Next Article in Journal
Calcium ATPase (PMCA) and GLUT-4 Upregulation in the Transverse Tubule Membrane of Skeletal Muscle from a Rat Model of Chronic Heart Failure
Previous Article in Journal
Translation of Mutant Repetitive Genomic Sequences in Hirsutella sinensis and Changes in the Secondary Structures and Functional Specifications of the Encoded Proteins
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Molecular Biomarkers in Prediction of High-Grade Transformation and Outcome in Patients with Follicular Lymphoma: A Comprehensive Systemic Review

by
Marie Hairing Enemark
1,2,
Jonas Klejs Hemmingsen
1,
Maja Lund Jensen
1,
Robert Kridel
3 and
Maja Ludvigsen
1,2,*
1
Department of Hematology, Aarhus University Hospital, 8200 Aarhus N, Denmark
2
Department of Clinical Medicine, Aarhus University, 8000 Aarhus C, Denmark
3
Princess Margaret Cancer Center, University Health Network, Toronto, ON M5G 2C4, Canada
*
Author to whom correspondence should be addressed.
Int. J. Mol. Sci. 2024, 25(20), 11179; https://doi.org/10.3390/ijms252011179
Submission received: 6 September 2024 / Revised: 3 October 2024 / Accepted: 6 October 2024 / Published: 17 October 2024
(This article belongs to the Section Molecular Oncology)

Abstract

:
Follicular lymphoma (FL) is the most prevalent indolent B-cell lymphoma entity, often characterized by the t(14;18) BCL2-IGH translocation. The malignancy represents a clinically and biologically highly heterogeneous disease. Most patients have favorable prognoses; however, despite therapeutic advancements, the disease remains incurable, with recurrent relapses or early disease progression. Moreover, transformation to an aggressive histology, most often diffuse large-B-cell lymphoma, remains a critical event in the disease course, which is associated with poor outcomes. Understanding the individual patient’s risk of transformation remains challenging, which has motivated much research on novel biomarkers within the past four decades. This review systematically assessed the research on molecular biomarkers in FL transformation and outcome. Following the PRISMA guidelines for systemic reviews, the PubMed database was searched for English articles published from January 1984 through September 2024, yielding 6769 results. The identified publications were carefully screened and reviewed, of which 283 original papers met the inclusion criteria. The included studies focused on investigating molecular biomarkers as predictors of transformation or as prognostic markers of time-related endpoints (survival, progression, etc.). The effects of each biomarker were categorized based on their impact on prognosis or risk of transformation as none, favorable, or inferior. The biomarkers included genetic abnormalities, gene expression, microRNAs, markers of B cells/FL tumor cells, markers of the tumor microenvironment, and soluble biomarkers. This comprehensive review provides an overview of the research conducted in the past four decades, underscoring the persistent challenge in risk anticipation of FL patients.

1. Introduction

Follicular lymphoma (FL) represents the most common indolent lymphoma subtype. The malignant cells arise from B cells, which have often acquired a t(14;18) BCL2-IGH translocation [1,2,3,4,5,6]. With the exception of truly localized low-grade disease, FL is regarded as an incurable condition with a natural history of recurrent relapses. Nevertheless, therapeutic advances in the past decades have improved the prognosis markedly, with reported median survival times approaching two decades [7]. In contrast to the generally favorable clinical behavior of the disease, a significant portion of patients experience early disease progression, rapid treatment refractoriness, and/or histological transformation to a more aggressive lymphoma histology, most often diffuse large-B-cell lymphoma (DLBCL) [3]. The transformation event is accompanied by aggressive clinical behavior and markedly poor outcomes, reflecting the therapeutic implications of the high-grade lymphoma [2,5,8,9,10]. The past four decades of research have led to an improved understanding of the underlying biology of FL and its transformation; however, to this date no clinicopathological nor molecular marker has been able to unequivocally mirror the risk of transformation in FL [6]. Thus, despite the improved therapeutic regimens currently available for FL, the essential challenge of identifying FL patients with high-risk disease at the individual patient level remains. In the attempt to identify high-risk FL patients upfront, the search for novel biomarkers has long been of interest in FL research [3,5,11]. The long natural history and typically indolent behavior of FL provide opportunities to combine clinical and biological data to determine patient prognosis. Any biomarker harboring information on the risk of subsequent transformation already at the time of initial FL diagnosis would have the potential to aid treatment strategy and reduce mortality and morbidity [5].
Over the past four decades, several retrospective studies have assessed prognostic biomarkers for outcomes and transformation in FL [5]. The subject of this review was to systematically assess the research on molecular biomarkers in the transformation of FL. As transformation remains the leading cause of FL-related mortality, biomarker studies of time-related endpoints (overall survival, event-free survival, etc.) were also included in the study, ultimately aiming at a comprehensive overview of molecular biomarkers investigated in transformation and outcomes in FL.

2. Literature Search

The review was conducted according to the PRISMA 2020 guidelines [12,13]. The PubMed database was searched to identify publications relevant to the topic. All review processes were performed using Covidence (Covidence systematic review software, Veritas Health Innovation, Melbourne, Australia. Available at www.covidence.org (assessed on 7 October 2024)), which is a web-based platform used to facilitate, e.g., screening and data extraction. Initial search criteria were restricted to studies written in English and published from January 1984 through September 2024. PubMed was searched with the inclusion of medical subject headings (MESH) terms using the search string (follicular lymphoma OR follicular lymphoma[MESH]) AND (outcome OR prognosis OR survival OR progression OR transformation), yielding 6769 results (Figure 1). The search option to exclude reviews, case reports, and commentaries was then applied. This resulted in a total of 4288 publications after the removal of duplicates. The identified publications were carefully screened by three reviewers (MBE, JKH, and MLJ) based on the type of study, titles, and abstracts, which left 1238 studies for full-text review. Included studies had to be original research studying molecular markers in pre-therapeutic samples in relation to transformation and/or prognosis of FL. Thus, we excluded the following: (i) review papers, (ii) case reports, (iii) studies of a non-follicular lymphoma study population, (iv) studies of relapsed/refractory FL, (v) studies of non-human tissues (i.e., animal models, cell line studies), (vi) studies with no molecular biomarkers evaluated, and (vii) otherwise irrelevant papers (e.g., sample sizes insufficient for statistical analysis). For more homogenous extraction, papers investigating pediatric FL and cutaneous FL were excluded. Moreover, commonly described markers such as β2-microglobulin, hemoglobin, lactate dehydrogenase (LDH), albumin, C reactive protein, serum immunoglobulins (Igs), Ki67, and the t(14;18)/BCL2 rearrangements were not included. We did not discriminate in regard to the analytical method used in the studies. Reference lists of included studies and relevant review papers were searched to identify any studies that may have been missed by the database search, which resulted in the inclusion of an additional 10 studies. Full-text screening and data extraction were performed by three reviewers (MBE, JKH, and MLJ), after which a total of 283 studies were eligible for inclusion in the final review. A PRISMA flow chart illustrating the inclusion process is presented in Figure 1.
The included studies focused on molecular biomarkers, investigating their potential role as predictors of transformation or as prognostic markers of time-related endpoints. The effect of each biomarker on prognosis or risk of transformation, respectively, were divided into three classes, i.e.,
(i)
None, if the biomarker was investigated but no statistically significant impact on prognosis or risk of transformation was reported,
(ii)
Favorable, if the biomarker was associated with superior prognosis or lower risk of transformation,
(iii)
Inferior, if the biomarker was associated with worse prognosis or higher risk of transformation.
Favorable or inferior associations between biomarker and outcome were committed to reports of significance levels of p < 0.05. Trending results not reaching statistical significance at this setting were included in the class “none”.

3. Review of Studies of Putative Biomarkers

Studies investigating molecular biomarkers in relation to the risk of subsequent transformation, disease progression, and/or survival were reviewed. According to our search criteria, 283 papers were included for review (Figure 1). An increasing number of papers investigating molecular biomarkers in correlation with clinical outcomes were seen over time, with the majority of the included articles published in the last two decades. This was as expected, as molecular and scientific advancements, technologies, and possibilities have improved at a rapid pace during the study period, January 1983–September 2024.
For detailed study information, the analyzed markers have been separated into groups: (i) genetic abnormalities, Table 1, Table 2, Table 3 and Table 4; (ii) gene expression, Table 5, Table 6 and Table 7; (iii) microRNAs, Table 8; (iv) B cells/FL tumor cells, Table 9; (v) the tumor microenvironment, Table 10, Table 11, Table 12, Table 13, Table 14, Table 15 and Table 16; and (vi) soluble biomarkers, Table 17 and Table 18. As such, several tables have been subdivided to clarify their content. This separation into different biomarker groups was an attempt at simplifying the large amount of data, and thus, we advise the reader to keep in mind that several included biomarkers (e.g., different proteins) may be expressed in several cell types or function in other pathways than where they are listed in the tables. Moreover, we did not discriminate studies based on whether analyses were performed specifically on tumor cells or using bulk material, which may add to the diversity of the tables.

3.1. Genetic Abnormalities

The pathogenesis of FL is a complex, multistep process, which remains incompletely elucidated [4,6,14]. Accordingly, much research has focused on genetic abnormalities in FL. These abnormalities can involve changes in tumor suppressor genes, oncogenes, or genomic instability. Identifying such genetic abnormalities not only enhances our comprehension of complex diseases but also provides promising drug targets. Through whole-genome sequencing, targeted deep sequencing, single-nucleotide polymorphism arrays, and many more, chromosomal structural variants and mutational changes have been identified (Table 1, Table 2, Table 3 and Table 4).
Table 1. General genomic changes.
Table 1. General genomic changes.
Reported Risk of TransformationReported Prognostic Value
FavorableInferiorNoneFavorableInferiorNone
Genomic or karyotypic changes [15] [16,17,18,19,20][21,22,23]
Increasing number of mutations [24,25][21] [21,26,27,28,29,30][21,31,32,33,34]
M7-FLIPI [35] [24] [26,34,35,36][27,32,33,37,38,39,40]
TNFRSF14-KMT2D-HIST1H1E-FLIPI [41] [41]
DLBCL-like mutational status [42] [42]
TT genetic subtype (NFκB members and TP53) [43] [43]

