The Current Status and Prospects of the Application of Omics Technology in the Study of Ulmus
Abstract
:1. Introduction
2. Ulmus Plant Genomics Research
2.1. Progress in the Study of the Chloroplast Genomes of Ulmus
2.2. Progress in the Study of the Nuclear Genome of Ulmus
3. Ulmus Transcriptomics
3.1. Growth and Development
3.2. Leaf Color Changes
3.3. Biotic Stress
3.4. Abiotic Stress
4. Ulmus Metabolomics Research
5. Current Problems and Prospects
5.1. Insufficient Assistance of Omics Data in the Study of Ulmus
5.2. Gene Mining and Functional Research of Ulmus
5.3. Genetically Engineered Breeding System for Ulmus
Author Contributions
Funding
Conflicts of Interest
References
- Li, J. The historical and current status of elm cultivation in Shandong. J. Shandong For. Sci. Technol. 1985, 65–67. [Google Scholar]
- Fu, L. Systematic study of the genus Ulmus in China. J. Northeast For. Univ. 1980, 1–40. [Google Scholar]
- Martín, J.A.; Sobrino-Plata, J.; Rodríguez-Calcerrada, J.; Collada, C.; Gil, L. Breeding and scientific advances in the fight against Dutch elm disease: Will they allow the use of elms in forest restoration? New For. 2019, 50, 183–215. [Google Scholar] [CrossRef]
- Li, G.; Yao, Y.; Zou, S.; Liu, L.; Wei, Y.; Jiang, P. Studies on elm woodland steppe in Kerqin sandy land. J. Arid Land Resour. Environ. 2004, 132–138. [Google Scholar]
- Heybroek, H.M. Why bother about the elm? In Dutch Elm Disease Research: Cellular and Molecular Approaches; Sticklen, M.B., Sherald, J.L., Eds.; Springer: New York, NY, USA, 1993; pp. 1–8. [Google Scholar]
- Zhang, L.; Xie, S.; Yang, C.; Cao, D.; Fan, S.; Zhang, X. Comparative transcriptome analysis reveals candidate genes and pathways for potential branch growth in elm (Ulmus pumila) cultivars. Biology 2022, 11, 711. [Google Scholar] [CrossRef]
- Zhang, S.; Zuo, L.; Zhang, J.; Chen, P.; Wang, J.; Yang, M. Transcriptome analysis of Ulmus pumila ‘Jinye’ responses to different shading involved in chlorophyll metabolism. Tree Genet. Genom. 2017, 13, 64. [Google Scholar]
- Kim, S.I.; Sim, K.H.; Choi, H.Y. A comparative study of antioxidant activity in some Korean medicinal plant used as food materials. Mol. Cell. Toxicol. 2010, 6, 279–285. [Google Scholar] [CrossRef]
- Kim, K.B.; Jo, B.S.; Park, H.J.; Park, K.T.; An, B.J.; Ahn, D.H.; Kim, M.U.; Chae, J.W.; Cho, Y.J. Healthy functional food properties of phenolic compounds isolated from Ulmus pumila. Korean J. Food Preserv. 2012, 19, 909–918. [Google Scholar] [CrossRef]
- Pollie, R. Genomic sequencing costs set to head down again. Engineering 2023, 23, 3–6. [Google Scholar] [CrossRef]
- Su, X.; Ma, Y.; Yang, X.; Kong, J.; Zuo, X.; Zhao, M. Progress of researches in tea science by omics technologies. Sci. Technol. Food Ind. 2017, 38, 333–340. [Google Scholar]
- Yang, Z.; Yang, Y. Research advances on nuclear genomes of economically important trees of Lauraceae. Chin. Bull. Bot. 2024, 59, 302–318. [Google Scholar]
- Wang, S. Whole-Genome Sequencing and Analysis of Betula platyphylla. Ph.D. Thesis, Northeast Forestry University, Harbin, China, 2020. [Google Scholar]
- Huang, J.; Chen, T.; Miao, S. Research progress of chloroplast genome in Lagerstroemia spp. Guangdong Agric. Sci. 2022, 49, 52–61. [Google Scholar]
- Liu, H.; Liu, L.; Wang, Z.; Yu, L.; Li, J.; Zeng, Y. Research progress on chloroplast genome of Orchidaceae. Chin. Wild Plant Resour. 2023, 42, 73–79. [Google Scholar]
- Zuo, L.; Shang, A.; Zhang, S.; Yu, X.; Ren, Y.; Yang, M.; Wang, J. The first complete chloroplast genome sequences of Ulmus species by de novo sequencing: Genome comparative and taxonomic position analysis. PLoS ONE 2017, 12, e0171264. [Google Scholar] [CrossRef]
- Lin, N.; Liu, R.; Wang, Y.; Guo, P.; Wang, Y.; Liu, Y.; Shang, F. The complete chloroplast genome of Ulmus mianzhuensis with insights into structural variations, adaptive evolution, and phylogenetic relationships of Ulmus (Ulmaceae). BMC Genom. 2023, 24, 366. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Feng, S.; Yan, S.; Wang, J.; Huang, Y.; Yang, M. Complete chloroplast genome structure of four Ulmus species and Hemiptelea davidii and comparative analysis within Ulmaceae species. Sci. Rep. 2022, 12, 15953. [Google Scholar] [CrossRef]
- Zhang, Q.; Deng, M.; Bouchenak-Khelladi, Y.; Zhou, Z.; Hu, G.; Xing, Y. The diversification of the northern temperate woody flora—A case study of the elm family (Ulmaceae) based on phylogenomic and paleobotanical evidence. J. Syst. Evol. 2022, 60, 728–746. [Google Scholar] [CrossRef]
- Ebrahimi, A.; Antonides, J.D.; Pinchot, C.C.; Slavicek, J.M.; Flower, C.E.; Woeste, K.E. The complete chloroplast genome sequence of American elm (Ulmus americana) and comparative genomics of related species. Tree Genet. Genomes 2021, 17, 5. [Google Scholar] [CrossRef]
- Wiegrefe, S.J.; Sytsma, K.J.; Guries, R.P. Phylogeny of elms (Ulmus, Ulmaceae): Molecular evidence for a sectional classification. Syst. Bot. 1994, 19, 590–612. [Google Scholar] [CrossRef]
- Tuskan, G.A.; Difazio, S.; Jansson, S.; Bohlmann, J.; Grigoriev, I.; Hellsten, U.; Putnam, N.; Ralph, S.; Rombauts, S.; Salamov, A. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006, 313, 1596–1604. [Google Scholar]
- Zhou, R.; Jenkins, J.W.; Zeng, Y.; Shu, S.; Jang, H.; Harding, S.A.; Williams, M.; Plott, C.; Barry, K.W.; Koriabine, M. Haplotype-resolved genome assembly of Populus tremula × P. alba reveals aspen-specific megabase satellite DNA. Plant J. 2023, 116, 1003–1017. [Google Scholar] [CrossRef] [PubMed]
- Shi, T.; Jia, K.; Bao, Y.; Nie, S.; Tian, X.; Yan, X.; Chen, Z.; Li, Z.; Zhao, S.; Ma, H. High-quality genome assembly enables prediction of allele-specific gene expression in hybrid poplar. Plant Physiol. 2024, 195, 652–670. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, C.; Chen, S.; Wang, M.; Wang, X.; Yu, Y.; Sederoff, R.R.; Wei, H.; You, X.; Qu, G. A nearly gapless, highly contiguous reference genome for a doubled haploid line of Populus ussuriensis, enabling advanced genomic studies. For. Res. 2024, 4, e019. [Google Scholar] [CrossRef]
- Shi, T.; Zhang, X.; Hou, Y.; Jia, C.; Dan, X.; Zhang, Y.; Jiang, Y.; Lai, Q.; Feng, J.; Feng, J. The super-pangenome of Populus unveils genomic facets for its adaptation and diversification in widespread forest trees. Mol. Plant 2024, 17, 725–746. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Feng, S.; Yan, S.; Li, Y.; Huang, Y.; Yang, M. Combined whole transcriptome analysis and physical-chemical reveals the leaf color change mechanism of Ulmus pulima under heat stress. Environ. Exp. Bot. 2023, 210, 105347. [Google Scholar] [CrossRef]
- Pallarés Zazo, J. Evaluación de Métodos de Ensamblado de Novo del Genoma de Ulmus minor. Master’s Thesis, Universitat Oberta de Catalunya, Catalunya, Spain, 2021. [Google Scholar]
- Oginuma, K.; Raven, P.H.; Tobe, H. Karyomorphology and relationships of Celtidaceae and Ulmaceae (Urticales). Bot. Mag. Tokyo 1990, 103, 113–131. [Google Scholar] [CrossRef]
- Li, Z.; Zheng, Q.; Zhang, Z.; Zhang, Y. Karyotype analysis of species of Ser. Glabrae in the genus Ulmus L. J. Henan Agric. Univ. 1997, 31, 36–39. [Google Scholar]
- Zhang, Z.; Li, Z. Karyotype studies of 4 species of Sec. Nitentes in the genus Ulmus L. Henan Sci. 1996, 14, 90–94. [Google Scholar]
- Kang, X.; Zhang, S.; Sun, X. Study on the karyotype analysis of Ulmus pumila Linn. J. Jilin For. Univ. 1996, 30–32. [Google Scholar]
- Karrafalt, R.P.; Karnosky, D.F. Meiotic pairing and chromosome morphology in American elm. For. Sci. 1975, 21, 123–127. [Google Scholar]
- Whittemore, A.T.; Olsen, R.T. Ulmus americana (Ulmaceae) is a polyploid complex. Am. J. Bot. 2011, 98, 754–760. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Song, W.; Liang, H.; Wang, Z. Study on leaf morphology and photosynthetic characteristics of tetraploid Ulmus pumila. Forest. Sci. Technol. 2022, 47, 1–4. [Google Scholar]
- Yan, X.; Wang, S.; Ding, X.; Liu, X.; Liang, H. Leaf morphology and photosynthetic characteristics of allotriploid elm. For. Sci. Technol. 2023, 48, 1–5. [Google Scholar]
- Ehrenberg, C.E. Studies on asynapsis in the elm, Ulmus glabra Huds. Hereditas 1949, 35, 1–26. [Google Scholar] [CrossRef]
- Li, J.; Zhou, P.; Zhang, Q.; Zhang, M. Genome size determination of Ilex verticillata based on flow cytometry. Chin. Wild Plant Resour. 2023, 42, 29–34. [Google Scholar]
- Whittemore, A.T.; Xia, Z.L. Genome size variation in elms (Ulmus spp.) and related genera. HortScience 2017, 52, 547–553. [Google Scholar] [CrossRef]
- Guan, Q.; Zhang, Y.; Xu, X.; Sun, D.; Li, S.; Lin, H.; Pan, L.; Ma, Y. Development of DNA molecular marker and several new types of molecular markers. Heilongjiang Agric. Sci. 2008, 1, 102–104. [Google Scholar]
- Wang, X.; Yang, X. Progress of studies on the molecular markers. J. Tianjin Agric. Univ. 2000, 21–24. [Google Scholar]
- Whittemore, A.T.; Fuller, R.S.; Brown, B.H.; Hahn, M.; Gog, L.; Weber, J.A.; Hipp, A.L. Phylogeny, biogeography, and classification of the elms (Ulmus). Syst. Bot. 2021, 46, 711–727. [Google Scholar] [CrossRef]
- Lyu, Y.Z.; Dong, X.Y.; Huang, L.B.; Zheng, J.W.; He, X.D.; Sun, H.N.; Jiang, Z.P. SLAF-seq uncovers the genetic diversity and adaptation of Chinese Elm (Ulmus parvifolia) in Eastern China. Forests 2020, 11, 80. [Google Scholar] [CrossRef]
- Cox, K.; Vanden Broeck, A. AFLP Fingerprinting of Elms; Instituut voor Natuur- en Bosonderzoek: Brussel, Belgium, 2013; pp. 1–16. [Google Scholar]
- Pooler, M.R.; Townsend, A. DNA fingerprinting of clones and hybrids of American elm and other elm species with AFLP markers. J. Environ. Hortic. 2005, 23, 113–117. [Google Scholar] [CrossRef]
- Cox, K.; Vanden Broeck, A.; Vander Mijnsbrugge, K. Genetic Variation in European Elms; Instituut voor Natuur- en Bosonderzoek: Brussel, Belgium, 2012; pp. 1–67. [Google Scholar]
- Cox, K.; Vanden Broeck, A.; Vander Mijnsbrugge, K.; Buiteveld, J.; Collin, E.; Heybroek, H.M.; Mergeay, J. Interspecific hybridisation and interaction with cultivars affect the genetic variation of Ulmus minor and Ulmus glabra in Flanders. Tree Genet. Genomes 2014, 10, 813–826. [Google Scholar] [CrossRef]
- Kamalay, J.C.; Carey, D.W. Application of RAPD-PCR markers for identification and genetic analysis of American elm (Ulmus americana L.) selections. J. Environ. Hortic. 1995, 13, 155–159. [Google Scholar] [CrossRef]
- Coleman, M.; Hollingsworth, M.L.; Hollingsworth, P.M. Application of RAPDs to the critical taxonomy of the English endemic elm Ulmus plotii Druce. Bot. J. Linn. Soc. 2000, 133, 241–262. [Google Scholar] [CrossRef]
- Benet, H.; Guries, R.; Boury, S.; Smalley, E. Identification of RAPD markers linked to a black leaf spot resistance gene in Chinese elm. Theor. Appl. Genet. 1995, 90, 1068–1073. [Google Scholar] [CrossRef]
- Goodall-Copestake, W.P.; Hollingsworth, M.L.; Hollingsworth, P.M.; Jenkins, G.I.; Collin, E. Molecular markers and ex situ conservation of the European elms (Ulmus spp.). Biol. Conserv. 2005, 122, 537–546. [Google Scholar] [CrossRef]
- Zhao, R. Study on Genetic Diversity Among Different Populations of Ulmus pumila Using RAPD Method. Master’s Thesis, Inner Mongolia Agricultural University, Höhhot, China, 2011. [Google Scholar]
- Sinclair, W.A.; Townsend, A.M.; Griffiths, H.M.; Whitlow, T.H. Responses of six Eurasian Ulmus cultivars to a North American elm yellows phytoplasma. Plant Dis. 2000, 84, 1266–1270. [Google Scholar]
- Dai, B.; Du, J.; Yang, J.; Huang, Y.; Zhang, J. Construction of ISSR identification card of Ulmus pumila ‘Jinye’ and analysis of genetic diversity of 8 Ulmus materials. J. Beijing For. Univ. 2014, 36, 100–103. [Google Scholar]
- Ahn, J.Y.; Hong, K.N.; Lee, J.W.; Yang, B.H. Population genetic variation of Ulmus davidiana var. japonica in South Korea based on ISSR markers. J. Korean For. Soc. 2013, 102, 560–565. [Google Scholar]
- Zhang, X. Study on Genetic Relationship of Ulmus and the Radiation Induced Mutation. Ph.D. Thesis, Northeast Agricultural University, Harbin, China, 2013. [Google Scholar]
- Liu, L.; Chen, W.; Zheng, X.; Li, J.; Yan, D.; Liu, L.; Liu, X.; Wang, Y. Genetic diversity of Ulmus lamellosa by morphological traits and sequence-related amplified polymorphism (SRAP) markers. Biochem. Syst. Ecol. 2016, 66, 272–280. [Google Scholar]
- Tamošaitis, S.; Jurkšienė, G.; Petrokas, R.; Buchovska, J.; Kavaliauskienė, I.; Danusevičius, D.; Baliuckas, V. Dissecting taxonomic variants within Ulmus spp. complex in natural forests with the aid of microsatellite and morphometric markers. Forests 2021, 12, 653. [Google Scholar] [CrossRef]
- Li, M. Genetic Diversity and Fruit Transcriptome of Ulmus pumila L. Master’s Thesis, Shandong Normal University, Jinan, China, 2021. [Google Scholar]
- Geng, Q.; Yang, J.; He, J.; Wang, D.b.; Shi, E.; Xu, W.X.; Jeelani, N.; Wang, Z.; Liu, H. Microsatellite markers for the critically endangered elm species Ulmus gaussenii (Ulmaceae). Genes Genet. Syst. 2016, 91, 11–14. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Majeed, A.; Bhardwaj, P. Transcriptome characterization and generation of marker resource for Himalayan vulnerable species, Ulmus wallichiana. Mol. Biol. Rep. 2021, 48, 721–729. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, X.; Li, M.; Wang, N.; Qu, X.; Fan, S. Transcriptome analysis of elm (Ulmus pumila) fruit to identify phytonutrients associated genes and pathways. Forests 2019, 10, 738. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, C.; Wu, Z.C.; Zhang, X.; Fan, S. Comprehensive time-course transcriptome reveals the crucial biological pathways involved in the seasonal branch growth in siberian elm (Ulmus pumila). Int. J. Mol. Sci. 2023, 24, 14976. [Google Scholar] [CrossRef]
- Chen, P.; Liu, P.; Zhang, Q.; Zhao, L.; Hao, X.; Liu, L.; Bu, C.; Pan, Y.; Zhang, D.; Song, Y. Dynamic physiological and transcriptome changes reveal a potential relationship between the circadian clock and salt stress response in Ulmus pumila. Mol. Genet. Genom. 2022, 297, 303–317. [Google Scholar] [CrossRef]
- Chen, P.; Liu, P.; Zhang, Q.; Bu, C.; Lu, C.; Srivastava, S.; Zhang, D.; Song, Y. Gene coexpression network analysis indicates that hub genes related to photosynthesis and starch synthesis modulate salt stress tolerance in Ulmus pumila. Int. J. Mol. Sci. 2021, 22, 4410. [Google Scholar] [CrossRef]
- Qi, X.; Chen, L.; Hu, Z.; Shen, W.; Xu, H.; Ma, L.; Wang, G.; Jing, Y.; Wang, X.; Zhang, B. Cytology, transcriptomics, and mass spectrometry imaging reveal changes in late-maturation elm (Ulmus pumila) seeds. J. Plant Physiol. 2022, 271, 153639. [Google Scholar] [CrossRef]
- Zuo, L.; Zhang, S.; Zhang, J.; Liu, Y.; Yu, X.; Yang, M.; Wang, J. Primer development and functional classification of EST-SSR markers in Ulmus species. Tree Genet. Genomes 2020, 16, 74. [Google Scholar] [CrossRef]
- Zhu, J.; Yang, X.; Liu, Z.; Zhang, H. Identification and target prediction of MicroRNAs in Ulmus pumila L. seedling roots under salt stress by high-throughput sequencing. Forests 2016, 7, 318. [Google Scholar] [CrossRef]
- Ye, T.; Huang, X.; Ma, T.; Li, Y.; Wang, X.; Lu, H.; Xue, H. Integrated analysis of miRNAome and transcriptome identify regulators of elm seed aging. Plants 2023, 12, 1719. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.; Song, W.; Ge, H.; Wang, L.; Liu, X.; Liang, H. Physiological characteristics and transeriptome differences between diploid and autotetraploid of Ulmus pumila. For. Ecol. Sci. 2023, 38, 8–15. [Google Scholar]
- Wang, L.; Li, W.; Ma, y.; Liu, X.; Liang, H. Photosynthetic characteristics and transcriptome analysis of albino mutant of Ulmus pumila. J. Northwest For. Univ. 2020, 35, 10–16. [Google Scholar]
- Feng, S.; Liu, Y.; Yan, S.; Dai, S.; Chen, L.; Fan, Y.; Huang, Y. The potential mechanism of UpCrtR-b regulates leaf color change in Ulmus pumila by multi-omics and functional analysis. Sci. Hortic. 2024, 324, 112616. [Google Scholar] [CrossRef]
- Zuo, L.; Zhang, S.; Liu, Y.; Huang, Y.; Yang, M.; Wang, J. The reason for growth inhibition of Ulmus pumila ‘Jinye’: Lower resistance and abnormal development of chloroplasts slow down the accumulation of energy. Int. J. Mol. Sci. 2019, 20, 4227. [Google Scholar] [CrossRef]
- Song, W.; Ge, H.; Liu, X.; Liang, H. Preliminary analysis of the transcriptome of the sunburn-resistant hybrid Ulmus pumila cv. jinye. Mol. Plant Breed. 2024, 1–16. [Google Scholar]
- Song, W.; Ge, H.; Liu, X.; Liang, H. Physiological characteristics and transcriptome differences analysis of diploid and autotetraploid Ulmus pumila cv. ‘Jinye’. J. Hebei Agric. Univ. 2022, 45, 86–92. [Google Scholar]
- Zhang, S.; Liu, Y.; Jia, S.; Li, Y.; Huang, Y.; Yang, M.; Zhang, J. Physiological response and transcriptome analysis of potted seedlings of Ulmus pumila ‘Zhonghua Jinye’ under drought stress. J. Hebei Agric. Univ. 2022, 45, 69–78. [Google Scholar]
- Singh, A.; Majeed, A.; Sharma, V.; Gadri, H.S.; Chowdhary, M.A.; Bhardwaj, P. Transcriptome analysis revealed behavior complexity of senescence responses in Himalayan tree species Ulmus wallichiana. Plant Mol. Biol. Rep. 2023, 41, 600–610. [Google Scholar] [CrossRef]
- Islam, M.T.; Coutin, J.F.; Shukla, M.; Dhaliwal, A.K.; Nigg, M.; Bernier, L.; Sherif, S.M.; Saxena, P.K. Deciphering the genome-wide transcriptomic changes during interactions of resistant and susceptible genotypes of American elm with Ophiostoma novo-ulmi. J. Fungi 2022, 8, 120. [Google Scholar] [CrossRef]
- Lu, M.; Cao, M.; Yang, J.; Swenson, N.G. Comparative transcriptomics reveals divergence in pathogen response gene families amongst 20 forest tree species. G3-Genes Genom. Genet. 2023, 13, jkad233. [Google Scholar] [CrossRef] [PubMed]
- Nigg, M.; de Oliveira, T.C.; Sarmiento-Villamil, J.L.; de la Bastide, P.Y.; Hintz, W.E.; Sherif, S.M.; Shukla, M.; Bernier, L.; Saxena, P.K. Comparative analysis of transcriptomes of Ophiostoma novo-ulmi ssp. Americana colonizing resistant or sensitive genotypes of American Elm. J. Fungi 2022, 8, 637. [Google Scholar] [CrossRef] [PubMed]
- Perdiguero, P.; Venturas, M.; Cervera, M.T.; Gil, L.; Collada, C. Massive sequencing of Ulmus minor’s transcriptome provides new molecular tools for a genus under the constant threat of Dutch elm disease. Front. Plant Sci. 2015, 6, 541. [Google Scholar] [CrossRef]
- Altmann, S.; Muino, J.M.; Lortzing, V.; Brandt, R.; Himmelbach, A.; Altschmied, L.; Hilker, M. Transcriptomic basis for reinforcement of elm antiherbivore defence mediated by insect egg deposition. Mol. Ecol. 2018, 27, 4901–4915. [Google Scholar] [CrossRef]
- Takei, M.; Ito, S.; Tanaka, K.; Ishige, T.; Suzuki, Y. Transcriptomic characterization of gall tissue of Japanese elm tree (Ulmus davidiana var. japonica) induced by the aphid Tetraneura nigriabdominalis. Biosci. Biotechnol. Biochem. 2017, 81, 1069–1077. [Google Scholar] [CrossRef]
- Lu, H.; Jin, L.; Wei, D.; Huang, Z. Study on the differential gene expression of elm leaves fed on by Tetraneura akinire Sasaki. Genes genom. 2019, 41, 1505–1516. [Google Scholar] [CrossRef]
- Li, X.; Huang, Z. Transcriptome analysis in the process of insect gall formation of elm leaves. Genomics Appl. Biol. 2019, 38, 737–746. [Google Scholar]
- Jin, Y.; Cui, M.; Huang, L.; Pei, W.; Gu, Y.; Qian, Z. Seedling raising of Ulmus resources in Jiangsu and its application in urban garden construction. J. Jinling Inst. Technol. 2018, 34, 79–83. [Google Scholar]
- Huang, Y. Superior new variety of ornamental foliage plants—Ulmus pumila cv. ‘ZhonghuaJinye’. Beijing Agric. Sci. 2006, 47. [Google Scholar]
- Huang, Y.; Liu, Y.; Zhang, J. Effect of day-night temperature difference on leaf color of Ulmus pumila ‘ZhonghuaJinye’. Chin. Agric. Sci. Bull. 2013, 29, 31–34. [Google Scholar]
- Qi, H.; Liu, X.; Wang, F. The influence of light stress on the leaf color of Ulmus pumila cv. ‘ZhonghuaJinye’. J. Hebei For. Sci. Technol. 2009, 553, 121560. [Google Scholar]
- Wang, Y.; Liang, M. Physiological and biochemical research on different position leaves of Ulmus pumila cv. jinye. Territ. Nat. Resour. Study 2014, 78–80. [Google Scholar]
- Zhang, S. The Mechanism of Formation of Yellow Characteristic and Re-Greening After Shading in Ulmus pumila ‘Jinye’ Leaves. Ph.D. Thesis, Hebei Agricultural University, Baoding, China, 2018. [Google Scholar]
- Zhang, P.; Wu, J.; Yu, B.; An, Y.; Ye, J. The current status of elm pest occurrence and research in China. J. Jiangsu For. Sci. Technol. 2014, 41, 46–49. [Google Scholar]
- Li, X. Major diseases of elms and their control techniques. Jiangxi Agric. 2017, 88. [Google Scholar]
- Wang, Q.; Yu, Q. Occurrence and prevention of common diseases and pests in elms. Chin. Agric. Inform. 2016, 101–102+104. [Google Scholar]
- Zhang, P.; Ye, J.; Zhang, Y.; Wang, L. The research progress of interal and external on pathogens of Dutch Elm Disease. Plant Quar. 2014, 28, 33–38. [Google Scholar]
- Stone, G.N.; Schönrogge, K. The adaptive significance of insect gall morphology. Trends Ecol. Evol. 2003, 18, 512–522. [Google Scholar] [CrossRef]
- Wang, G.; Wang, Y.; Wu, H. Gall and gall-former insects. Chin. Bull. Entomol. 2010, 47, 419–424. [Google Scholar]
- Jin, S.; Wei, M.; Wei, Y.; Jiang, Z. Insights into plant sensory mechanisms under abiotic stresses. Plants 2024, 13, 1907. [Google Scholar] [CrossRef]
- Zhou, J.; Xu, H.; Xiang, Y.; Wu, J. Effects of microplastics pollution on plant and soil phosphorus: A meta-analysis. J. Hazard. Mater. 2024, 461, 132705. [Google Scholar] [CrossRef]
- Cotrozzi, L. Leaf demography and growth analysis to assess the impact of air pollution on plants: A case study on alfalfa exposed to a gradient of sulphur dioxide concentrations. Atmos. Pollut. Res. 2020, 11, 186–192. [Google Scholar] [CrossRef]
- Singh, V.; Punia, A.; Thakur, A.; Gupta, S.; Kataria, R.C.; Kumar, R.; Kumar, P.; Chauhan, N.S. Phytoremediation of chemical pollutants and heavy metals by higher plants. In Phytoremediation: Biological Treatment of Environmental Pollution; Madhav, S., Gupta, G.P., Yadav, R.K., Mishra, R., Hullebusch, E.v., Eds.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 123–147. [Google Scholar]
- Kulkarni, K.P.; Vennapusa, A.R.; Pandian, B.A.; Deshmukh, R. Genetic advancements for improving the plant tolerance to biotic and abiotic stresses. Front. Genet. 2024, 15, 1426680. [Google Scholar] [CrossRef] [PubMed]
- Beigh, Y.A.; Ganai, A.M.; Ahmad, H.A.; Khan, H.M.; Mir, M.S. Chemical composition and nutritional evaluation of Elm (Ulmus wallichiana) as browse for Bakerwal goats (Capra hircus). Agrofor. Syst. 2020, 94, 1367–1379. [Google Scholar] [CrossRef]
- So, H.M.; Yu, J.S.; Khan, Z.; Subedi, L.; Ko, Y.-J.; Lee, I.K.; Park, W.S.; Chung, S.J.; Ahn, M.-J.; Kim, S.Y. Chemical constituents of the root bark of Ulmus davidiana var. japonica and their potential biological activities. Bioorg. Chem. 2019, 91, 103145. [Google Scholar] [CrossRef]
- Um, M.Y.; Choi, W.H.; Ahn, J.; Ha, T.Y. Effects of ethanolic extract of Ulmus davidiana root on lipid metabolism in high-fat diet fed mice. Korean J. Food Nutr. 2013, 26, 8–14. [Google Scholar] [CrossRef]
- Kim, J.H.; Park, J.S.; Lee, Y.J.; Choi, S.; Kim, Y.H.; Yang, S.Y. Inhibition of soluble epoxide hydrolase by phytochemical constituents of the root bark of Ulmus davidiana var. japonica. J. Enzyme Inhib. Med. Chem. 2021, 36, 1049–1055. [Google Scholar] [CrossRef]
- Khan, M.P.; Mishra, J.S.; Sharan, K.; Yadav, M.; Singh, A.K.; Srivastava, A.; Kumar, S.; Bhaduaria, S.; Maurya, R.; Sanyal, S.; et al. A novel flavonoid C-glucoside from Ulmus wallichiana preserves bone mineral density, microarchitecture and biomechanical properties in the presence of glucocorticoid by promoting osteoblast survival: A comparative study with human parathyroid hormone. Phytomedicine 2013, 20, 1256–1266. [Google Scholar] [CrossRef]
- Fiehn, O.; Kopka, J.; Dörmann, P.; Altmann, T.; Trethewey, R.N.; Willmitzer, L. Metabolite profiling for plant functional genomics. Nat. Biotechnol. 2000, 18, 1157–1161. [Google Scholar] [CrossRef]
- Yin, M.; Li, C.; Wang, Y.; Fu, J.; Sun, Y.; Zhang, Q. Comparison analysis of metabolite profiling in seeds and bark of Ulmus parvifolia, a Chinese medicine species. Plant Signal. Behav. 2022, 17, 2138041. [Google Scholar] [CrossRef]
- Rodríguez-Calcerrada, J.; Rodrigues, A.M.; António, C.; López, R.; Domínguez, J.; Sobrino-Plata, J.; Gil, L.; Martín, J.A. Integration of primary metabolism with physiological and anatomical data to assess dutch elm disease susceptibility in three elm species—A case study. In Monitoring Forest Damage with Metabolomics Methods; António, C., Ed.; Wiley: Hoboken, NJ, USA, 2023; pp. 343–387. [Google Scholar]
- Rodríguez-Calcerrada, J.; Rodrigues, A.M.; António, C.; Perdiguero, P.; Pita, P.; Collada, C.; Li, M.; Gil, L. Stem metabolism under drought stress–a paradox of increasing respiratory substrates and decreasing respiratory rates. Physiol. Plant. 2021, 172, 391–404. [Google Scholar] [CrossRef]
- Wang, S.; Zuo, L.; Liu, Y.; Long, L.; Wu, J.; Yuan, M.; Wang, J.; Yang, M. Comparative transcriptomes of four Elm species provide insights into the genetic features and adaptive evolution of Ulmus spp. For. Ecol. Manag. 2024, 553, 121560. [Google Scholar] [CrossRef]
- Välimäki, S.; Rusanen, M.; Pečínková, D.; Tikkinen, M.; Aronen, T. Cryopreservation and micropropagation methods for conservation of genetic resources of Ulmus laevis and Ulmus glabra. Forests 2021, 12, 1121. [Google Scholar] [CrossRef]
- Beck, R.; Camp, M.; Kamo, K. Micropropagation and regeneration of Ulmus parvifolia Pathfinder, the Chinese elm tree. J. Appl. Hortic. 2018, 20, 119–124. [Google Scholar] [CrossRef]
- Corchete, M.; Diez, J.; Valle, T. Micropropagation of Ulmus pumila L. from mature trees. Plant Cell Rep. 1993, 12, 534–536. [Google Scholar] [CrossRef] [PubMed]
- Sanjabi, M. Induction of direct somatic embryogenesis in leaf explants of Ulmus glabra. J. Plant Res. 2016, 28, 885–894. [Google Scholar]
- He, H. Preliminary Study on the Tissue Culture System of Ulmus lamellosa. Master Thesis, Beijing Forestry University, Beijing, China, 2022. [Google Scholar]
- Newhouse, A.E.; Schrodt, F.; Maynard, C.A.; Powell, W.A. American elm (Ulmus americana). In Agrobacterium Protocols Volume 2; Wang, K., Ed.; Humana Press: Totowa, NJ, USA, 2007; pp. 99–112. [Google Scholar]
- Gartland, J.S.; McHugh, A.T.; Brasier, C.M.; Irvine, R.J.; Fenning, T.M.; Gartland, K.M. Regeneration of phenotypically normal English elm (Ulmus procera) plantlets following transformation with an Agrobacterium tumefaciens binary vector. Tree Physiol. 2000, 20, 901–907. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Zheng, D.; Zhang, T.; Li, X.; Zhang, C.; Yu, R.; Wei, J.; Wu, Z. Efficient and genotype independent maize transformation using pollen transfected by DNA-coated magnetic nanoparticles. J. Integr. Plant Biol. 2022, 64, 1145–1156. [Google Scholar] [CrossRef]
- Cao, X.; Xie, H.; Song, M.; Lu, J.; Ma, P.; Huang, B.; Wang, M.; Tian, Y.; Chen, F.; Peng, J. Cut–dip–budding delivery system enables genetic modifications in plants without tissue culture. Innovation 2023, 4, 100345. [Google Scholar] [CrossRef]
- Mei, G.; Chen, A.; Wang, Y.; Li, S.; Wu, M.; Hu, Y.; Liu, X.; Hou, X. A simple and efficient in planta transformation method based on the active regeneration capacity of plants. Plant Commun. 2024, 5, 100822. [Google Scholar] [CrossRef]
Number | Species | Genome Size (bp) | Length of LSC (bp) | Length of IRs (bp) | Length of SSC (bp) | GC Content (%) | Accession Number |
---|---|---|---|---|---|---|---|
1 | Ulmus bergmanniana | 159,767 | 88,193 | 26,297 | 18,980 | 35.5 | MT165921 |
2 | Ulmus canescens | 159,187 | 87,699 | 26,376 | 18,736 | 35.6 | MT165922 |
3 | Ulmus castaneifolia | 159,700 | 88,016 | 26,361 | 18,962 | 35.5 | MT165923 |
4 | Ulmus changii | 159,376 | 87,958 | 26,330 | 18,758 | 35.6 | MT165924 |
5 | Ulmus chenmoui | 159,528 | 87,938 | 26,296 | 18,998 | 35.5 | MT165925 |
6 | Ulmus davidiana | 159,645 | 88,249 | 26,297 | 18,802 | 35.5 | MT165927 |
7 | Ulmus densa | 159,322 | 87,910 | 26,324 | 18,764 | 35.6 | MT165928 |
8 | Ulmus gaussenii | 159,699 | 88,015 | 26,361 | 18,962 | 35.5 | MT165930 |
9 | Ulmus glabra | 159,305 | 87,916 | 26,348 | 18,693 | 35.6 | MT165931 |
10 | Ulmus glaucescens | 159,342 | 87,973 | 26,306 | 18,757 | 35.6 | MT165932 |
11 | Ulmus laciniata | 159,711 | 88,118 | 26,296 | 19,001 | 35.5 | MT165933 |
12 | Ulmus lamellosa | 159,722 | 88,244 | 26,297 | 18,884 | 35.5 | MT165935 |
13 | Ulmus macrocarpa | 159,684 | 88,048 | 26,299 | 19,038 | 35.5 | MT165937 |
14 | Ulmus microcarpus | 159,795 | 88,408 | 26,288 | 18,811 | 35.5 | MT165938 |
15 | Ulmus minor | 159,304 | 87,915 | 26,348 | 18,693 | 35.6 | MT165939 |
16 | Ulmus prunifolia | 159,712 | 88,028 | 26,361 | 18,962 | 35.5 | MT165941 |
17 | Ulmus pumila | 159,685 | 88,267 | 26,288 | 18,842 | 35.5 | MT165942 |
18 | Ulmus szechuanica | 159,588 | 88,035 | 26,296 | 18,961 | 35.5 | MT165945 |
19 | Ulmus uyematsui | 159,693 | 88,116 | 26,296 | 18,985 | 35.5 | MT165947 |
20 | Ulmus wallichiana | 159,422 | 87,993 | 26,368 | 18,693 | 35.6 | MT165948 |
21 | Ulmus davidiana var. japonica | 159,411 | 88,508 | 26,017 | 18,868 | 35.6 | KY244083 |
22 | Ulmus pumila cv. ‘zhonghuajinye’ | 159,113 | 87,994 | 26,317 | 18,485 | 35.6 | |
23 | Ulmus pumila cv. Tenue | 159,375 | 87,937 | 26,332 | 18,774 | 35.6 | MW544029 |
24 | Ulmus mianzhuensis | 159,425 | 87,584 | 26,546 | 18,749 | 35.6 | OQ130025 |
25 | Ulmus parvifolia | 159,233 | 87,800 | 26,317 | 18,799 | 35.6 | MT165940 |
26 | Ulmus lanceifolia | 158,742 | 87,170 | 26,404 | 18,764 | 35.6 | MT165936 |
27 | Ulmus serotina | 159,270 | 87,762 | 26,413 | 18,682 | 35.6 | MT165944 |
28 | Ulmus crassifolia | 159,338 | 87,839 | 26,413 | 18,673 | 35.6 | MT165926 |
29 | Ulmus alata | 159,353 | 87,792 | 26,406 | 18,749 | 36.6 | MT165919 |
30 | Ulmus elongata | 159,165 | 87,654 | 26,410 | 18,691 | 35.6 | MT165929 |
31 | Ulmus thomasii | 159,457 | 87,886 | 26,413 | 18,745 | 35.5 | MT165946 |
32 | Ulmus americana | 159,085 | 87,600 | 26,410 | 18,665 | 35.6 | MT165920 |
33 | Ulmus laevis | 159,019 | 87,529 | 26,420 | 18,650 | 35.6 | MT165934 |
34 | Ulmus rubra | 159,202 | 87,717 | 26,410 | 18,665 | 35.6 | MT165943 |
Number | Species | 2Cy (pg) | 1Cxx (pg) | Number of Bases (Gb) | Subgenus |
---|---|---|---|---|---|
1 | U. alata | 2.998–3.142 | 1.499–1.571 | 1.466–1.536 | Subg. Oreoptelea |
2 | U. americana 2x | 3.088–3.196 | 1.544–1.598 | 1.510–1.563 | Subg. Oreoptelea |
3 | U. americana ‘Jefferson’ 3x | 4.652 | 1.551 | 1.517 | Subg. Oreoptelea |
4 | U. americana 4x | 6.007–6.572 | 1.501–1.643 | 1.469–1.607 | Subg. Oreoptelea |
5 | U. crassifolia | 3.106–3.223 | 1.553–1.612 | 1.519–1.576 | Subg. Oreoptelea |
6 | U. elongata | 3.000 | 1.500 | 1.467 | Subg. Oreoptelea |
7 | U. laevis | 2.975–3.032 | 1.488–1.516 | 1.455–1.483 | Subg. Oreoptelea |
8 | U. serotina | 3.091 | 1.546 | 1.511 | Subg. Oreoptelea |
9 | U. thomasii | 2.975–3.201 | 1.488–1.601 | 1.455–1.565 | Subg. Oreoptelea |
10 | U. castaneifolia | 3.838–3.969 | 1.919–1.985 | 1.877–1.941 | Subg. Ulmus |
11 | U. changii | 3.721–3.891 | 1.861–1.946 | 1.820–1.903 | Subg. Ulmus |
12 | U. chenmoui | 3.874–3.979 | 1.937–1.990 | 1.894–1.946 | Subg. Ulmus |
13 | U. davidiana var. davidiana | 3.734–3.908 | 1.867–1.954 | 1.826–1.911 | Subg. Ulmus |
14 | U. davidiana var. japonica | 3.633–3.781 | 1.817–1.891 | 1.777–1.849 | Subg. Ulmus |
15 | U. davidiana var. uncertain | 3.649 | 1.825 | 1.784 | Subg. Ulmus |
16 | U. glabra | 3.947–4.058 | 1.974–2.029 | 1.930–1.984 | Subg. Ulmus |
17 | U. glaucescens var. glaucescens | 3.674 | 1.837 | 1.797 | Subg. Ulmus |
18 | Ulmus harbinensis | 3.804 | 1.902 | 1.860 | Subg. Ulmus |
19 | U. laciniata var. laciniata | 3.759 | 1.880 | 1.838 | Subg. Ulmus |
20 | U. laciniata var. nikkoensis | 3.961 | 1.981 | 1.937 | Subg. Ulmus |
21 | U. lamellosa | 3.771–3.955 | 1.886–1.978 | 1.844–1.934 | Subg. Ulmus |
22 | U. macrocarpa var. macrocarpa | 3.987 | 1.994 | 1.950 | Subg. Ulmus |
23 | Ulmus microcarpa 3x | 5.678 | 1.839 | 1.851 | Subg. Ulmus |
24 | U. minor | 3.724–4.104 | 1.862–2.052 | 1.821–2.007 | Subg. Ulmus |
25 | U. parvifolia | 3.837–3.919 | 1.919–1.960 | 1.876–1.916 | Subg. Ulmus |
26 | U. prunifolia | 3.874 | 1.937 | 1.894 | Subg. Ulmus |
27 | Ulmus pseudopropinqua | 3.732 | 1.866 | 1.825 | Subg. Ulmus |
28 | U. pumila | 3.671–3.92 | 1.836–1.960 | 1.795–1.917 | Subg. Ulmus |
29 | U. rubra | 3.77–4.006 | 1.885–2.003 | 1.844–1.959 | Subg. Ulmus |
30 | U. szechuanica | 3.711–3.781 | 1.856–1.891 | 1.815–1.849 | Subg. Ulmus |
31 | U. uyematsui | 4.023 | 2.012 | 1.967 | Subg. Ulmus |
32 | U. wallichiana | 4.165 | 2.082 | 2.037 | Subg. Ulmus |
33 | Ulmus villosa | 2.175–2.277 | 1.088–1.139 | 1.064–1.113 | Subg. Indoptelea |
Number | Types | Content | Species |
---|---|---|---|
1 | AFLP | Variety identification and genetic diversity analysis. | U. Minor, U. glabra, U. americana, U. laevis, U. parvifolia, Ulmus carpinifolia, U. rubra, U. pumila, U. bergmanniana, U. szechuanica, U. minor, etc. [44,45,46,47]. |
2 | RAPD | Genetic diversity analysis, linkage mapping of disease resistance-related genes, kinship identification, and variety identification. | U. pumila, U. parvifolia, U. glabra, Ulmus plotii, U. minor, U. laevis, U. americana, etc. [48,49,50,51,52]. |
3 | RFLP | Variety identification and pathogen identification. | U. americana, U. rubra, U. parvifolia, Ulmus wilsoniana, U. pumila, etc. [49,53]. |
4 | ISSR | Identification of kinship relationships and analysis of genetic diversity. | U. pumila, Ulmus propinqua, U. davidiana, U. laevis, U. macrocarpa, U. laciniata, U. parvifolia, U. davidiana var. japonica, U. pumila cv. ‘zhonghuajinye’, etc. [54,55,56]. |
5 | SRAP | Analysis of genetic diversity. | U. Lamellosa, etc. [57]. |
6 | SSR | Leaf morphology association analysis, genetic diversity analysis, and conservation of endangered species. | U. minor, U. glabra, U. laevis, U. wallichiana, U. gaussenii, U. pumila, etc. [58,59,60,61]. |
7 | SNP/Indel | Phylogenetic analysis, genetic diversity analysis, and environmental adaptability analysis. | U. microcarpa, U. castaneifolia, U. davidiana, U. chenmoui, U. prunifolia, U. szechuanica, U. changii, U. castaneifolia, U. davidiana var. japonica, U. pumila, U. minor, U. lamellosa, U. macrocarpa, U. wallichiana, U. laciniata, U. uyematsui, U. rubra, U. glabra, U. villosa, U. laevis, U. thomasii, U. alata, U. crassifolia, U. serotina, U. elongata, Ulmus mexicana, U. americana, U. parvifolia, etc. [42,43]. |
Number | Species | Content | Mode of Analysis |
---|---|---|---|
1 | U. pumila [6] | Growth of branches. | Non-reference |
2 | U. pumila [62] | Fruit development and nutritional elements. | Non-reference |
3 | U. pumila [63] | Growth of branches. | Non-reference |
4 | U. pumila [64] | Response to salt stress. | Non-reference |
5 | U. pumila [65] | Response to salt stress. | Non-reference |
6 | U. pumila [66] | Development of seeds. | Non-reference |
7 | U. pumila [67] | Development of molecular markers. | Non-reference |
8 | U. pumila [68] | Response to salt stress. | Non-reference |
9 | U. pumila [69] | Aging of seeds. | Non-reference |
10 | U. pumila [70] | Physiological characteristics of plants with different ploidy. | Non-reference |
11 | U. pumila [71] | Photosynthetic characteristics of albino plants. | Non-reference |
12 | U. pumila cv. ‘zhonghuajinye’ [27] | The high temperature caused the leaves to turn white. | Reference |
13 | U. pumila cv. ‘zhonghuajinye’ [7] | Shading causes the leaves to regreen. | Non-reference |
14 | U. pumila cv. ‘zhonghuajinye’ [72] | Changes in leaf color. | Non-reference |
15 | U. pumila cv. ‘zhonghuajinye’ [73] | Growth inhibition and leaf color changes. | Non-reference |
16 | U. pumila cv. ‘zhonghuajinye’ [74] | Sunburn caused the leaves to turn white. | Non-reference |
17 | U. pumila cv. ‘zhonghuajinye’ [75] | Physiological characteristics of plants with different ploidy. | Non-reference |
18 | U. pumila cv. ‘zhonghuajinye’ [76] | Response to drought stress. | Reference |
19 | U. wallichiana [61] | Development of molecular markers. | Non-reference |
20 | U. wallichiana [77] | Seasonal senescence and abiotic stress responses. | Non-reference |
21 | U. americana [78] | The transcriptional regulation of plants resistant to DED and plants susceptible to DED. | Non-reference |
22 | U. americana [79] | Research on the development and adaptive evolution of transcript information. | Non-reference |
23 | U. americana [80] | Analysis and identification of DED pathogenic genes. | Non-reference |
24 | U. minor [81] | Response to drought and pathogen stress. | Non-reference |
25 | U. minor [82] | The impact of insect egg deposition on resistance to pests. | Non-reference |
26 | U. davidiana var. japonica [83] | Transcriptional regulation of gall formation. | Non-reference |
27 | Other elm trees [84] | Transcriptional regulation of gall formation. | Non-reference |
28 | Other elm trees [85] | Transcriptional regulation of gall formation. | Non-reference |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Zuo, L.; Liu, Y.; Long, L.; Jiang, M.; Han, M.; Wang, J.; Yang, M. The Current Status and Prospects of the Application of Omics Technology in the Study of Ulmus. Int. J. Mol. Sci. 2024, 25, 12592. https://doi.org/10.3390/ijms252312592
Wang S, Zuo L, Liu Y, Long L, Jiang M, Han M, Wang J, Yang M. The Current Status and Prospects of the Application of Omics Technology in the Study of Ulmus. International Journal of Molecular Sciences. 2024; 25(23):12592. https://doi.org/10.3390/ijms252312592
Chicago/Turabian StyleWang, Shijie, Lihui Zuo, Yichao Liu, Lianxiang Long, Min Jiang, Mengjuan Han, Jinmao Wang, and Minsheng Yang. 2024. "The Current Status and Prospects of the Application of Omics Technology in the Study of Ulmus" International Journal of Molecular Sciences 25, no. 23: 12592. https://doi.org/10.3390/ijms252312592
APA StyleWang, S., Zuo, L., Liu, Y., Long, L., Jiang, M., Han, M., Wang, J., & Yang, M. (2024). The Current Status and Prospects of the Application of Omics Technology in the Study of Ulmus. International Journal of Molecular Sciences, 25(23), 12592. https://doi.org/10.3390/ijms252312592