Encapsulating Proton Inside C60 Fullerene: A Density Functional Theory Study on the Electronic Properties of Cationic X+@C60 (X+ = H+, H3O+ and NH4+)
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ball, P. Water as an active constituent in cell biology. Chem. Rev. 2008, 108, 74–108. [Google Scholar] [CrossRef] [PubMed]
- Swanson, J.M.J.; Maupin, C.M.; Chen, H.N.; Petersen, M.K.; Xu, J.C.; Wu, Y.J.; Voth, G.A. Proton solvation and transport in aqueous and biomolecular systems: Insights from computer simulations. J. Phys. Chem. B 2007, 111, 4300–4314. [Google Scholar] [CrossRef] [PubMed]
- Kreuer, K.D.; Paddison, S.J.; Spohr, E.; Schuster, M. Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology. Chem. Rev. 2004, 104, 4637–4678. [Google Scholar] [CrossRef] [PubMed]
- Stowell, M.H.B.; McPhillips, T.M.; Rees, D.C.; Soltis, S.M.; Abresch, E.; Feher, G. Light-induced structural changes in photosynthetic reaction center: Implications for mechanism of electron-proton transfer. Science 1997, 276, 812–816. [Google Scholar] [CrossRef]
- Sham, Y.Y.; Muegge, I.; Warshel, A. Simulating proton translocations in proteins: Probing proton transfer pathways in the Rhodobacter sphaeroides reaction center. Proteins Struct. Funct. Bioinform. 1999, 36, 484–500. [Google Scholar] [CrossRef]
- Turro, N.J.; Chen, J.Y.C.; Sartori, E.; Ruzzi, M.; Marti, A.; Lawler, R.; Jockusch, S.; López-Gejo, J.; Komatsu, K.; Murata, Y. The spin chemistry and magnetic resonance of H2@C60. From the pauli principle to trapping a long lived nuclear excited spin state inside a buckyball. Acc. Chem. Res. 2010, 43, 335–345. [Google Scholar] [CrossRef]
- Ramachandran, C.N.; Sathyamurthy, N. Water clusters in a confined nonpolar environment. Chem. Phys. Lett. 2005, 410, 348–351. [Google Scholar] [CrossRef]
- Sabirov, D.S.; Terentyev, A.O.; Sokolov, V.I. Activation energies and information entropies of helium penetration through fullerene walls. Insights into the formation of endofullerenes nX@C60/70 (n= 1 and 2) from the information entropy approach. RSC Adv. 2016, 6, 72230–72237. [Google Scholar] [CrossRef]
- Dolgonos, G.A.; Peslherbe, G.H. Encapsulation of diatomic molecules in fullerene C60: Implications for their main properties. Phys. Chem. Chem. Phys. 2014, 16, 26294–26305. [Google Scholar] [CrossRef]
- Equbal, A.; Srinivasan, S.; Ramachandran, C.N.; Sathyamurthy, N. Encapsulation of paramagnetic diatomic molecules B2, O2 and Ge2 inside C60. Chem. Phys. Lett. 2014, 610, 251–255. [Google Scholar] [CrossRef]
- Umeta, Y.; Suga, H.; Takeuchi, M.; Zheng, S.; Wakahara, T.; Wang, Y.C.; Naitoh, Y.; Lu, X.; Kumatani, A.; Tsukagoshi, K. Stable resistance switching in Lu3N@C80 nanowires promoted by the endohedral effect: Implications for eingle-fullerene motion resistance switching. ACS Appl. Nano Mater. 2021, 4, 7935–7942. [Google Scholar] [CrossRef]