3.1.1. Cytogenetic Abnormalities

Cytogenetic abnormalities have provided valuable insights into the molecular mechanisms underlying FL pathogenesis and comprise significant implications for prognosis and treatment strategies. The most characteristic example in FL is the translocation t(14;18)(q32;q21), resulting in the constitutive expression of the anti-apoptotic BCL2 protein, which is present in around 85% of diagnosed cases and is considered a hallmark event of FL development [1,2,5,44]. Certain regional chromosomal imbalances and genomic or karyotypic changes have been linked to poor outcomes and an increased risk of transformation. However, it is not known whether their association with inferior outcomes could merely reflect a collectively increased genomic complexity, as the number of chromosomal alterations in itself has been reported to be correlated with adverse outcomes [5,15,16,17,18,19,20].
Further characterization of cytogenetic abnormalities has revealed specific chromosomal alterations associated with distinct clinical outcomes in FL. Chromosome 1 aberrations, such as the loss of 1p (encoding genes such as NOTCH2, CD58), and especially 1p36 (encoding genes such as TNFRSF14, MTOR, ARID1A, C1QA, TP73), are linked to inferior overall survival and an increased risk of transformation [18,33,45,46,47,48]. Losses on 3q27 (encoding genes such as BCL6) have also been reported linked to inferior outcomes [19]. Similarly, alterations in chromosome 6 are associated with varied prognostic implications. Loss of 6q (encoding genes such as SESTRIN1, TNFAIP3, BLIMP1) is generally associated with inferior OS and an increased risk of transformation, although there is conflicting evidence suggesting a favorable risk of transformation in one study [16,17,18,29,46,48,49,50]. Conversely, the gain of 6p (encoding genes such as IRF4, PIM1, CCND3, CDKN1A, HIST1H1E, HLA-A/B/DR) exhibits contradictory effects, with some studies indicating a favorable risk of transformation while others suggest an inferior prognosis. Gains on chromosomes 7 (CARD11, EZH2, KMT2C), 8q (MYC), 12q (KMT2D, MDM2, STAT6, ATP6AP1, BCL7A, BTG1), and 18 (BCL2), as well as losses on 16p (CREBBP, SOCS1) have been described with inferior outcomes regarding both transformation and time-related endpoints [16,20,22,33,46,49,51,52]. Furthermore, chromosome 17 abnormalities seem to play a crucial role in FL prognosis. Loss of 17p (encoding genes such as TP53) is consistently associated with inferior OS and an increased risk of transformation, while loss of 17q (encoding genes such as CD79B, GNA13, STAT3) also has been reported to contribute to inferior OS [18,19,20,46,47,48,53]. Conversely, gain of 17q has also been linked to an inferior risk of transformation and worse OS outcomes [20,46,54]. Loss of chromosome 22q (EP300) and gains of 21 (BACH1, RUNX1, SCL19A1) and X (BTK, UBE2A, CXCR3, FOXP3) have also been described, implicating several genes often reported in FL pathogenesis [16,19,20,47,49]. Interestingly, the above-mentioned genetic areas may share important common features. For instance, TP73 and TP53 are located on 1p36 and 17p, respectively [55,56]. TP53 may be the most well-described tumor suppressor, while TP73 is a member of the p53 tumor suppressor gene family. Loss of genetic material in these areas might result in the loss of key tumor suppressor functions, contributing to cancer development and progression. While TP53 mutations themselves occur only in approximately 5–7% of FL, this could indicate other deregulation leading to the loss of tumor suppressor function aside from the commonly known TP53 mutations and/or deletions [5,11,57].
Structural alterations involving BCL6 have been associated with outcomes in FL, with BCL6 translocations reported to confer an increased risk of transformation; however, studies examining the general prognosis of FL patients with BCL6 rearrangements yield conflicting results [58,59,60,61]. Similarly, copy number changes affecting BCL6 have been implicated in inferior OS and an increased risk of transformation, underscoring the need for further research to elucidate their precise role in FL pathogenesis and prognosis [62]. Indeed, the germinal center (GC)-specific BCL6 protein is critical in the FL biology, as it modulates the cell cycle, response to DNA damage, and anti-apoptotic molecules, which allows somatic hypermutation and class-switch recombination to proceed, altogether affecting gene expression that favors perpetuation of the GC B-cell state [63].
The comprehensive understanding of cytogenetic abnormalities in FL provides not just potential valuable prognostic markers but also cancer driver genes. However, to fully understand the potential, research efforts are warranted to unravel the complex genetic landscape of FL and identify novel therapeutic targets.
Table 2. Chromosomal abnormalities.
Table 2. Chromosomal abnormalities.
Reported Risk of TransformationReported Prognostic ValueReported Risk of TransformationReported Prognostic Value
ChrLosses onGains on
FavorableInferiorNoneFavorableInferiorNoneFavorableInferiorNoneFavorableInferiorNone
1p [18,47,48][19] [19]
1p36 [46][24] [33,45,46][53]
1q [18,19][49] [46] [46,47][17,19]
2 [49] [47]
2p [18,47] [64] [20,49][64]
2q [20]
3p [47]
3q [47] [49] [49]
3q27 [19][18]
4 [47]
4p [53]
4q [18][17]
5 [49] [47,65]
5p [46] [46,49,50]
5q [18,53] [49]
6
6p [49][46] [33][46,47]
6q[49][18,46][24] [16,17,18,46,48,50,65][19,47,53]
7 [64] [18,19,47,64,65]
7p [46] [22,46][17,51]
7q [46] [17,46]
8 [47]
8p [51]
8q [66] [20,66] [46][64] [16,46][64]
9p [16,50]
9q [53]
10p [47]
10q [46] [18,19,46,47,53] [19]
11q [50][51]
12 [22,47][18,19,65]
12p [47] [17]
12q [46,49][64] [49][18,46,64]
13 [65]
13p [47]
13q [17,18,19,53]
15 [47,65]
16p [20]
17p [18][46] [18,20,46,47,48,53] [17]
17q [19,47,53][18] [46] [20,46][47]
18 [52][18,19,47]
18p [46] [17,46]
18q [47,53] [46,64] [33,51][17,46,64]
19p [46] [46]
21 [49] [19][47]
22 [47]
22q [46] [20][46]
X [16,47,49][18,19,65]
Xp [16][17]
Xq [17]

3.1.2. Gene Variants

The majority of studies investigating mutations in FL have focused on the general prognostic impact, meaning that specific information on gene mutation status in relation to transformation is more limited. In several studies, more than one mutational spot was analyzed. For specific variants in the listed genes, we refer the reader to the individual studies.
Some studies have reported an increasing overall mutational burden associated with the risk of transformation, while another study found no difference [21,24,25]. Similarly, several studies have found inferior prognosis in patients with an increased mutational burden, which not all studies have been able to replicate [21,26,27,28,29,31,32,33,34]. In general, transformed FL differs from preceding indolent FL by higher numbers of genetic aberrations, presenting with mutations of known putative oncogenes and tumor suppressor genes, which are not necessarily mutated at the time of diagnosis [5,67,68].
BCL2 gene variants. Apart from the hallmark t(14;18) involving the BCL2 gene, BCL2 variants have been reported to be correlated with transformation and outcome in four studies but not associated with outcome in others, which might be due to heterogenous methodologies, sequencing depth, considerations of non-coding/coding sequences, and more [21,26,33,38,51,52,69,70,71,72,73].
BCL6 gene variants. While BCL6 translocations confer risk of transformation, it remains less described whether BCL6 variants by themselves act as a marker of FL with increased propensity to transform. Indeed, several genes involved in constitutive BCL6 protein activation have been associated with lymphomagenesis (BCL6, MEF2B, IRF4, IRF8). BCL6 variant itself has been reported with inferior risk of transformation, although several studies report no predictive value [21,73,74,75]. Interestingly, IRF8 mutations have been reported with a favorable value regarding risk of transformation but with an inferior value on outcome [24,69]. The majority of studies on all four genes, however, have reported no prognostic value [21,26,27,33,38,52,73,74,75]. These inconclusive and differing observations could underpin differences in methodologies or specific mutation sites; either way, further investigation on the role of these genes might be worth exploring.
Epigenetic modifiers. Mutations in epigenetic modifiers are often described as key pathogenic factors of FL. These include mutations in histone modifiers (KMT2D (also known as MLL2), CREBBP, EZH2, EP300), members of linker histones (HIST1H1B/C/D/E, etc.), as well as SWI/SNF chromatin remodeling complex genes (ARID1A, BCL7A). In addition to being recurrently described in FL development, studies with a focus on CREBBP, EP300, and BCL7A variants have been reported yielding inferior outcomes [24,25,27,32,35,38,76]. Oppositely to the other investigated epigenetic genes, EZH2 mutations have been described associated with favorable outcomes [26,35,52,77,78]. Contradictory to this, the effects on transformation or outcome have also been reported without predictive or prognostic value, as the association seems to be treatment-dependent [21,27,33,38,79,80]. Interestingly, reports of ARID1A variants have revealed favorable, inferior, and no impact on prognostics [21,26,27,33,35,51,69,81]. Mostly, investigations of different linker histones have reported no prognostic or predictive value, with the exception of a prognostic association with HIST1H2AC and HIST1H1D variants [21,26,33,38,69]. Furthermore, HIST1H1E variants have been reported conferring inferior risk of transformation [24,41]. As such, variants of epigenetic modifiers seem to be implicated in the pathogenesis of FL, but it still awaits further research into specific understanding of the mechanisms and, in particular, the predictive value.
Table 3. Other structural abnormalities.
Table 3. Other structural abnormalities.
Reported Risk of TransformationReported Prognostic Value
FavorableInferiorNoneFavorableInferiorNone
Uniparental disomy
Number of abnormalities [64]
1p36 [64]
6p [64] [64]
6q [64] [64]
10q [64] [64]
12q [64] [64]
16p [64] [64]
Gene rearrangements
Number of structural rearrangements [21] [21]
BCL6 [60] [58][61][59]
LAZ3 [82]
MYC [66,83][62] [66][58,62,84,85]
Copy number changes
BCL2 [62] [62]
BCL6 [62] [62]
IRF4 [62] [86]
MYC [62,66] [62][66]
Cell cycle. Genes related to cell cycle progression, such as TP53, MYC, and CDKN2A, have also been widely investigated. Although not that frequently mutated in FL, TP53 is one of the genes most strongly associated with transformation, and is frequently reported in tFL samples [6,32,34,57,87,88]. Similarly, MYC mutations are relatively rare at FL diagnosis, while they are often reported at tFL. The prognostic impact of specific MYC variants, however, remains a bit more unclear [21,73]. Some studies have correlated MYC rearrangements with both inferior risk of transformation and outcome, and case reports have also highlighted a rare subgroup of clinically relevant double-hit FLs with coexistence of BCL2/MYC rearrangements [66,83]. On the contrary, mutations in CDKN2A have been reported with inferior values on both transformation and outcome, making this an interesting target for further analysis [69,89,90].
Immune-related and B-cell receptor signaling. Much research has also been conducted focusing on immune-related and B-cell receptor signaling genes, including FCGR2A/2B/3A. Many different polymorphisms in these genes have been investigated, yielding results of favorable, inferior, and no prognostic impact, depending on the site of the mutation [28,91,92,93,94,95,96,97,98]. In the rituximab era, these genes are most definitely an interesting subject for investigation, as several of the rituximab anti-tumoral mechanisms rely on different FCγ receptors, e.g., antibody-dependent cell cytotoxicity and antibody-dependent phagocytosis [99,100,101,102].
Collectively, a myriad of single genetic variants has been analyzed, investigating predictive or prognostic value on transformation or outcome. Here in the text, a few have been described; however, many more interesting data are enclosed in Table 1, Table 2, Table 3 and Table 4.
M7-FLIPI. Pastore et al. described how weighted inclusion of the mutational status of seven genes commonly described in FL (EZH2, ARID1A, MEF2B, EP300, FOXO1, CREBBP, and CARD11) incorporated with the FLIPI score, named the M7-FLIPI score, improved risk stratification for failure-free survival. This score has later been investigated by several studies, with different reporting on predictive power. Roughly half of the studies were able to validate the inferior prognostic value of the score, including one study also reporting inferior impact on transformation, while the other half found no difference in outcome [24,26,27,32,33,34,35,36,37,38,39,40]. Differences have also been reported depending on the choice of treatment (e.g., bendamustine, obinutuzumab vs. CHOP/CVP). Noteworthy, one such study found that in a non-chemotherapy-containing regimen, the M7-FLIPI was not prognostic of outcome [39]. With the specific endpoint of progression of disease within 24 months (POD24), Jurinovic et al. analyzed the genes of the M7-FLIPI score, yielding a better stratification model, the POD24 prognostic index (POD24-PI) refined to include FLIPI as well as the mutational status of only three of the genes (EP300, FOXO1, and EZH2) [36].
Table 4. Specific genetic variants.
Table 4. Specific genetic variants.
Reported Risk of TransformationReported Prognostic Value Reported Risk of TransformationReported Prognostic Value
GeneFavorableInferiorNoneFavorableInferiorNoneGeneFavorableInferiorNoneFavorableInferiorNone
ABL2 [51]HSP27 [73]
ACTA [73]HSP40 [73]
ACTB [21,73]HTR2B [73]
ADAM17 [103] HVCN1 [38] [21]
APEX1 [104]ID2 [73]
ARHGEF1 [21]IFNGR1 [105][92]
ARID1A [81] [35][69][21,26,27,33,51]IGHV [106]
ARID1B [21,33]IGHV1 [107]
ATP6AP1 [21]IGHV3 [107]
ATP6V1B2 [21,33,38]IGHV4 [107]
B2M [41] [21][27,32]IGHV5 [107]
BACH2 [21] IGHV6 [107]
BCL2 [72] [69,70,71,72][21,26,33,38,51,52,73]IGLL5 [32,33]
BCL6 [75] [21,73,74,75]IKZF3 [21]
BCL7A [24][21,38]IL10 [28,108]
BCR [21]IL12A [108]
BHMT [104]IL12B [28,92]
BIM [109] IL13 [28]
BMP6 [73]IL16 [28]
BMP7 [103] IL17A [108]
BRCA1 [104]IL17F [108]
BRCA2 [104]IL1RN [28][92]
BTG1 [21][27]IL2 [92][28][108]
BTG2 [21][21,38]IL2RG [73]
BTK [69] [38]IL3 [28]
C1QA [110][110] IL4R [105][21,92,105]
C1QB [111]IL5 [28][105]
C1QC [111]IL6 [105]
C1QTNF7 [111]IL7R [105]
C1RL [111]IL8 [92][105][28,105]
C1S [111]IL8RB [28]
C2 [111]IRF4 [21]
C3 [111] IRF8[69] [24][21,26,27,33,38]
C3AR1 [111]IL10 [105]
C4BPA [111] IL12B [105]
C5 [111] IL16 [105]
C5AR1 [111]ITPKB [21]
C6 [111]JUN [73]
C6orf15 [112] [112][92]KLHL6 [21]
C7 [111] KMT2C [21]
C8B [111]KMT2D [MLL2] [41][25] [21,26,33,38,51,52]
C9 [111][111][92]LGMN [48]
CARD11 [35][21,26,27,33,38,52]LIG4 [104]
CARD15 [105]LRRC7 [21]
CBS [104]LRRN3 [38]
CCDC129 [38]MAP3K11 [73]
CCNB [73]MASP2 [111]
CCND3 [71][21]MBD2 [104]
CCR2 [105] MBL2 [111]
CCR4 [37] MDM2 [113] [113]
CD46 [92,111] MEF2B [21,27,38,52]
CD55 [111][92] MEF2C [21]
CD59 [111]MGMT [104]
CD69 [48] MIF [105][92]
CD79B [21,33,38]MINOR [73]
CD83 [21]MKI67 [21]
CD8A [37,48] MLH1 [97][104]
CD8B [37] MSH2 [104]
CD93 [111]MTHFD2 [104]
CDC2 [73]MTHFR [92][104]
CDKN1A [73]MTHFS [104]
CDKN2A [69] [69,89,90][90]MTR [104]
CFB [111]MTRR [104]
CFD [111]MUC4 [38]
CFH [111][111][92]MYC [21,73]
CFHR1 [111] MYD88 [21][32,52]
CFHR5 [111][92]MYOM2 [21]
CHI3L1 [114] NBS1 [104]
CHD8 [21]NCOR2 [33]
CIITA [21]NLRC5 [21]
CLU [111]NOTCH1 [21]
COL3A1 [73]NOTCH2 [24,41] [21,33]
CR1 [111] NPM3 [73]
CR2 [111] NR2F6 [73]
CREBBP[25,41] [76][25][32,38,76][21,26,27,33,51,52]OVGL [73]
CSMD3 [41]
CTLA4 [105]P2RY8 [21]
CTSS [115] [21]PDCD4 [73]
CX3CR1 [114] PIEZO1 [73]
CXCR3 [37] PIM1 [34][21,27,38]
CXCR4 [38]PLAU [73]
CXCR5 [116][116] [116][116]POU2AF1 [21,38]
CYBA [97]POU2F2 [38]
CYHR1 [33]PRF1 [37]
DEFB115 [38]PRKCB [73]
DNAH9 [21]PRKCG [73]
DTX1 [24] [21]PSMB1 [91]
DUSP2 [103] PSMB5 [91]
DUXA [38]PSMB8 [91]
E2FS [117] PSMB9 [91]
EBF1 [21,27]RAD23B [104]
EBF3 [21]RAG1 [104]
EEF1A1 [21]RFX5 [21]
EIF2B [73]RHOA [21]
EML6 [117] RHOH [21]
EOMES [37] RPS9 [73]
EP300 [41] [27,35][21,26,38,52]RRAGC [21]
ERCC1 [104]S1PR2 [21]
ERCC2 [104]SELE [105][92]
ERCC4 [104]SERPING1 [111]
ERCC5 [104]SGK1 [21,27]
EVI2A [21]SHMT1 [104]
EZH2[41][25][25,79][26,35,52,77,78] [21,27,33,38,79,80]SLC19A1 [104]
FAS [21][27,52]LC25A23 [33]
FAT4 [21]SMAD1 [73]
FCGR2A [28,91] [91,92,93,94,95,96,97]SMARCA4 [21,26]
FCGR2B [95][95][95]SOCS1 [21,32][27,33]
FCGR3A [91,96,118][96][93,94,95,97,98]SORT1 [33]
FLT3LG [37] STAT3 [21]
FOXO1 [26,34,35][27]STAT6 [21,26,32,33,38,51]
FPGS [104]TBX-21 [37]
FTHFD [104][92]TCF3 [21]
GADD45B [103] TCN1 [104]
GALNT12 [103] [92]TGFB1 [108]
GAPDH [73]TGFBR1 [108]
GGH [104][92]TGFBR2 [108]
GNA13 [69] [21,26,27,38]TLE1 [73]
GNAI2 [21]TNF/LTA [73][28]
GSTA1 [97]TNFAIP3 [21,52]
GSTM1 [119] TNFRSF14[41] [45][120][45][21,26,33,38,48,52]
GSTT1 [119] TP53 [41,69][113] [21,24,32,35,57,69,74,121][27,33,38,104,113]
GZMM [37] TPTE2 [38]
GZMK [37] TYMS [104]
HIST1H2AC [69] UBE2A [24,41]
HIST1H1B [21]UNC5C [21]
HIST1H1C [21,33,38]USP44 [117]
HIST1H1D [33][38]VEGFA [122]
HIST1H1E [24,41] [21,26,33,38]VMA21 [38]
HIST1H2AM [21,38]WRN [104]
HIST1H2BK [38]XBP1 [21][27]
HIST1H3G [38]XPB [73]
HIST2H2AC [38]XPC [104]
HLA-A [123] XRCC1 [104]
HLA-B [123] XRCC2 [104]
HLA-C [123]XRCC3 [104]
HLA-DMB [21]XRCC4 [104]
HLA-DRA [73]YY-1 [73]
HLA-DRB [123] ZFP36L1 [21]
HLA-DQA [73]ZFPC150 [73]
HLA-DQB1 [112] [112]ZFX [73]
HNRNPU [38]ZNF608 [38]
HSF1 [73]

3.2. Gene Expression

Outcome-associated gene expression profiles. The malignant FL cells reside within a rich TME enveloped by nonmalignant immune bystander cells and critical immune components. The contribution of the TME to patient outcome was first described by Dave et al. [124], who demonstrated that immune-related gene expression profiles with a high expression of genes from FL tumor-associated macrophages was indicative of poor outcomes, which was later validated in an independent cohort [124]. However, other studies have later shown conflicting results, sometimes depending on incorporated treatment regimens, not able to reproduce the prognostic value (Table 5, Table 6 and Table 7) [53,125].
Another gene expression profiling study, performed by Huet et al. [126], defined a signature based on the expression of 23 genes characteristic of B-cell centroblasts that correlated with adverse outcomes in FL [126]. The adverse impact of this signature was later validated in independent cohorts [34,117,126,127].
Transformation-associated gene expression profiles. In continuation of B cell-related genes, Brodtkorb et al. [128] described a gene expression signature of NFκB-related genes, which were reported to be of prognostic value regarding both outcomes and subsequent transformation, which was later validated by Steen et al. [128,129].
Other gene expression signatures reporting unfavorably on the risk of transformation include an embryonic stem-cell-like signature [130]. Moreover, several signatures have reported favorable outcomes, including a GCB-like FL signature and two different T-cell signatures [37,125,131,132,133,134].
Table 5. Gene expression signatures.
Table 5. Gene expression signatures.
Reported Risk of TransformationReported Prognostic Value
FavorableInferiorNoneFavorableInferiorNone
Pluripotency/embryonic stem cell-like signature [130] [130] [130]
23-GEP risk score [126] [34,117,126,127][37,53]
ICA13 [126] [126]
33 gene-based ABC-like FL signature [131] [131]
33 gene-based GCB-like FL signature [131] [131]
T-cell associated immune infiltration signature [37] [37]
T effector signature [132] [132] [53]
T cell exhaustion signature [135] [135]
NFκB-linked signature [128] [128,129] [128,129]
Somatic hypermutation signature [69] [69] [69]
m6A score, low [136] [136]
FL loci risk score [133] [133]
MAP signature [32] [32]
STAT signature score [134] [134]
Immune-related 1 [124] [124] [53,125]
Immune-related 2 [124] [124,137][53,125]
Localized-stage FL signature [125] [125]
TH17-axis related [138] [138]
Expression of single genes. Prognostic or predictive effects of the expression of single genes have also been performed, primarily investigating outcomes and less so transformation. Tobin et al. [139] performed a large, targeted gene expression analysis, where they showed differences in the expression of immune markers or immune checkpoints. Of particular note, low levels of immune markers would identify patients enriched for early progression. Here, the immune checkpoint molecule PD-L2 was the marker with the highest accuracy [139]. Conversely, another study did not find this same correlation [53]. Single genes whose expression have been linked to subsequent transformation include B-cell/immune-related genes such as BTK, CCL19, CCL20, CD101, CD138, CD2, CD69, CD9, CXCL1, CXCR6, GZM-K, IFN-γ, IGBP1, IL1R, LYN, and more [128,140,141]. Many more studies have focused on outcomes and gene expression, with various reports of both favorable and inferior correlations.
At present, the assessment of these genes as well as the capacity to perform gene expression studies are not standardized at diagnosis, as some techniques are not readily available. Furthermore, while indeed interesting, on the way to understanding the underlying tumor biology, the expression signatures of dozens of genes may currently be more appropriate in research settings rather than in the clinical setting.
Table 6. Gene expression levels.
Table 6. Gene expression levels.
Reported Risk of TransformationReported Prognostic Value Reported Risk of TransformationReported Prognostic Value
GeneFavorableInferiorNoneFavorableInferiorNoneGeneFavorableInferiorNoneFavorableInferiorNone
ABHD6 [137] KLRB1 [140]
ACTB [142]KNT2C [143]
ACTN1 [142]KIAA0100 [137]
AKAP12 [142]KIAA0101 [143]
AKIRIN1 [137] KIAA0317 [144]
AKT [145] KIAA1223 [144]
ALDH1L1 [137]KRT19 [137]
ANP32E [143] LAG3 [139]
ARFGEF1 [137] LEF1 [142]
ARPC2 [137] LGMN [142]
ASAP2 [137] LIPA [140]
ATPAF2 [137] LPP [137]
BCL-XL [146][145]LYN[140]
BCL6 [145]MAL2 [140]
BLCAP [144] MALAT1 [141] [141]
BLNK [144] MAP3K7 [128]
BNIP2 [137] MAPK1 [142]
BRI3BP [144] MARCO [147]
BTD [137] MED6 [137]
BTK [128] MED8 [137]
BTN2A3P [137] MLPH [144]
BUB1B [143]MMP9 [148]
C1S [144] MOX2 [144]
C1QR1 [144] MYC [145]
C3AR1 [142]MZB1 [149]
C4B [144] NCF4 [144]
CAV1 [144] NEK2 [142]
CBFA2T2 [137] NFIB [148]
CCL19 [140] [148] NFκB [145]
CCL20 [140] NGFRAP1 [144]
CCL3 [142]NK4 [144]
CCL5 [142]NPDC1 [144]
CCL8 [142]NSDHL [137]
CCNA2 [143] PAICS [143]
CCNB1 [143] PBX1 [140]
CCNB2 [143]PD-1 [139]
CCND1 [144] PD-L1 [139]
CCR1 [142] PD-L2 [139] [53]
CD101 [140] PIM1 [134]
CD11d [142]PLA2G2D [148]
CD137 [139]PPP4R1 [128]
CD138 [140] PRB1 [137]
CD19 [142]PRH1 [137]
CD2 [140] [142]PSMF1 [137]
CD3 [142,150] PTAFR [137]
CD31/
PECAM1
[151] PTEN [145]
CD34 [151]PTGDS [148]
CD3D [142]PTP4A2 [137]
CD4 [139] [142]PTPRB[140]
CD47 [142]PTPRC[140]
CD5 [142]PTPRF[140]
CD6 [142]PTPRM [144]
CD68 [139] [142]RAB27B [140]
CD69 [140] [142]RAB38 (144)
CD7 [139,142]RANBP9 [137]
CD8 [150] RET [144]
CD8A [139]RGL1 [148]
CD8B [142]RPS9 [142]
CD9 [140] ROCK1 [128]
CDC2 [143] RRM2B [144]
CDC40 [137] SEP-10 [142]
CDC42BPK [140] SH2D1A [140]
CDK2 [142]SIRT5 [137]
CDKN3 [143] SLC21A9 [144]
CKS1B [143] SLC24A2 [137]
CRY1 [144] SLC7A11 [137]
CXCL1 [140] SLP1 [140]
CXCR6 [140] SMAD1 [147]
CXCL12 [142]SNX9 [144]
DAAM2 [144] SOCS1 [134]
DNAAF1 [137] SOCS3 [134]
DUSP6 [144] SPP1 [144]
ELF3 [140] SSI-3 [144]
EPHA1 [147] ST14 [144]
EVA1B [137] STAT2 [134]
EZH2 [77]STAT3 [134]
FASTKD1 [128] STAT4 [140] [134,142]
FCGR1A [142]STAT5a [134]
FOXP3 [139]STAT6 [134]
FREB [144] TAB2 [128]
FRYL [137] TAF12 [137]
GAPDH [142]TBK1 [128]
GEM [142]TCP10L [137]
GLE1L [144] TDRD12 [137]
GMDS [143]TIA-1 [140]
GZM-K [140] TIM3 [139]
H2BFB [144] TIMP3 [148]
H2BFG [144] TLR5 [142]
HMGB2 [143]TM4SF1 [140]
HMMR (RHAMM) [143]TMED7-TICAM2 [128]
HSF2 [137] TMEM70 [137]
IDH3A [137] TMP3 [140]
IDO1 [132] TNF-alfa [139]
IF2B [142]TNFSF13B [144][142]
IFITM1 [144] TNFRSF14 [152]
IFN-γ[140] TNFSF10 [144]
IGBP1 [128] TOP2A [143]
IKBKG [128] TOP2B [137]
IL1R [140] TRBα [144]
IL2 [134]TRIM37 [128]
IL2Rα
(CD25)
[134][142]TRPM4 [137]
IL4 [134] TSC22D3 [128]
IL4R [134] TSPAN7 [137] [142]
IL7 [134] TTLL3 [137]
IL7R [134]TYROBP [144]
ILF3 [142]UACA [144]
INPP5B [53] UBQLN1 [144]
IRAK1 [128] USP11 [128]
ITK [137] [142]VEGF [151]
JAK2 [134]YAP1 [148]
JUNB [144] ZNF230 [137]
KLK10 [137]
Table 7. Epigenetic regulation.
Table 7. Epigenetic regulation.
Reported Risk of TransformationReported Prognostic Value
Methylation Status onFavorableInferiorNoneFavorableInferiorNone
DAPK [153,154]
MGMT [153]
p15 [153]
p16 [153]

3.3. MicroRNAs

Despite their paucity, studies exploring microRNAs (miRNAs) have provided little evidence of their role in the prognosis and transformation of FL, and further research is needed to fully understand and exploit the potential of this field. miRNAs participate in the posttranscriptional regulation of gene expression by binding target mRNAs, resulting in their repression or degradation. The small RNA molecules have been emerging as biomarkers in cancer research and implicated in cancer pathogenesis, either as oncogenic modulators or tumor suppressors [155,156]. In recent years, miRNAs have become a recurrent theme in hematological malignancies, including leukemia, myeloma, and several B-cell lymphomas, including FL, DLBCL, and mantle cell lymphoma. However, they have not shown clear predictive potential [157,158,159]. Central to FL tumor biology and pathogenesis, several miRNAs are involved in the regulation of B cell biology pathways, including B cell development, B-cell receptor (BCR) and NFκB signaling, apoptotic regulation, as well as DNA damage response [159].
While studies investigating miRNA involvement in FL transformation are sparse, transformation seems to be, at least, partially related to miRNA regulation [6,156,160,161,162]. Musilova et al. reported five miRNAs enriched at transformation, including miR-150. From this, they proposed an MYC/miR-150/FOXP1 axis resulting in greater FOXP1 expression, a transcription factor involved in B cell development associated with inferior outcomes in both FL and DLBCL [6,162,163].
Future directions of research on miRNAs in FL requires a focus on elucidating the function and/or prognostic value of the transformation of FL and the impact of the small RNAs on the TME. Furthermore, the increasing evidence of the importance of miRNAs in lymphoma pathobiology have spurred an endeavor to develop novel miRNA-based therapeutics [159,160]. Despite developments within this field in recent years, we are far from understanding the gene networks regulated by miRNAs in B cells, and thus, further studies are warranted.
Table 8. miRNAs.
Table 8. miRNAs.
Reported Risk of TransformationReported Prognostic Value
FavorableInferiorNoneFavorableInferiorNone
miR-217[164]
miR-221 [164]
miR-222 [164]
miR-223[164]
let-7i [164]
let-7b [164]
miR-150 [162]
miR-7e-5p[165]

3.4. B Cells/FL Tumor Cells

The malignant cells of FL resemble germinal-center centroblasts and centrocytes that usually express pan-B-cell antigens such as CD19, CD20, CD22, and CD79a as well as CD10, BCL2, and BCL6 [1,2,7,166,167]. While BCL2 overexpression is essential for FL development, expression levels of the protein have been reported with different effects on outcome, though with the majority of studies reporting no prognostic impact [48,61,168,169,170,171,172,173,174,175,176,177]. Likewise, overexpression and constitutive activation of BCL6 is well described on FL; however, reports on any prognostic value remain inconsistent, with differences depending on intratumoral localization [60,61,169,171,172,177,178,179]. In addition to BCL2 overexpression, additional secondary genetic aberrations are commonly described in FL as a result of the genetic diversification of Ig genes by AID in the affinity maturation of the B-cell receptor. Regarding AID protein expression, although not restricted to B cells only, one study reported an inferior impact on the risk of transformation [72].
Notably, an inferior impact on the risk of transformation as well as outcome was reported by Carreras et al. on expression of the HVEM protein (encoded by the TNFRSF14 gene, recurrently mutated in FL) [152]. The HVEM protein induces the activation or inactivation of B and T lymphocytes depending on its interaction with different ligands, one being the BTLA protein. When lost in the B cells, the HVEM–BTLA binding is disrupted, ultimately favoring mitogenic signaling in the B cell. Accordingly, in addition to inferior impact of HVEM expression, a favorable association with outcome was reported with increasing levels of BTLA [152].
Different aspects of the B-cell receptor have also been investigated, with only IgD expression yielding reports of prognostic value [61,172,180]. Furthermore, different essential B-cell transcription factors have been analyzed, including FOXP1 and PAX5, conferring reports of inferior impacts on outcome and transformation, respectively [162,163,181]. An inferior association with the risk of transformation and outcome was also reported on the IRF4 (also known as MUM1) protein expression, which is reflective of increased NFκB activation [60,182,183]. Given its role in enhancing BCR signaling, this could also potentially be a candidate for immunomodulatory drugs that downregulate IRF4.
Table 9. B cells/FL tumor cells.
Table 9. B cells/FL tumor cells.
Reported Risk of TransformationReported Prognostic Value
FavorableInferiorNoneFavorableInferiorNone
B cells
BCL2 [168][169][48,61,170,171,172,173,174,175,176,177]
   pBCL2 [184]
CD19 [185]
CD20 [169] [142,186,187]
   Interfollicular CD20 [140] [58,188]
CD21 [177]
CD37 [189][189]
CD69 [190]
CD79a [169]
FOXP1 [162,163][171,179]
HVEM (TNFRSF14) [152] [152]
   Follicular HVEM [152]
   Interfollicular HVEM [152]
MUM1 (IRF4) [60] [182,183][61,171,172,175]
OCT2 [169]
PAX5 [181] [181]
Germinal center cells
BCL6 [60][178] [61,169,172,177]
    Follicular BCL6 [171]
   Interfollicular BCL6 [171][179]
CD10[60] [172,178] [61,142,169,175,177,191]
   Follicular CD10 [171,177]
   Interfollicular CD10 [188][171,179]
   CD10 negative [192]
CD75 [169]
HGAL [54]
Serpin A9/GCET1 [54]
Immunoglobulins
IgA [180]
IgD [172]
IgG [180]
IgM [180]
κ Ig light chain [61]
λ Ig light chain [61]
Tumor phenotype
FL with features of pre-CSR, IgM+IgG memory B-cells [193]
FL with features of normal GC B-cells [193]
Phenotypic diversity among malignant B-cells [193]
CSR, class switch recombination; GC, germinal center.

3.5. The Tumor Microenvironment

The malignant FL cells reside in an immunologically active tumor microenvironment (TME), and research has long been conducted in relation to the neoplastic versus nonmalignant bystander cells. Rather than inherent properties of the tumor cells themselves, infiltrates of macrophages, dendritic cells, T cell subsets, stromal cells, as well as a smaller proportion of neutrophils and natural killer (NK) cells have been proposed to influence FL growth and progression, ultimately determinative of the clinical behavior and prognosis [124,140,190,194]. The precise nature and role of these cell populations is still unclear, and published data on their predictive and prognostic significance remains highly contradictory, as seen in Table 10, Table 11, Table 12, Table 13, Table 14, Table 15 and Table 16. Specific cell subset populations have been correlated with a poor prognosis in some series, while reported with favorable or insignificant prognoses in others. Discrepancies in the studies might be explained by technical variations, which is often seen in the case of the interpretation of, e.g., immunohistochemical data, which many studies are based on. However, the differences may also reflect the underlying tumor heterogeneity of FL.
Included studies explored the relationship between immunological factors of the TME and risk of transformation or time-related survival endpoints.
Some studies investigated predictive and/or prognostic markers in relation to received treatment. In the case of some markers, even if they did not show predictive or prognostic value for the overall population, they may hold value for the treatment effects. This observation supports the explanation that variabilities in reported results may be explained by tumor heterogeneity and diversity in patients’ clinical characteristics and, ultimately, their treatment.
A plethora of different cellular markers, cellular subpopulations, and corresponding cellular mechanisms have been investigated in FL. Here, we highlight a number of examples; however, much more equally important research is shown in Table 10, Table 11, Table 12, Table 13, Table 14, Table 15 and Table 16.

3.5.1. T Cells

Tumor-infiltrating T cells can be classified into several populations, including TFHs, T-regulatory cells (Tregs), and CD8+ T cells, which can further be divided into distinct subgroups based on functional distribution, including naïve, mature, effector, activation, exhausted, and memory cells.
CD4+ and CD8+ T cell numbers. A prominent feature of the FL TME is indeed the higher concentration of CD4+ TFHs and Tregs compared with CD8+ cytotoxic T cells. Further, this also holds value in prognostics of the disease course reflected by inferior outcomes correlated with a higher CD4/CD8 ratio [195,196], again reflecting their opposing roles in immune responses. Correspondingly, many studies have reported generally favorable outcomes correlated with cytotoxic T cell-related markers, including CD8 and granzyme B [52,117,185,187,196,197,198,199,200]. Interestingly, however, one study reported an inferior impact on transformation associated with increased CD8 expression [201].
CD4+ T cells in FL have been abundantly studied and are often characterized by localization within rather than between follicles, often reflective of TFHs. Especially, CD4 expression has been reported with high diversity regarding the impact on outcomes, even when divided into intratumoral compartments (i.e., whole-tumor, intrafollicular, interfollicular localization) [52,108,117,142,150,177,185,190,196,197,201,202,203,204,205,206,207]. Nonetheless, regarding the impact on transformation, intrafollicular expression of CD4 has been reported to be inferior, while interfollicular expression was associated with favorable values [140,201]. For both expression of CD8 and CD4, it is important to recognize that several distinct cellular subgroups exist, which may explain some of the discrepancies in the reports.
CD4+FOXP3+ Tregs. It is a central tenet of the clonal selection theory that lymphocyte repertoires are tolerized to self-antigens during their ontogeny [208]. Conventional CD4+CD25+FOXP3+ Tregs have been studied abundantly in FL, with many discrepancies in prognostic outcome, ranging from no effect through both favorable and inferior outcomes [52,108,117,150,152,168,171,175,183,190,196,197,201,203,205,206,209,210,211,212,213,214,215,216,217]. However, when investigated in relation to transformation, reports have been only of either inferior or no predictive value [140,196,201,205,209]. Furthermore, studies investigating the activation of Tregs (i.e., activated Treg phenotype, CD25 expression) have reported inferior or no effect on prognostic outcome [203,205,218,219,220]. Discrepancies in reported prognostic/predictive values may be related to the administered treatment. Indeed, de Jong et al. reported that the impact of FOXP3 and other microenvironmental factors was dependent on specific treatment protocols [190].
Other regulatory T cells. In recent years, other regulatory T cell subsets have been discovered. One such is CD8+FOXP3+ T regulatory cells. The CD8 compartment is analogous to a FOXP3+ population, which shares phenotypic aspects with the more common CD4+ Treg counterpart [221]. A key feature of the CD8+FOXP3+ population is the relative scarcity compared with the more plentiful CD4+ population. The key reason for the paucity of research is the low frequency of CD8+FOXP3+ T cells. However, studies have shown the suppressive capacity of equivalent efficacy as CD4+FOXP3+ Tregs, especially potent in exerting class I-restricted repression, also potentially serving a unique function in the regulation of B-cell responses [221]. Another rather newly described population is the discovery of a subset of T follicular regulatory cells (TFRs), which share phenotypic characteristics with both conventional Tregs (CD4+CD25+FOXP3+) and TFHs (BCL6+ICOS+CXCR5+PD-1+) [222,223,224,225,226,227,228,229,230,231]. These constitute a discernable population of regulatory T cells that express the germinal center-defining transcription factor BCL6 and, thus, migrate to the follicles, where they exert a suppressive level of control on the maintenance of the GC immune homeostasis. The mere existence of such regulatory T cell subtypes is interesting in the context of FL pathology due to its known tumor-promoting TME. However, not much research has yet focused on these. Hagos et al. reported a favorable outcome with the CD8+FOXP3+ Treg subset [216]. Investigation into TFRs remains most definitely warranted. Given the apparent reliability of FL on GC state perturbation, BCL6 expression, and TFH infiltration, knowledge of the cellular interplay between malignant B cells and different types of regulatory T cells would be of high interest.
Table 10. T cells.
Table 10. T cells.
Reported Risk of TransformationReported Prognostic Value
FavorableInferiorNoneFavorableInferiorNone
CD3 [140,196,201][142,150,185,213,232,233,234] [52,108,177,186,187,190,196,201,206,235,236]
   Follicular CD3 [201,237][196] [52,188,190,196,201,206]
   Interfollicular CD3 [237][196] [52,188,190,196,206]
CD5 [238,239]
CD7 [196][142] [177,196,203]
   Follicular CD7 [196] [196]
   Interfollicular CD7 [196] [196]
ZAP-70 [187]
CD4/CD8 ratio [205] [195,196][205]
CCR7 [232]
GATA3 [195]

CD8+ T cells
CD8 [201][140,185,196][52,185,196,197,198][240][142,150,177,187,190,201,203,212]
   Follicular CD8 [201][196][117,187][108][52,190,196,201,215]
   Interfollicular CD8 [196][52,196] [117,215]
CD8+CXCR5+ [241]
Granzyme B [196][198,199][171,242][108,196,203,216]
   Follicular GrzB [196][200] [196]
   Interfollicular GrzB [196][200] [196]
Granulysin [216]
Perforin [196] [108,196]
   Follicular perforin [196] [196]
   Interfollicular perforin [196] [196]
TIA-1 [201][196] [177,196,197,201,203]
   Follicular TIA-1 [196,201] [196,201]
   Interfollicular TIA-1 [196] [196]
Tryptase [196] [196]
   Follicular tryptase [196] [196]
   Interfollicular tryptase [196] [196]

CD8+ Tregs
CD8+FOXP3+ [216]

CD4+ T cells
CD4 [201][196,205][203][142,196,202,207][52,108,150,177,185,190,197,201,204,205,206,207]
   Follicular CD4 [140,201][196][117][196][52,190,201,206]
   Interfollicular CD4[140] [196][117] [52,190,196,206]

CD4+FOXP3+ Tregs
FOXP3 [201][196,205,209][152,206,212,213,214][211][52,150,168,171,175,183,190,196,197,201,203,205,209,210]
   Follicular FoxP3 [205][196][196,206][108,175,205][52,117,190,215]
   Interfollicular FoxP3 [201][140,196][117,190,203,215] [52,196,201,206,211,216,217]
CD8/FOXP3 ratio [215]

Activated Tregs
CD4+FOXP3+PD1+TIGIT+ [218]
CD25 [205] [219][203,205,220]
   Follicular CD25 [205] [205]

T helper 1 cells
T-bet [140]

T helper 17 cells
RORγt [138]

T cell activation
CD27 [220] [169,172]
CD28 [220]
CD69 [140] [213][202][190]
CD70 [243]
CD80 [244]
CD86 [244]
CD137 [244]
GITR [244]
GITRL [244]
ICOS [150]
OX40 [244]
OX40L [244]

T cell phenotypes
CD4+CD8+ [193] [193,216]
CD4+CD57+ [232]
CD4+CD57+PD-1low [232]
CD8+CD57+ [232]
CD4+PD1+ [232]
CD4+PD-1low [245]
CD4+PD-1high [246] [245]
CD8+PD-1low [245]
LAG3+TIM3+ [247]
LAG3+PD1+ [247]
PD1+CXCR5CD27+CD28+ [220]
PD1+CXCR5+CD27+CD28+ [220]
PD1+CCR4CD27CD28 [220]
PD1+CCR4+CD27CD28 [220]
CD8EM/Th1-rich [193] [193] [193]
Tfh-rich [193] [193] [193]
Exhausted immunophenotypes [240,248] [240,248]

Early-stage differentiation
Naïve CD4+ T cells [249]
Naïve CD8+ T cells [249]
CD45RA [232]
CD4+CD45RA+CCR7+ [232]
CD8+CD45RA+CCR7+ [232]
CD45ROCCR7+ [220]

Late-stage differentiation
CD4+CD45RACCR7+ [232]
CD45RACCR7+ T memory [117]
CD127 [248]
CD127+KLRG1+ [248]

3.5.2. Immune Activation and Exhaustion

Studies have shown that tumor-infiltrating T cells are generally skewed toward an exhausted phenotype in FL, marked by low expression of the co-stimulatory receptors CD27 and CD28 as well as high expression of inhibitory checkpoint molecules such as PD-1, LAG3, and TIGIT. This phenotype ultimately leads to reduced interaction with antigen-presenting cells and impaired T-cell receptor signaling responses. Accordingly, immune activation and exhaustion has been studied thoroughly over time. The expression of T-cell activation markers CD27 and CD28 has been shown with favorable impact [220]. Numbers of PD1-expressing cells have shown contradictory results. Some studies have found PD1 to be associated with a favorable outcome and reduced risk of HT, which may seem intriguing, as PD1 is an immune checkpoint whose ligation inhibits T-cell activation and thereby contributes to immune suppression [117,150,152,196,209,214,235,246,250]. Contrary to this, other studies have associated PD-1 expression with inferior outcomes and an increased risk of transformation [168,195,201,204,209,251,252,253]. Once again, reports also differ depending on intratumoral compartmental localization. Moreover, inferior outcomes have also been reported based on the expression of other inhibitory markers such as TIM3, LAG3, and TIGIT, while CTLA4 and IDO1 have been reported without prognostic value only [199,244,247,253,254,255].
Table 11. Immune exhaustion.
Table 11. Immune exhaustion.
Reported Risk of TransformationReported Prognostic Value
FavorableInferiorNoneFavorableInferiorNone
PD-1[214][251][196,209][196,214,250][168,195][52,108,150,209,212,220,244,247,251,252]
   Follicular PD-1[209][201][196,251][117,150,152,196,209,246][251,252][52,171]
   Interfollicular PD-1 [209][196][235][204,209][52,117,171,196,216,217,246]
PD-L1 [204,244,256]
   Follicular PD-L1 [201] [201]
   Interfollicular PD-L1 [216]
PD-L2 [244]
TIM3 [199][244]
   Follicular TIM3 [117]
   Interfollicular TIM3 [117]
LAG3 [253] [247,253][244,256]
   LAG3+PD-1+ [253]
TIGIT [254]
CTLA4 [244]
IDO1 [255] [255]
   Trp [257]
   Kyn [257]
Galectin-9 [244]
Table 12. Natural killer cells.
Table 12. Natural killer cells.
Reported Risk of TransformationReported Prognostic Value
FavorableInferiorNoneFavorableInferiorNone
CD56 [196] [196]
   Follicular CD56 [196] [196]
   Interfollicular CD56 [196] [196]
CD56/MS4A4A ratio [246]
CD57 [201][140,196] [202,232][177,196,197,201]
   Follicular CD57 [201][196] [108][196,201]
   Interfollicular CD57 [196] [196]

3.5.3. Follicular Dendritic Cells

Non-neoplastic stromal cells, including follicular dendritic cells (fDCs), play an important role in the pathogenesis of FL. Especially, the fDC markers CD21 and CD23 have received much attention in FL research, yielding contradictory results, with reports on favorable, inferior, as well as no impact on transformation and outcomes regarding both markers [61,108,140,142,188,190,201,209,212,239,258,259,260].
In addition to fDCs, the most prominent stromal cellular subpopulation in FL is follicular reticular cells (FRCs). These cells are present in the T cell region around the follicle and secrete different components of extracellular matrix [261]. They contribute by secreting IL-4, CXCL12, CXCL13, IL-7, and BAFF. While BAFF itself was reported without impact on outcome, its B cell-expressed counterpart, BAFF receptor (BAFFR), was reported with an inferior impact on outcome [262,263].
Table 13. Dendritic cells.
Table 13. Dendritic cells.
Reported Risk of TransformationReported Prognostic Value
FavorableInferiorNoneFavorableInferiorNone
CD21[258][140,201][209] [201][142,190,209,258]
   Follicular CD21 [201]
CD23 [140][259][108,190][61,188,212,239,260]
CD11c [209] [209,211,264]
   Follicular CD11c [211]
CD1a [211]
CD83 [211]
Ki-M4p [260]
PU.1 [169] [172]

Plasmacytoid dendritic cells
CD123 [233] [197,211]

3.5.4. Tumor-Associated Macrophages

Macrophages have long been investigated in relation to FL, with in vitro studies reporting a dependency of FL cells on macrophages for survival and proliferation [265]. In this regard, a high lymphoma tissue content of CD68+ tumor-associated macrophages (TAMs) has been associated with a poor outcome among FL patients in several studies [142,168,177,266,267,268,269]; however, controversially, also with several reports of favorable outcomes [75,158,201]. It should also be noted that quite a few studies did not find any association with either transformation or outcome [52,108,140,171,177,190,196,197,203,204,209,235,264,268,269,270]. Related to outcome, especially, interfollicular localization of CD68+ macrophages has been reported with inferior outcomes [175,196,200]. Oppositely, when investigating TAMs in association with the risk of transformation, only one study found the follicular localization of CD68 to predict transformation, while the remaining studies found no association [140,177,196,201,209,269]. The reported inferior outcome was particularly shown by the presence of a protumoral phenotype (so-called M2-like macrophages), which was defined in analyses based on the markers CD163, CD206, and CSF-1R, which are all prominent in protumoral-type macrophages [240,246,264,268,271]. On the other hand, also with the protumoral phenotype, one study reported a favorable outcome, while several studies found no difference in outcomes [52,108,204,216]. Only CSF-1R has been reported with an association with subsequent transformation [271].
Differences in these reports may be considered based on the type of administered treatment. The CD20-targeting antibody rituximab can be used by TAMs to facilitate antibody-dependent cellular cytotoxicity and phagocytosis [265,272]. Clinical studies performed in the rituximab era have yielded conflicting results on the effect of macrophages, with variable outcomes based on the type of regimen used. Thus, the impact of TAMs on FL prognosis may depend on the administered treatment. Moreover, novel agents targeting the CD47/SIRPα axis are under development, which makes the SIRPα protein an interesting biomarker for investigation. Malignant cells, including FL cells, upregulate the surface marker CD47, which interacts with the macrophage receptor SIRPα to avoid phagocytosis [86]. While investigated in only a limited number of studies, associations between a follicular localization of SIRPα and outcome have been reported [117]. Additionally, another paper showed that CD14+SIRPα+ co-expression in lymphomas also resulted in inferior outcomes [86].
As already exemplified, the prognostic value of different macrophage markers also seems dependent on the choice of treatment. Contemporary studies have shown conflicting results when rituximab was incorporated into treatment regimens. Among others, this was reported by Kridel et al. in a study that demonstrated high numbers of CD163+ macrophages to be independent predictors of improved progression-free survival in patients allocated to anthracycline-based regimens [268].
Table 14. Macrophages.
Table 14. Macrophages.
Reported Risk of TransformationReported Prognostic Value
FavorableInferiorNoneFavorableInferiorNone
CD68 [140,177,196,209,269][91,212,236][142,168,177,266,267,268,269][52,108,171,190,196,197,203,204,209,235,264,268,270]
   Follicular CD68 [201][196][91,246][266][52,117,175,183,188,190,196,201,215]
   Interfollicular CD68 [196] [175,196,200][52,91,117,183,188,190,215,216,246,266]
CD14 [209] [86,202][209]
   Follicular CD14 [209] [117,209]
   Interfollicular CD14[209] [117,209]
SIRPα [86]
   Follicular SIRPα [117]
   Interfollicular SIRPα [117]
CD14+SIRPa+ [86]

Pro-inflammatory/
M1-like macrophages
iNOS [108]

Anti-inflammatory/
M2-like macrophages
CD163 [52][264,268][108,204]
   Follicular CD163 [52]
   Interfollicular CD163 [52]
CD163/CD8 ratio [246]
CD206 [240]
   Interfollicular CD206 [216]
CSF-1R [271] [271]
Follicular CSF-1R [271] [271]

3.5.5. Angiogenesis

Among classical hallmarks of cancer, angiogenesis plays an important role in providing nutrition and oxygen in both solid tumors as well as hematopoietic tumors, and thus, the significance of vessel density is not to be neglected. In FL, microvessel density or counts have been investigated often as a proxy for angiogenesis assessment counted by the expression of endothelial markers, either CD31 or CD34. In general, increased lymph node vascularization, as indicated by these two markers, has been reported to confer inferior impact on transformation and outcome, with only one contradictory study reporting a favorable outcome [151,264,269,273,274,275]. In the study by Farinha et al., tumor-to-vessel density was further associated with the numbers of lymphoma-associated macrophages, which the group had previously also found to be associated with inferior outcomes in FL, as also described above [177,269]. Several other angiogenic markers have also been investigated, yielding favorable outcomes associated with the expression of estrogen receptor α, inferior outcomes correlated with VEGF expression, as well as inferior risk of transformation with expression of the VEGF receptor KDR (also known as VEGFR-2) [276,277].
Table 15. Tumoral vascularization.
Table 15. Tumoral vascularization.
Reported Risk of TransformationReported Prognostic Value
FavorableInferiorNoneFavorableInferiorNone
Increased microvessel density
CD31 [151,264][147]
CD34 [269] [273][269][264,274]
   Follicular CD34 [275] [275]
   Interfollicular CD34 [275] [275]

Angiogenesis
Estrogen receptor α [276]
FLT-1 [277]
FLT-4 [277]
KDR [277] [277]
LYVE-1 [264]
Podoplanin [264]
PROX1 [264]
VEGF [277]
VEGF-C [277]
VWF [264]

3.5.6. Energy Metabolism and Vitamin D Insufficiency

It is well established that cancer cells often undergo metabolic reprogramming to adapt to their increased energy requirements [278,279,280]. Related to this, studies have reported on biomarkers in FL related to glucose metabolism, including protein levels of aldolase A, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and glucose transporter 1 (GLUT1) [240,281]. Whether the process of transformation is indeed dependent on this pathway requires further investigation; however, the reported increased expression levels of GLUT1, affecting glucose uptake, as well as aldolase A and GAPDH, affecting glucose processing, could suggest a general increase in the glycolytic metabolism in FL patients at risk of subsequent transformation. Regardless of the preferred metabolic state of tFL cells, the notion of a generally increased glycolysis in transformation-prone FL tumors is in itself rather interesting.
Vitamin D has been proposed to exert anti-cancer and anti-metastatic effects, with actions primarily mediated through its metabolized hormonal form, 1,25-dihydroxyvitamin D (1,25(OH)2D), classically regulating pathways involved in calcium and phosphorous homeostasis; however, 1,25(OH)2D has also been identified as a promising anti-cancer agent affecting tumorigenic effects such as proliferation and apoptosis [282,283]. In accordance with this, two studies have reported on vitamin D insufficiency in FL, both linking low vitamin D levels with inferior outcomes [284,285]. Interestingly, recent evidence has also identified 1,25(OH)2D as a regulator of energy metabolism in cancer cells through the inhibition or reversal of altered glucose metabolism, including reducing glucose uptake into cancer cells via glucose transporters, of which GLUT1 was recently associated with inferior outcomes in FL by Deng et al. [240].
Furthermore, the addition of rituximab as a standard therapy has significantly improved the outcome of FL patients, regarding both survival and risk of transformation [101,286,287]. One mechanism of action of rituximab is antibody-dependent cellular cytotoxicity (ADCC), which may be mediated by different types of effector cells, including neutrophils, macrophages, and natural killer (NK) cells [99,100,101,102]. However, interestingly, an association of ADCC and vitamin D3 has been described for both macrophages and NK cells, with vitamin D3 deficiency impairing the rituximab–ADCC function [288]. Possible mechanisms or signaling pathways of vitamin D3 to affect NK cell-mediated ADCC have not yet been investigated, and thus, further investigation of the vitamin in FL is definitely called for.

3.5.7. Cell Death

Most cases of FL overexpress the anti-apoptotic BCL2 protein as a result of the t(14;18). Furthermore, several studies have investigated inappropriate regulation of the apoptotic pathway in FL. Related to transformation, apoptotic proteins including BAX, BCL-rambo, BCL-xL, CASP3, and MCL1 have shown an inferior association [289]. This has been accompanied by inferior outcomes with increasing levels of BCL-xL, MCL1, BCL2/BAK, and BCL2/BAX ratios [172,176,184], while the level of YY1 was reported with a favorable outcome [290]. Interestingly, these reports suggest apoptotic deregulation beyond the t(14;18), which makes this pathway an interesting focus for future research. Although traditionally regarded as an important barrier to tumorigenesis, apoptosis may also instigate proliferation-inducing paracrine effects, resulting in accelerated cell growth [289,291,292]. Additionally, oncogenic effects associated with apoptosis also include the phagocytosis of apoptotic cells by macrophages, which has been proposed to contribute to an immunosuppressive TME though the removal of inflammatory signals [289,292]. Indeed, exact mechanistic studies elucidating expression levels in specific intratumoral cell types are warranted as the named proteins include both anti- and proapoptotic properties.
Table 16. Other microenvironmental factors.
Table 16. Other microenvironmental factors.
Reported Risk of TransformationReported Prognostic Value
FavorableInferiorNoneFavorableInferiorNone
Other leukocyte markers
AID [72] [262]
BAFF [263]
BAFFR [263]
BLIMP1 [171]
BTLA [152][152]
   Follicular BTLA [152]
   Interfollicular BTLA [152]
CD30 [172]
CD32B (FcγRIIB)
   Follicular CD32B [117]
   Interfollicular CD32B [117]
CD38 [172]
CD44 [293]
   Follicular CD44 [293] [293]
CD44s [274]
CD70
   Follicular CD70 [117]
   Interfollicular CD70 [117]
CD9 [294]
ETV1
   Follicular ETV1[295] [295]
   Interfollicular ETV1[295] [295]
HLA-DR [242] [190,211]
   Follicular HLA-DR [211]
LMO2 [54]
NAMPT
   Follicular NAMPT[295] [295]
   Interfollicular NAMPT [295][295]
PI3Kδ [294]
PMCH
   Follicular PMCH [295] [295]
   Interfollicular PMCH[295] [295]

T cell immunological synapse
Filamin A
   Follicular Filamin A [234]
   Interfollicular Filamin A [234]
Itk
   Follicular Itk [234]
   Interfollicular Itk [234]
RAB27A [234]
   Follicular RAB27A [234]
   Interfollicular RAB27A [234]

Complement inhibitors
CD46 [186]
CD55 [186]
CD59 [186]
NFκB activity
p65 (RelA) [91][296]
pRB [172]

Cytokines/chemokines
CCR1 [297]
CXCL13 [209] [209]
IL-10 [108]
IL-12A [108]
IL-17A [108]
IL-17F [108]
IL-2 [108]
IL-21R [298]
TGFB1 [108]
TGFBR1 [108]

The cytoskeleton and cellular migration
CDK6 [172]
FilGAP [299]
Integrin B2 [299]
RHAMM [293] [293]
   Follicular RHAMM [293] [293]
   CD44/RHAMM ratio, low [293] [293]
Vimentin [300][181] [181]

G protein-coupled signals
GNA13 [301]
Rac1 [299]

Metalloproteinases
MMP2 [302] [302]
MMP9 [302] [302]
TIMP1 [302] [302]
TIMP2 [302] [302]

Signal transduction
EPHA1 [147]
pJAK2 [303]
SOCS3 [304] [304]
STAT5a [134]
pSTAT5 [303]
STAT1 [270]
   CD68STAT1+ [270]

Peroxiredoxins
Peroxiredoxin, total [305]
PRDX1 [305]
PRDX2 [305]
PRDX3 [305]
PRDX4 [305]
PRDX5 [305]
PRDX6 [305]

Oxidative stress
OHdG [306]
Gamma-GCS [306]
Thioredoxine [305]
Nitrotyrosine [305]
Superoxide dismutase [306]

Cell cycle
ACPI [307]
BMI1 [308]
ECT2 [299]
CDK2 [172]
Cyclin A [143,172]
Cyclin B1 [143] [172]
Cyclin D3 [172]
Cyclin E [172]
E2F6 [172]
EZH2 [77]
MDM2 [61,172]
MYC [85] [162]
p18 [172]
p21 [172]
p27 [91,172]
p53 [302][258] [302,309][52,172,174]
   Follicular p53 [52]
   Interfollicular p53 [52]
P-glycoprotein [258] [309]
S100 [211]
SKP2 [172]

Glucose metabolism
GLUT1 [240]
Aldolase A[300][281] [281]
GAPDH[300][281] [281]
ATP synthase δ[300]

Cell death
14-3-3γ [184]
Akt [184]
pAkt [184]
Aurora A [184]
BAD [184]
BAK [184]
BAX [289] [172,173,184]
BCL-rambo [289] [184]
BCL-x [173]
BCL-xL [289] [172][177,184]
CASP3 [289] [184]
   CASP3a [172]
   cCASP3 [184]
MCL1 [289] [176][184]
PARP [184]
cPARP [184]
SMAC [184]
Survivin [172,184]
XIAP [184]
BCL2/BAK ratio [184]
BCL2/BAX ratio [184]
YY1 [290]
YY1/PLK1 interaction [310]

Metabolomics
Metabolomic profile [311] [311]

3.6. Soluble Protein Measurements

Soluble proteins measured in body fluids (i.e., serum, plasma, urine, etc.) have mainly focused on differences in outcome rather than risk of transformation, with the majority of studies focusing on immune-related components. One soluble protein often analyzed is the soluble form of IL-2R and IL-2Rα, generally yielding an inferior impact on transformation and outcome [219,312,313,314,315,316,317,318,319,320,321]. Other interleukins investigated that are related to inferior outcomes include IL-1RA, IL-4, IL-6, and IL-12 [315,318,322,323]. Likewise, other immune-related proteins correlated with inferior outcomes include TNFα, CFHR3, CXCL9, CCL22, and APRIL, while CFHR1 and CCL19 were associated with a favorable outcome [148,315,318,324,325,326].
Table 17. Soluble protein markers.
Table 17. Soluble protein markers.
Reported Risk of TransformationReported Prognostic Value
FavorableInferiorNoneFavorableInferiorNone
APRIL [324]
BAFF [324]
CA-125 [327]
CCL17 [325]
CCL19 [148]
CCL22 [325]
CCL3 [318]
CCL4 [318]
CCL5 [318]
CFH [326]
CFHR1 [326]
CFHR3 [326]
CXCL9 [318]
CXCL10 [318]
EGF [318]
Eotaxin [318]
HGF [318]
IFN-α [318]
Ig free light chains [328]
IL-1RA [318]
IL-2 [318]
IL-2R [319][315] [219,312,313,314,315,316,317,318][329,330]
IL-2Ra [320,321]
IL-4 [322][318]
IL-6 [315] [315]
IL-8 [318]
IL-10 [318]
IL-12 [318,323]
IL-13 [318]
LR11 [331]
MCP1 [318]
Selenium [332]
Thymidine kinase 1 (TK1) [333]
TNF-α [315] [315]
Triiodothyronine (T3) [334]
Vitamin D insufficiency
Low vitamin D [284,285]
Cholesterols
High-density lipoprotein cholesterol [335]
Low-density lipoprotein cholesterol [335]

Circulating Tumor DNA

An area of investigation that has become increasingly relevant in recent years is the detection of circulating tumor DNA (ctDNA) measured from samples of blood or urine, allowing for a less invasive monitoring of disease. While not many studies have yet focused on cell-free DNA (cfDNA) or ctDNA in FL, studies were identified reporting inferior outcomes with higher proportions of ctDNA [30,31,336,337]. The mutational status of a few specific genes has been studied, of which inferior outcomes were associated with BCL2, EP300, KMT2D, STAT6, and TP53 mutations [71,338]. As FL patients are often diagnosed with disseminated disease, ctDNA measurements may be especially relevant, as this may constitute a pool of genetic information originating from multiple clones and tumoral sites, thus often considered an integrator of the mutational heterogeneity.
Table 18. Cell-free DNA.
Table 18. Cell-free DNA.
Reported Risk of TransformationReported Prognostic Value
FavorableInferiorNoneFavorableInferiorNone
ctDNA
High proportion of ctDNA [30,31,336,337]
Detectable ctDNA mutations [338]
Specific genetic mutations in
    BCL2 [71]
    CARD11 [338]
    CREBBP [30,338]
    EP300 [338]
    KMT2D [338]
    PCLO [338]
    STAT6 [338]
    TP53 [30]

cfDNA
High proportion of cfDNA [31,71][339]
cfDNA, cell-free DNA; ctDNA, circulating tumor DNA.

4. Discussion

We systematically assessed the current literature for research on the impact of molecular biomarkers in FL transformation and outcomes, providing a comprehensive overview of studies conducted within the past four decades. In this time period, biomarkers have been analyzed in the hundreds, underscoring the persistent challenge of risk anticipation of FL patients. An accurate assessment of transformation risk already at FL diagnosis might allow low-risk patients to avoid unnecessary interventions and frequent hospital visits, decrease worry and anxiety, and thus, have a chance of a better general quality of life. At the same time, high-risk patients might undergo additional monitoring and treatment to improve the poorer outcomes observed in patients with transformed FL.
The majority of the included studies were published within the past two decades. The rapid pace of methodological advancements as well as scientific discoveries in FL will undoubtedly constitute a challenge in prioritizing the most clinically relevant and essential prognostic/predictive biomarkers [340]. This is further underscored as the information currently available has often conferred redundant or conflicting results. This overview gives rise to further validation studies of several putative markers, ultimately providing insight into whether or not these hold promise as clinically applicable biomarkers.
Notable differences in the reports on predictive and/or prognostic value were observed for several biomarkers. Over time, criteria for diagnosis and classification have changed, which may be reflected in the reported findings. Differences in the definition of transformation or time-related endpoints also vary between studies, e.g., with some studies including only biopsy-proven histological transformation, while others include also clinically suspected transformation. Furthermore, researchers have faced several challenges in studying transformation biology. Methodological variability in the sample sources (archival tissue, fresh-frozen tissue, etc.) and types of controls could be a source of confounders, limiting the direct comparison of results. Furthermore, the available pool of archival tissue is limited, particularly when seeking paired low-grade as well as transformed biopsies, with time being an important aspect in a disease with survival measured in decades. Many clinical studies of biological markers tend to use already clinically applicable methodologies such as immunohistochemical staining. Although already routinely used in clinical pathology, it is often rather difficult comparing results from different studies due to high inter-observer variations. Moreover, before clinical implementation, it is also important to reach agreement on the cutoff values for dichotomizing biomarker expression. Thus, discrepancies between reports might also be attributed to technical differences between studies.
Interestingly, several studies found prognostic molecular differences depending on gender, i.e., a biomarker predictive of transformation or outcome in either men or women, but not in both [49,109,252]. Generally, more research has focused on gender differences in lymphoma, and a recent study reported better outcomes among female FL patients than male patients [341,342]. Thus, additional research into biological gender differences in FL is warranted.
The present review was based on a rather broad search strategy, with the purpose of avoiding overlooking potentially important papers. Nevertheless, in the attempt to narrow the search, commonly described markers were excluded (e.g., β2-microglobulin, hemoglobin, LDH, Ki67, t(14;18)/BCL2 rearrangements). With this broad search, a large number of articles were manually screened and reviewed, which is why it is likely that some papers might have been missed. Furthermore, systemic reviews usually include a manual in-depth quality assessment of all included articles. However, due to the large number of articles included in the present study, this assessment was waived, which might introduce the risk of including lower-quality papers. However, all included papers were from peer-reviewed journals. Furthermore, upon data extraction, if the authors questioned the quality of a paper, the paper was discussed among the reviewers, thereby reducing the risk of including lower-quality papers.
This review has provided an overview of the current literature investigating molecular biomarkers in transformation and outcomes in FL. Notably, these must be considered two different outcomes; however, currently, transformation remains the leading cause of FL-related mortality. The present review was constructed with the aim to guide new research ideas, and thus, we included both the transformation and prognostic endpoints to provide an overview of potentially relevant markers for research in the future. A multitude of factors have been investigated in the attempt to understand and predict outcomes in FL and to anticipate patient disease course at the time of diagnosis. However, these largely remain inaccessible in daily practice. Further adequate studies are certainly warranted, possibly investigating a multimarker approach in combination with clinical data.

Author Contributions

M.H.E. and M.L., conceptualization and study design; M.H.E., J.K.H. and M.L.J., study review and data extraction; M.H.E., J.K.H., M.L.J., R.K. and M.L., data interpretation; M.H.E., J.K.H. and M.L.J., initial manuscript draft; M.H.E., J.K.H., M.L.J., R.K. and M.L., writing and editing. All authors critically reviewed the manuscript and approved the final version. All authors have read and agreed to the published version of the manuscript.

Funding

The research was funded with grants from the Department of Clinical Medicine, Aarhus University; the Karen Elise Jensen Foundation; Merchant Einar Willumsen’s Memorial Foundation; the Danish Lymphoma Group; a donation from Peter and Alice Madsen; Knud and Edith Eriksen’s Memorial Foundation; Eva and Henry Frænkel’s Memorial Foundation; Raimond and Dagmar Ringgård-Bohn’s Foundation; Butcher Max Wørzner and wife Wørzner’s Memorial Grant; Master Carpenter Jørgen Holm and wife Elisa F. Hansen’s Memorial Grant; the A. P. Møller Foundation for the Advancement of Medical Sciences; Dagmar Marshall’s Foundation; and the Farmer of “Ølufgård” Peder Nielsen Kristensen’s Memorial Foundation.

Data Availability Statement

Data may be shared upon reasonable request to the corresponding authors.

Conflicts of Interest

The authors declare no conflicts of interest.

References

  1. Swerdlow, S.H.; Campo, E.; Pileri, S.A.; Harris, N.L.; Stein, H.; Siebert, R.; Advani, R.; Ghielmini, M.; Salles, G.A.; Zelenetz, A.D.; et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood 2016, 127, 2375–2390. [Google Scholar] [CrossRef]
  2. Friedberg, J.W. Update on follicular lymphoma. Hematol. Oncol. 2023, 41 (Suppl. S1), 43–47. [Google Scholar] [CrossRef]
  3. Carbone, A.; Roulland, S.; Gloghini, A.; Younes, A.; von Keudell, G.; López-Guillermo, A.; Fitzgibbon, J. Follicular lymphoma. Nat. Rev. Dis. Primers. 2019, 5, 83. [Google Scholar] [CrossRef]
  4. Huet, S.; Sujobert, P.; Salles, G. From genetics to the clinic: A translational perspective on follicular lymphoma. Nat. Rev. Cancer 2018, 18, 224–239. [Google Scholar] [CrossRef]
  5. Kridel, R.; Sehn, L.H.; Gascoyne, R.D. Can histologic transformation of follicular lymphoma be predicted and prevented? Blood 2017, 130, 258–266. [Google Scholar] [CrossRef]
  6. Kumar, E.A.; Okosun, J.; Fitzgibbon, J. The Biological Basis of Histologic Transformation. Hematol. Oncol. Clin. North. Am. 2020, 34, 771–784. [Google Scholar] [CrossRef]
  7. Jacobsen, E. Follicular lymphoma: 2023 update on diagnosis and management. Am. J. Hematol. 2022, 97, 1638–1651. [Google Scholar] [CrossRef]
  8. Wang, Y.; Liu, J.; Burrows, P.D.; Wang, J.Y. B Cell Development and Maturation. Adv. Exp. Med. Biol. 2020, 1254, 1–22. [Google Scholar]
  9. Fischer, T.; Zing, N.P.C.; Chiattone, C.S.; Federico, M.; Luminari, S. Transformed follicular lymphoma. Ann. Hematol. 2018, 97, 17–29. [Google Scholar] [CrossRef]
  10. Montoto, S.; Fitzgibbon, J. Transformation of indolent B-cell lymphomas. J. Clin. Oncol. 2011, 29, 1827–1834. [Google Scholar] [CrossRef]
  11. Lackraj, T.; Goswami, R.; Kridel, R. Pathogenesis of follicular lymphoma. Best. Pract. Res. Clin. Haematol. 2018, 31, 2–14. [Google Scholar] [CrossRef]
  12. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Bmj 2021, 372, n71. [Google Scholar] [CrossRef]
  13. Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Moher, D. Updating guidance for reporting systematic reviews: Development of the PRISMA 2020 statement. J. Clin. Epidemiol. 2021, 134, 103–112. [Google Scholar] [CrossRef]
  14. Mamessier, E.; Broussais-Guillaumot, F.; Chetaille, B.; Bouabdallah, R.; Xerri, L.; Jaffe, E.S.; Nadel, B. Nature and importance of follicular lymphoma precursors. Haematologica 2014, 99, 802–810. [Google Scholar] [CrossRef]
  15. Levine, E.G.; Arthur, D.C.; Frizzera, G.; Peterson, B.A.; Hurd, D.D.; Bloomfield, C.D. Cytogenetic abnormalities predict clinical outcome in non-Hodgkin lymphoma. Ann. Intern. Med. 1988, 108, 14–20. [Google Scholar] [CrossRef]
  16. Bouska, A.; McKeithan, T.W.; Deffenbacher, K.E.; Lachel, C.; Wright, G.W.; Iqbal, J.; Smith, L.M.; Zhang, W.; Kucuk, C.; Rinaldi, A.; et al. Genome-wide copy-number analyses reveal genomic abnormalities involved in transformation of follicular lymphoma. Blood 2014, 123, 1681–1690. [Google Scholar] [CrossRef]
  17. Viardot, A.; Möller, P.; Högel, J.; Werner, K.; Mechtersheimer, G.; Ho, A.D.; Ott, G.; Barth, T.F.; Siebert, R.; Gesk, S.; et al. Clinicopathologic correlations of genomic gains and losses in follicular lymphoma. J. Clin. Oncol. 2002, 20, 4523–4530. [Google Scholar] [CrossRef]
  18. Tilly, H.; Rossi, A.; Stamatoullas, A.; Lenormand, B.; Bigorgne, C.; Kunlin, A.; Monconduit, M.; Bastard, C. Prognostic value of chromosomal abnormalities in follicular lymphoma. Blood 1994, 84, 1043–1049. [Google Scholar] [CrossRef]
  19. Mitsui, T.; Yokohama, A.; Koiso, H.; Saito, A.; Toyama, K.; Shimizu, H.; Ishizaki, T.; Irisawa, H.; Takizawa, M.; Saitoh, T.; et al. Prognostic impact of trisomy 21 in follicular lymphoma. Br. J. Haematol. 2019, 184, 570–577. [Google Scholar] [CrossRef]
  20. Qu, X.; Li, H.; Braziel, R.M.; Passerini, V.; Rimsza, L.M.; Hsi, E.D.; Leonard, J.P.; Smith, S.M.; Kridel, R.; Press, O.; et al. Genomic alterations important for the prognosis in patients with follicular lymphoma treated in SWOG study S0016. Blood 2019, 133, 81–93. [Google Scholar] [CrossRef]
  21. Kridel, R.; Chan, F.C.; Mottok, A.; Boyle, M.; Farinha, P.; Tan, K.; Meissner, B.; Bashashati, A.; McPherson, A.; Roth, A.; et al. Histological Transformation and Progression in Follicular Lymphoma: A Clonal Evolution Study. PLoS Med. 2016, 13, e1002197. [Google Scholar] [CrossRef]
  22. Juneja, S.; Matthews, J.; Lukeis, R.; Laidlaw, C.; Cooper, I.; Wolf, M.; Ironside, P.; Garson, O.M. Prognostic value of cytogenetic abnormalities in previously untreated patients with non-Hodgkin’s lymphoma. Leuk. Lymphoma 1997, 25, 493–501. [Google Scholar] [CrossRef]
  23. Suguro, M.; Yoshida, N.; Umino, A.; Kato, H.; Tagawa, H.; Nakagawa, M.; Fukuhara, N.; Karnan, S.; Takeuchi, I.; Hocking, T.D.; et al. Clonal heterogeneity of lymphoid malignancies correlates with poor prognosis. Cancer Sci. 2014, 105, 897–904. [Google Scholar] [CrossRef]
  24. González-Rincón, J.; Méndez, M.; Gómez, S.; García, J.F.; Martín, P.; Bellas, C.; Pedrosa, L.; Rodríguez-Pinilla, S.M.; Camacho, F.I.; Quero, C.; et al. Unraveling transformation of follicular lymphoma to diffuse large B-cell lymphoma. PLoS ONE 2019, 14, e0212813. [Google Scholar] [CrossRef]
  25. Bai, B.; Wise, J.F.; Vodák, D.; Nakken, S.; Sharma, A.; Blaker, Y.N.; Brodtkorb, M.; Hilden, V.; Trøen, G.; Ren, W.; et al. Multi-omics profiling of longitudinal samples reveals early genomic changes in follicular lymphoma. Blood Cancer J. 2024, 14, 147. [Google Scholar] [CrossRef]
  26. García-Álvarez, M.; Alonso-Álvarez, S.; Prieto-Conde, I.; Jiménez, C.; Sarasquete, M.E.; Chillón, M.C.; Medina, A.; Balanzategui, A.; Maldonado, R.; Antón, A.; et al. Genetic complexity impacts the clinical outcome of follicular lymphoma patients. Blood Cancer J. 2021, 11, 11. [Google Scholar] [CrossRef]
  27. Sorigue, M.; Oliveira, A.; Mercadal, S.; Tapia, G.; Climent, F.; Perez-Roca, L.; Lorences, I.; Domingo-Domenech, E.; Cabezon, M.; Navarro, J.T.; et al. m7FLIPI and targeted sequencing in high-risk follicular lymphoma. Hematol. Oncol. 2019, 37, 564–568. [Google Scholar] [CrossRef]
  28. Cerhan, J.R.; Wang, S.; Maurer, M.J.; Ansell, S.M.; Geyer, S.M.; Cozen, W.; Morton, L.M.; Davis, S.; Severson, R.K.; Rothman, N.; et al. Prognostic significance of host immune gene polymorphisms in follicular lymphoma survival. Blood 2007, 109, 5439–5446. [Google Scholar] [CrossRef]
  29. Tsukamoto, T.; Nakano, M.; Sato, R.; Adachi, H.; Kiyota, M.; Kawata, E.; Uoshima, N.; Yasukawa, S.; Chinen, Y.; Mizutani, S.; et al. High-risk follicular lymphomas harbour more somatic mutations including those in the AID-motif. Sci. Rep. 2017, 7, 14039. [Google Scholar] [CrossRef]
  30. Yoon, S.E.; Shin, S.H.; Nam, D.K.; Cho, J.; Kim, W.S.; Kim, S.J. Feasibility of Circulating Tumor DNA Analysis in Patients with Follicular Lymphoma. Cancer Res. Treat. 2024, 56, 920–935. [Google Scholar] [CrossRef]
  31. Fernández-Miranda, I.; Pedrosa, L.; Llanos, M.; Franco, F.F.; Gómez, S.; Martín-Acosta, P.; García-Arroyo, F.R.; Gumá, J.; Horcajo, B.; Ballesteros, A.K.; et al. Monitoring of Circulating Tumor DNA Predicts Response to Treatment and Early Progression in Follicular Lymphoma: Results of a Prospective Pilot Study. Clin. Cancer Res. 2023, 29, 209–220. [Google Scholar] [CrossRef]
  32. Russler-Germain, D.A.; Krysiak, K.; Ramirez, C.; Mosior, M.; Watkins, M.P.; Gomez, F.; Skidmore, Z.L.; Trani, L.; Gao, F.; Geyer, S.; et al. Mutations associated with progression in follicular lymphoma predict inferior outcomes at diagnosis: Alliance A151303. Blood Adv. 2023, 7, 5524–5539. [Google Scholar] [CrossRef]
  33. Gao, F.; Liu, H.; Meng, X.; Liu, J.; Wang, J.; Yu, J.; Liu, X.; Liu, X.; Li, L.; Qiu, L.; et al. Integrative genomic and transcriptomic analysis reveals genetic alterations associated with the early progression of follicular lymphoma. Br. J. Haematol. 2023, 202, 1151–1164. [Google Scholar] [CrossRef]
  34. Mozas, P.; López, C.; Grau, M.; Nadeu, F.; Clot, G.; Valle, S.; Kulis, M.; Navarro, A.; Ramis-Zaldivar, J.E.; González-Farré, B.; et al. Genomic landscape of follicular lymphoma across a wide spectrum of clinical behaviors. Hematol. Oncol. 2023, 41, 631–643. [Google Scholar] [CrossRef]
  35. Pastore, A.; Jurinovic, V.; Kridel, R.; Hoster, E.; Staiger, A.M.; Szczepanowski, M.; Pott, C.; Kopp, N.; Murakami, M.; Horn, H.; et al. Integration of gene mutations in risk prognostication for patients receiving first-line immunochemotherapy for follicular lymphoma: A retrospective analysis of a prospective clinical trial and validation in a population-based registry. Lancet Oncol. 2015, 16, 1111–1122. [Google Scholar] [CrossRef]
  36. Jurinovic, V.; Kridel, R.; Staiger, A.M.; Szczepanowski, M.; Horn, H.; Dreyling, M.H.; Rosenwald, A.; Ott, G.; Klapper, W.; Zelenetz, A.D.; et al. Clinicogenetic risk models predict early progression of follicular lymphoma after first-line immunochemotherapy. Blood 2016, 128, 1112–1120. [Google Scholar] [CrossRef]
  37. Rai, S.; Inoue, H.; Sakai, K.; Hanamoto, H.; Matsuda, M.; Maeda, Y.; Haeno, T.; Watatani, Y.; Kumode, T.; Serizawa, K.; et al. Decreased expression of T-cell-associated immune markers predicts poor prognosis in patients with follicular lymphoma. Cancer Sci. 2022, 113, 660–673. [Google Scholar] [CrossRef]
  38. Krysiak, K.; Gomez, F.; White, B.S.; Matlock, M.; Miller, C.A.; Trani, L.; Fronick, C.C.; Fulton, R.S.; Kreisel, F.; Cashen, A.F.; et al. Recurrent somatic mutations affecting B-cell receptor signaling pathway genes in follicular lymphoma. Blood 2017, 129, 473–483. [Google Scholar] [CrossRef]
  39. Lockmer, S.; Ren, W.; Brodtkorb, M.; Østenstad, B.; Wahlin, B.E.; Pan-Hammarström, Q.; Kimby, E. M7-FLIPI is not prognostic in follicular lymphoma patients with first-line rituximab chemo-free therapy. Br. J. Haematol. 2020, 188, 259–267. [Google Scholar] [CrossRef]
  40. Rodríguez-Sevilla, J.J.; Fernández-Rodríguez, C.; Bento, L.; Diez-Feijóo, R.; Pinzón, S.; Gibert, J.; Fernández-Ibarrondo, L.; Lafuente, M.; Ferrer, A.; Sánchez-González, B.; et al. Evaluation of 4 prognostic indices in follicular lymphoma treated in first line with immunochemotherapy. Blood Adv. 2023, 7, 1606–1614. [Google Scholar] [CrossRef]
  41. Fernández-Miranda, I.; Pedrosa, L.; González-Rincón, J.; Espinet, B.; de la Cruz Vicente, F.; Climent, F.; Gómez, S.; Royuela, A.; Camacho, F.I.; Martín-Acosta, P.; et al. Generation and External Validation of a Histologic Transformation Risk Model for Patients with Follicular Lymphoma. Mod. Pathol. 2024, 37, 100516. [Google Scholar] [CrossRef]
  42. Dreval, K.; Hilton, L.K.; Cruz, M.; Shaalan, H.; Ben-Neriah, S.; Boyle, M.; Collinge, B.; Coyle, K.M.; Duns, G.; Farinha, P.; et al. Genetic subdivisions of follicular lymphoma defined by distinct coding and noncoding mutation patterns. Blood 2023, 142, 561–573. [Google Scholar] [CrossRef]
  43. Shelton, V.; Detroja, R.; Liu, T.; Isaev, K.; Silva, A.; Passerini, V.; Bakhtiari, M.; Calvente, L.; Hong, M.; He, M.Y.; et al. Identification of genetic subtypes in follicular lymphoma. Blood Cancer J. 2024, 14, 128. [Google Scholar] [CrossRef]
  44. Pasqualucci, L. Molecular pathogenesis of germinal center-derived B cell lymphomas. Immunol. Rev. 2019, 288, 240–261. [Google Scholar] [CrossRef]
  45. Cheung, K.J.; Johnson, N.A.; Affleck, J.G.; Severson, T.; Steidl, C.; Ben-Neriah, S.; Schein, J.; Morin, R.D.; Moore, R.; Shah, S.P.; et al. Acquired TNFRSF14 mutations in follicular lymphoma are associated with worse prognosis. Cancer Res. 2010, 70, 9166–9174. [Google Scholar] [CrossRef]
  46. Cheung, K.J.; Shah, S.P.; Steidl, C.; Johnson, N.; Relander, T.; Telenius, A.; Lai, B.; Murphy, K.P.; Lam, W.; Al-Tourah, A.J.; et al. Genome-wide profiling of follicular lymphoma by array comparative genomic hybridization reveals prognostically significant DNA copy number imbalances. Blood 2009, 113, 137–148. [Google Scholar] [CrossRef]
  47. Höglund, M.; Sehn, L.; Connors, J.M.; Gascoyne, R.D.; Siebert, R.; Säll, T.; Mitelman, F.; Horsman, D.E. Identification of cytogenetic subgroups and karyotypic pathways of clonal evolution in follicular lymphomas. Genes Chromosomes Cancer 2004, 39, 195–204. [Google Scholar] [CrossRef]
  48. Horn, H.; Jurinovic, V.; Leich, E.; Kalmbach, S.; Bausinger, J.; Staiger, A.M.; Kurz, K.S.; Möller, P.; Bernd, H.W.; Feller, A.C.; et al. Molecular Cytogenetic Profiling Reveals Similarities and Differences Between Localized Nodal and Systemic Follicular Lymphomas. Hemasphere 2022, 6, e767. [Google Scholar] [CrossRef]
  49. Eide, M.B.; Liestøl, K.; Lingjaerde, O.C.; Hystad, M.E.; Kresse, S.H.; Meza-Zepeda, L.; Myklebost, O.; Trøen, G.; Aamot, H.V.; Holte, H.; et al. Genomic alterations reveal potential for higher grade transformation in follicular lymphoma and confirm parallel evolution of tumor cell clones. Blood 2010, 116, 1489–1497. [Google Scholar] [CrossRef]
  50. Schwaenen, C.; Viardot, A.; Berger, H.; Barth, T.F.; Bentink, S.; Döhner, H.; Enz, M.; Feller, A.C.; Hansmann, M.L.; Hummel, M.; et al. Microarray-based genomic profiling reveals novel genomic aberrations in follicular lymphoma which associate with patient survival and gene expression status. Genes Chromosomes Cancer 2009, 48, 39–54. [Google Scholar] [CrossRef]
  51. Kalmbach, S.; Grau, M.; Zapukhlyak, M.; Leich, E.; Jurinovic, V.; Hoster, E.; Staiger, A.M.; Kurz, K.S.; Weigert, O.; Gaitzsch, E.; et al. Novel insights into the pathogenesis of follicular lymphoma by molecular profiling of localized and systemic disease forms. Leukemia 2023, 37, 2058–2065. [Google Scholar] [CrossRef]
  52. Stevens, W.B.C.; Mendeville, M.; Redd, R.; Clear, A.J.; Bladergroen, R.; Calaminici, M.; Rosenwald, A.; Hoster, E.; Hiddemann, W.; Gaulard, P.; et al. Prognostic relevance of CD163 and CD8 combined with EZH2 and gain of chromosome 18 in follicular lymphoma: A study by the Lunenburg Lymphoma Biomarker Consortium. Haematologica 2017, 102, 1413–1423. [Google Scholar] [CrossRef]
  53. Leich, E.; Brodtkorb, M.; Schmidt, T.; Altenbuchinger, M.; Lingjærde, O.C.; Lockmer, S.; Holte, H.; Nedeva, T.; Grieb, T.; Sander, B.; et al. Gene expression and copy number profiling of follicular lymphoma biopsies from patients treated with first-line rituximab without chemotherapy. Leuk. Lymphoma 2023, 64, 1927–1937. [Google Scholar] [CrossRef]
  54. Menter, T.; Gasser, A.; Juskevicius, D.; Dirnhofer, S.; Tzankov, A. Diagnostic Utility of the Germinal Center-associated Markers GCET1, HGAL, and LMO2 in Hematolymphoid Neoplasms. Appl. Immunohistochem. Mol. Morphol. 2015, 23, 491–498. [Google Scholar] [CrossRef]
  55. Isobe, M.; Emanuel, B.S.; Givol, D.; Oren, M.; Croce, C.M. Localization of gene for human p53 tumour antigen to band 17p13. Nature 1986, 320, 84–85. [Google Scholar] [CrossRef]
  56. Lo Cunsolo, C.; Casciano, I.; Banelli, B.; Tonini, G.P.; Romani, M. Refined chromosomal localization of the putative tumor suppressor gene TP73. Cytogenet. Cell Genet. 1998, 82, 199–201. [Google Scholar] [CrossRef]
  57. O’Shea, D.; O’Riain, C.; Taylor, C.; Waters, R.; Carlotti, E.; Macdougall, F.; Gribben, J.; Rosenwald, A.; Ott, G.; Rimsza, L.M.; et al. The presence of TP53 mutation at diagnosis of follicular lymphoma identifies a high-risk group of patients with shortened time to disease progression and poorer overall survival. Blood 2008, 112, 3126–3129. [Google Scholar] [CrossRef]
  58. Ikoma, H.; Miyaoka, M.; Hiraiwa, S.; Yukie Kikuti, Y.; Shiraiwa, S.; Hara, R.; Kojima, M.; Ohmachi, K.; Ando, K.; Carreras, J.; et al. Clinicopathological analysis of follicular lymphoma with BCL2, BCL6, and MYC rearrangements. Pathol. Int. 2022, 72, 321–331. [Google Scholar] [CrossRef]
  59. Watanabe, R.; Tomita, N.; Matsumoto, C.; Hattori, Y.; Matsuura, S.; Takasaki, H.; Hashimoto, C.; Fujita, H.; Fujisawa, S.; Ishigatsubo, Y. The 3q27 and 18q21 translocations for follicular lymphoma and diffuse large B-cell lymphoma in the rituximab era. J. Clin. Exp. Hematop. 2013, 53, 107–114. [Google Scholar] [CrossRef]
  60. Kridel, R.; Mottok, A.; Farinha, P.; Ben-Neriah, S.; Ennishi, D.; Zheng, Y.; Chavez, E.A.; Shulha, H.P.; Tan, K.; Chan, F.C.; et al. Cell of origin of transformed follicular lymphoma. Blood 2015, 126, 2118–2127. [Google Scholar] [CrossRef]
  61. Duarte, I.X.; Domeny-Duarte, P.; Wludarski, S.C.; Natkunam, Y.; Bacchi, C.E. Follicular lymphoma in young adults: A clinicopathological and molecular study of 200 patients. Mod. Pathol. 2013, 26, 1183–1196. [Google Scholar] [CrossRef]
  62. Kim, M.; Hwang, H.S.; Son, E.M.; Cho, H.; Yoon, D.H.; Suh, C.; Park, C.S.; Go, H.; Huh, J. Clinicopathological and prognostic significance of BCL2, BCL6, MYC, and IRF4 copy number gains and translocations in follicular lymphoma: A study by FISH analysis. Leuk. Lymphoma 2020, 61, 3342–3350. [Google Scholar] [CrossRef]
  63. Pasqualucci, L. The germinal center in the pathogenesis of B cell lymphomas. Hematol. Oncol. 2023, 41 (Suppl. S1), 62–69. [Google Scholar] [CrossRef]
  64. O’Shea, D.; O’Riain, C.; Gupta, M.; Waters, R.; Yang, Y.; Wrench, D.; Gribben, J.; Rosenwald, A.; Ott, G.; Rimsza, L.M.; et al. Regions of acquired uniparental disomy at diagnosis of follicular lymphoma are associated with both overall survival and risk of transformation. Blood 2009, 113, 2298–2301. [Google Scholar] [CrossRef]
  65. Tsukamoto, T.; Kiyota, M.; Kawata, E.; Uoshima, N.; Tatekawa, S.; Chinen, Y.; