.; Liu, P.; Liu, S.; Chen, R.; Wang, J.; Wang, Y.; Zhao, Y.; Zhu, Z.; et al. Abnormal immune function of B lymphocyte in peripheral blood of Parkinson’s disease. Park. Relat. Disord. 2023, 116, 105890. [Google Scholar] [CrossRef] [PubMed]
- Scott, K.M. B Lymphocytes in Parkinson’s Disease. J. Parkinson’s Dis. 2022, 12, S75–S81. [Google Scholar] [CrossRef]
- Yan, Z.; Yang, W.; Wei, H.; Dean, M.N.; Standaert, D.G.; Cutter, G.R.; Benveniste, E.N.; Qin, H. Dysregulation of the Adaptive Immune System in Patients With Early-Stage Parkinson Disease. Neurol. Neuroimmunol. Neuroinflammation 2021, 8, e1036. [Google Scholar] [CrossRef] [PubMed]
- Ciaramella, A.; Salani, F.; Bizzoni, F.; Pontieri, F.E.; Stefani, A.; Pierantozzi, M.; Assogna, F.; Caltagirone, C.; Spalletta, G.; Bossu, P.; et al. Blood dendritic cell frequency declines in idiopathic Parkinson’s disease and is associated with motor symptom severity. PLoS ONE 2013, 8, e65352. [Google Scholar] [CrossRef] [PubMed]
- Plomin, R.; von Stumm, S. Polygenic scores: Prediction versus explanation. Mol. Psychiatry 2022, 27, 49–52. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.W.; Mak, T.S.-H.; O’Reilly, P.F. Tutorial: A guide to performing polygenic risk score analyses. Nat. Protoc. 2020, 15, 2759–2772. [Google Scholar] [CrossRef] [PubMed]
- Bertram, L.; Böckenhoff, A.; Demuth, I.; Düzel, S.; Eckardt, R.; Li, S.-C.; Lindenberger, U.; Pawelec, G.; Siedler, T.; Wagner, G.G.; et al. Cohort Profile: The Berlin Aging Study II (BASE-II). Int. J. Epidemiol. 2014, 43, 703–712. [Google Scholar] [CrossRef] [PubMed]
- Sbierski-Kind, J.; Goldeck, D.; Buchmann, N.; Spranger, J.; Volk, H.-D.; Steinhagen-Thiessen, E.; Pawelec, G.; Demuth, I.; Spira, D. T cell phenotypes associated with insulin resistance: Results from the Berlin Aging Study II. Immun. Ageing 2020, 17, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Deecke, L.; Homann, J.; Goldeck, D.; Ohlei, O.; Dobricic, V.; Drewelies, J.; Pawelec, G.; Bertram, L.; Lill, C.M. No increase of CD8+ TEMRA cells in the blood of healthy adults at high genetic risk of Alzheimer’s disease. Alzheimer’s Dement. 2024, 20, 3116–3118. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Ferreira, T.; Morris, A.P.; Medland, S.E.; Madden, P.A.F.; Heath, A.C.; Martin, N.G. Conditional and joint multiple-SNP analysis of GWAS summary statistics identifies additional variants influencing complex traits. Nat. Genet. 2012, 44, 369–375. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
Immune Cell Type | Model | Number | Beta | Full R2 | ∆R2 | p Value |
---|---|---|---|---|---|---|
NKG2C+ B cells | All | 320 | 0.126 | 0.049 | 0.015 | 0.026 |
(CD14-CD3-CD16-CD20+CD3-CD159C+) | Old age | 211 | 0.103 | 0.054 | 0.010 | 0.143 |
Female | 202 | 0.172 | 0.078 | 0.029 | 0.014 | |
Male | 118 | 0.082 | 0.109 | 0.006 | 0.373 | |
Myeloid dendritic cells | All | 320 | 0.074 | 0.067 | 0.005 | 0.185 |
(CD14-CD3-CD16+HLA-DR+CD16+) | Old age | 213 | 0.163 | 0.072 | 0.025 | 0.019 |
Female | 203 | 0.047 | 0.083 | 0.002 | 0.496 | |
Male | 117 | 0.102 | 0.072 | 0.010 | 0.288 | |
CD27+ CD4+ memory T cells | All | 375 | 0.059 | 0.029 | 0.003 | 0.255 |
(CD3+CD4+CD45RA-CD27+CD28-) | Old age | 253 | 0.129 | 0.051 | 0.016 | 0.043 |
Female | 224 | −0.008 | 0.007 | 0.000 | 0.905 | |
Male | 149 | 0.154 | 0.040 | 0.023 | 0.067 | |
Myeloid-derived suppressor cells type I | All | 323 | −0.088 | 0.092 | 0.008 | 0.108 |
(MDSC1, Lin-CD14-HLA-DR-CD11b+) | Old age | 214 | −0.046 | 0.017 | 0.002 | 0.514 |
Female | 205 | −0.157 | 0.084 | 0.024 | 0.024 | |
Male | 118 | 0.018 | 0.181 | 0.000 | 0.835 | |
Lineage-negative HLA-DR- cells | All | 324 | −0.076 | 0.123 | 0.006 | 0.155 |
(Lin-HLA-DR-, Lin-CD14-HLA-DR-) | Old age | 215 | −0.031 | 0.030 | 0.001 | 0.655 |
Female | 206 | −0.142 | 0.098 | 0.020 | 0.038 | |
Male | 118 | 0.015 | 0.223 | 0.000 | 0.862 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Deecke, L.; Goldeck, D.; Ohlei, O.; Homann, J.; Demuth, I.; Bertram, L.; Pawelec, G.; Lill, C.M. Immune Cell Distributions in the Blood of Healthy Individuals at High Genetic Risk of Parkinson’s Disease. Int. J. Mol. Sci. 2024, 25, 13655. https://doi.org/10.3390/ijms252413655
Deecke L, Goldeck D, Ohlei O, Homann J, Demuth I, Bertram L, Pawelec G, Lill CM. Immune Cell Distributions in the Blood of Healthy Individuals at High Genetic Risk of Parkinson’s Disease. International Journal of Molecular Sciences. 2024; 25(24):13655. https://doi.org/10.3390/ijms252413655
Chicago/Turabian StyleDeecke, Laura, David Goldeck, Olena Ohlei, Jan Homann, Ilja Demuth, Lars Bertram, Graham Pawelec, and Christina M. Lill. 2024. "Immune Cell Distributions in the Blood of Healthy Individuals at High Genetic Risk of Parkinson’s Disease" International Journal of Molecular Sciences 25, no. 24: 13655. https://doi.org/10.3390/ijms252413655
APA StyleDeecke, L., Goldeck, D., Ohlei, O., Homann, J., Demuth, I., Bertram, L., Pawelec, G., & Lill, C. M. (2024). Immune Cell Distributions in the Blood of Healthy Individuals at High Genetic Risk of Parkinson’s Disease. International Journal of Molecular Sciences, 25(24), 13655. https://doi.org/10.3390/ijms252413655