- Kawashima, Y.; Ohkubo, K.; Fukuzumi, S. Enhanced photoinduced electron-transfer reduction of Li+@C60 in comparison with C60. J. Phys. Chem. A 2012, 116, 8942–8948. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, A.; Hedin, N. Local energy decomposition analysis and molecular properties of encapsulated methane in fullerene (CH4@C60). Phys. Chem. Chem. Phys. 2021, 23, 21554–21567. [Google Scholar] [CrossRef] [PubMed]
- Ge, X.; Dai, X.; Zhou, H.; Yang, Z.; Zhou, R. Stabilization of open-shell single bonds within endohedral metallofullerene. Inorg. Chem. 2020, 59, 3606–3618. [Google Scholar] [CrossRef]
- Du, Y.; Meng, Y.; Xie, B.; Ni, Z.; Xia, S. Molecular structure, electronic properties and stability of carbon-coated M13@C60 (M= Cu, Ag, Pt) nanoclusters. Comput. Theor. Chem. 2021, 1205, 113434. [Google Scholar] [CrossRef]
- Mallick, S.; Mishra, B.K.; Kumar, P.; Sathyamurthy, N. Effect of confinement on ammonia inversion. Eue. Phys. J. D 2021, 75, 1–10. [Google Scholar] [CrossRef]
- Kurotobi, K.; Murata, Y. A single molecule of water encapsulated in fullerene C60. Science 2011, 333, 613–616. [Google Scholar] [CrossRef]
- Ramachandran, C.N.; Roy, D.; Sathyamurthy, N. Host–guest interaction in endohedral fullerenes. Chem. Phys. Lett. 2008, 46, 87–92. [Google Scholar] [CrossRef]
- Thilgen, C. A single water molecule trapped inside hydrophobic C60. Angew. Chem. Int. Ed. 2012, 51, 587–589. [Google Scholar] [CrossRef]
- Ensing, B.; Costanzo, F.; Silvestrelli, P.L. On the polarity of buckminsterfullerene with a water molecule inside. J. Phys. Chem. A 2012, 116, 12184–12188. [Google Scholar] [CrossRef]
- Sabirov, D.S. From endohedral complexes to endohedral fullerene covalent derivatives: A density functional theory prognosis of chemical transformation of water endofullerene H2O@C60 upon its compression. J. Phys. Chem. C 2013, 117, 1178–1182. [Google Scholar] [CrossRef]
- Farimani, A.B.; Wu, Y.; Aluru, N.R. Rotational motion of a single water molecule in a buckyball. Phys. Chem. Chem. Phys. 2013, 15, 17993–18000. [Google Scholar] [CrossRef]
- Aoyagi, S.; Hoshino, N.; Akutagawa, T.; Sado, Y.; Kitaura, R.; Shinohara, H.; Sugimoto, K.; Zhang, R.; Murata, Y. A cubic dipole lattice of water molecules trapped inside carbon cages. Chem. Commun. 2013, 50, 524–526. [Google Scholar] [CrossRef]
- Kaneko, S.; Hashikawa, Y.; Fujii, S.; Murata, Y.; Kiguchi, M. Single molecular junction study on H2O@C60: H2O is “electrostatically isolated”. Chem. Phys. Chem. 2017, 18, 1229–1233. [Google Scholar] [CrossRef]
- Rashed, E.; Dunn, J.L. Interactions between a water molecule and C60 in the endohedral fullerene H2O@C60. Phys. Chem. Chem. Phys. 2019, 21, 3347–3359. [Google Scholar] [CrossRef]
- Biskupek, J.; Skowron, S.T.; Stoppiello, C.T.; Rance, G.A.; Alom, S.; Fung, K.L.; Fung, Y.; Whitby, R.J.; Levitt, M.H.; Ramasse, Q.M.; et al. Bond dissociation and reactivity of HF and H2O in a nano test tube. ACS Nano 2020, 14, 11178–11189. [Google Scholar] [CrossRef]
- Fujii, S.; Cho, H.; Hashikawa, Y.; Nishino, T.; Murata, Y.; Kiguchi, M. Tuneable single-molecule electronic conductance of C60 by encapsulation. Phys. Chem. Chem. Phys. 2019, 21, 12606–12610. [Google Scholar] [CrossRef]
- Hashikawa, Y.; Murata, Y. H2O/Olefinic-π interaction inside a carbon nanocage. J. Am. Chem. Soc. 2019, 141, 12928–12938. [Google Scholar] [CrossRef]
- Jarvis, S.P.; Sang, H.; Junqueira, F.; Gordon, O.; Hodgkinson, J.E.; Saywell, A.; Rahe, P.; Mamone, S.; Taylor, S.; Sweetman, A.; et al. Chemical shielding of H2O and HF encapsulated inside a C60 cage. Commun. Chem. 2021, 4, 1–7. [Google Scholar] [CrossRef]
- Valdés, Á.; Carrillo-Bohórquez, O.; Prosmiti, R. Fully coupled quantum treatment of nanoconfined systems: A water molecule inside a fullerene C60. J. Chem. Theory Comput. 2018, 14, 6521–6531. [Google Scholar] [CrossRef]
- Krachmalnicoff, A.; Bounds, R.; Mamone, S.; Alom, S.; Concistre, M.; Meier, B.; Kouril, K.; Light, M.E.; Johnson, M.R.; Rols, S.; et al. The dipolar endofullerene HF@ C60. Nat. Chem. 2016, 8, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Vidal, S.; Izquierdo, M.; Alom, S.; Garcia-Borràs, M.; Filippone, S.; Osuna, S.; Sola, M.; Whitby, R.J.; Martín, N. Effect of incarcerated HF on the exohedral chemical reactivity of HF@C60. Chem. Commun. 2017, 53, 10993–10996. [Google Scholar] [CrossRef] [PubMed]
- Komatsu, K.; Murata, M.; Murata, Y. Encapsulation of molecular hydrogen in fullerene C60 by organic synthesis. Science 2005, 307, 238–240. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.B.; McKee, M.L. Endohedral hydrogen exchange reactions in C60 (nH2@C60, n=1−5): Comparison of recent methods in a high-pressure Cooker. J. Am. Chem. Soc. 2008, 130, 17610–17619. [Google Scholar] [CrossRef] [PubMed]
- Korona, T.; Hesselmann, A.; Dodziuk, H. Symmetry-adapted perturbation theory applied to endohedral fullerene complexes: A stability study of H2@C60 and 2H2@C60. J. Chem. Theory Comput. 2009, 5, 1585–1596. [Google Scholar] [CrossRef]
- Zeinalinezhad, A.; Sahnoun, R. Encapsulation of hydrogen molecules in C50 fullerene: An ab initio study of structural, energetic, and electronic properties of H2@C50 and 2H2@C50 complexes. ACS Omega 2020, 5, 12853–12864. [Google Scholar] [CrossRef]
- Kratschmer, W.; Lamb, L.D.; Fostiropoulos, K.; Huffman, D.R. Solid C60: A new form of carbon. Nature 1990, 347, 354–357. [Google Scholar] [CrossRef]
- Muratoglu, O.K.; Bragdon, C.R.; O’Connor, D.O.; Jasty, M.; Harris, W.H. A novel method of cross-linking ultra-high-molecular-weight polyethylene to improve wear, reduce oxidation, and retain mechanical properties: Recipient of the 1999 HAP paul award. J. Arthroplast. 2001, 16, 149–160. [Google Scholar] [CrossRef]
- Murata, M.; Murata, Y.; Komatsu, K. Surgery of fullerenes. Chem. Commun. 2008, 46, 6083–6094. [Google Scholar] [CrossRef]
- Shameema, O.; Ramachandran, C.N.; Sathyamurthy, N. Blue shift in X−H stretching frequency of molecules due to confinement. J. Phys. Chem. A 2006, 110, 2–4. [Google Scholar] [CrossRef]
- Pizzagalli, L. First principles molecular dynamics calculations of the mechanical properties of endofullerenes containing noble gas atoms or small molecules. Phys. Chem. Chem. Phys. 2022, 24, 9449–9458. [Google Scholar] [CrossRef] [PubMed]
- Krishnamoorthy, A.; Nomura, K.I.; Baradwaj, N.; Shimamur, K.; Ma, R.; Fukushima, S.; Shimojo, F.; Kalia, R.K.; Nakano, A.; Vashishta, P. Hydrogen bonding in liquid ammonia. J. Phys. Chem. Lett. 2022, 13, 7051–7057. [Google Scholar] [CrossRef] [PubMed]
- Brodskaya, E.; Lyubartsev, A.P.; Laaksonen, A. Investigation of water clusters containing OH− and H3O+ ions in atmospheric conditions. A molecular dynamics simulation study. J. Phys. Chem. B 2002, 106, 6479–6487. [Google Scholar] [CrossRef]
- Datka, J.; Góra-Marek, K. IR studies of the formation of ammonia dimers in zeolites TON. Catal. Today 2006, 114, 205–210. [Google Scholar] [CrossRef]
- Tuckerman, M.; Laasonen, K.; Sprik, M.; Parrinello, M. Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J. Chem. Phys. 1995, 103, 150–161. [Google Scholar] [CrossRef]
- Spanel, P.; Spesyvyi, A.; Smith, D. Electrostatic switching and selection of H3O+, NO+, and O2+• reagent ions for selected ion flow-drift tube mass spectrometric analyses of air and breath. Anal. Chem. 2019, 91, 5380–5388. [Google Scholar] [CrossRef]
- Guo, Z.; Huang, J.; Dong, X.; Xi, Y.; Yan, L.; Wang, Z.; Wang, Y. An organic/inorganic electrode-based hydronium-ion battery. Nat. Commun. 2020, 11, 1–9. [Google Scholar] [CrossRef]
- Ma, F.; Li, Z.R.; Xu, H.L.; Li, Z.J.; Wu, D.; Li, Z.S.; Gu, F.L. Proton Transfer in the complex H3N…HCl catalyzed by encapsulation into a C60 Cage. Chem. Phys. Chem. 2009, 10, 1112–1116. [Google Scholar] [CrossRef]
- Varadwaj, A.; Varadwaj, P.R. Can a single molecule of water be completely isolated within the subnano-space inside the fullerene C60 cage? A quantum chemical prospective. Chem. Eur. J. 2012, 18, 15345–15360. [Google Scholar] [CrossRef]
- Wang, L.; Ye, J.T.; Wang, H.Q.; Xie, H.M.; Qiu, Y.Q. Third-order nonlinear optical properties of endohedral fullerene (H2)2@C70 and (H2O)2@C70 accompanied by the prospective of novel (HF)2@C70. J. Phys. Chem. C 2018, 122, 6835–6845. [Google Scholar] [CrossRef]
- Schwedhelm, R.; Kipp, L.; Dallmeyer, A.; Skibowski, M. Experimental band gap and core-hole electron interaction in epitaxial C60 films. Phys. Rev. B 1998, 58, 13176–13180. [Google Scholar] [CrossRef]
- Li, S.; Zhang, Z.; Long, Z.; Chen, D. Structures, stabilities, and spectral properties of endohedral borospherenes M@B400/–(M=H2, HF, and H2O). ACS Omega 2019, 4, 5705–5713. [Google Scholar] [CrossRef] [PubMed]
- Cong, H.; Liu, A.; Hao, Y.; Feng, L.; Slanina, Z.; Uhlik, F. Ho2O@C84: Crystallographic evidence showing linear metallic oxide cluster encapsulated in IPR fullerene cage of D2d(51591)-C84. Inorg. Chem. 2019, 58, 10905–10911. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Lei, D.; Gan, L.H.; Zhang, Z.X.; Wang, C.R. Theoretical study on experimentally detected Sc2S@C84. Chem. Phys. Chem. 2014, 15, 2780–2784. [Google Scholar] [CrossRef]
- Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789. [Google Scholar] [CrossRef]
- Becke, A. Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 1993, 98, 5648. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; et al. Gaussian 09, Revision and C. D.01; Gaussian: Wallingford, CT, USA, 2013. [Google Scholar]
- Te Velde, G.; Bickelhaupt, F.M.; Baerends, E.J.; Fonseca Guerra, C.; Van Gisbergen, S.J.A.; Snijders, J.G.; Ziegler, T. Chemistry with ADF. J. Comput. Chem. 2001, 22, 931–967. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Cances, E.; Mennucci, B.; Tomasi, J. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. J. Chem. Phys. 1997, 107, 3032–3041. [Google Scholar] [CrossRef]
Bond Length | H2O | H2O@C60 |
r(O-H) | 0.965 | 0.964 |
r(O-H) | 0.965 | 0.964 |
NH3 | NH3@C60 | |
r(N-H) | 1.018 | 1.014 |
r(N-H) | 1.018 | 1.014 |
r(N-H) | 1.018 | 1.014 |
H+@C60 | ||
r(C-H) | 1.130 | |
H3O+ | H3O+@C60 | |
r(O-H) | 0.982 | 0.994 |
r(O-H) | 0.982 | 0.994 |
r(O-H) | 0.982 | 0.994 |
NH4+ | NH4+@C60 | |
r(N-H) | 1.027 | 1.027 |
r(N-H) | 1.027 | 1.027 |
r(N-H) | 1.027 | 1.027 |
r(N-H) | 1.027 | 1.027 |
∆Eint | ∆Eelstat | ∆EPauli | ∆Eorb | ∆Edisp | |
---|---|---|---|---|---|
H2O@C60 | −13.22 | −6.02 | 13.60 | −4.71 | −16.09 |
NH3@C60 | −14.18 | −10.60 | 24.64 | −5.95 | −22.27 |
H+@C60 | −174.08 | 82.43 | 0.00 | −253.88 | −2.63 |
H3O+@C60 | −26.50 | 32.43 | 19.52 | −58.23 | −20.22 |
NH4+@C60 | −22.97 | 33.45 | 17.07 | −47.03 | −26.46 |
ADCH | ADCH | ||||
---|---|---|---|---|---|
H2O | O | −0.714 | H2O@C60 | O | −0.538 |
H | 0.357 | H | 0.266 | ||
H | 0.357 | H | 0.266 | ||
NH3 | N | −0.968 | NH3@C60 | N | −0.680 |
H | 0.323 | H | 0.223 | ||
H | 0.323 | H | 0.223 | ||
H | 0.323 | H | 0.222 | ||
H+ | H | 1 | H+@C60 | H | 0.053 |
H3O+ | O | −0.480 | H3O+@C60 | O | −0.165 |
H | 0.493 | H | 0.268 | ||
H | 0.493 | H | 0.266 | ||
H | 0.493 | H | 0.265 | ||
NH4+ | N | −0.249 | NH4+@C60 | N | −0.134 |
H | 0.312 | H | 0.203 | ||
H | 0.312 | H | 0.204 | ||
H | 0.312 | H | 0.206 | ||
H | 0.312 | H | 0.206 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Wang, B. Encapsulating Proton Inside C60 Fullerene: A Density Functional Theory Study on the Electronic Properties of Cationic X+@C60 (X+ = H+, H3O+ and NH4+). Int. J. Mol. Sci. 2024, 25, 12014. https://doi.org/10.3390/ijms252212014
Zhao L, Wang B. Encapsulating Proton Inside C60 Fullerene: A Density Functional Theory Study on the Electronic Properties of Cationic X+@C60 (X+ = H+, H3O+ and NH4+). International Journal of Molecular Sciences. 2024; 25(22):12014. https://doi.org/10.3390/ijms252212014
Chicago/Turabian StyleZhao, Lei, and Bo Wang. 2024. "Encapsulating Proton Inside C60 Fullerene: A Density Functional Theory Study on the Electronic Properties of Cationic X+@C60 (X+ = H+, H3O+ and NH4+)" International Journal of Molecular Sciences 25, no. 22: 12014. https://doi.org/10.3390/ijms252212014
APA StyleZhao, L., & Wang, B. (2024). Encapsulating Proton Inside C60 Fullerene: A Density Functional Theory Study on the Electronic Properties of Cationic X+@C60 (X+ = H+, H3O+ and NH4+). International Journal of Molecular Sciences, 25(22), 12014. https://doi.org/10.3390/ijms252212014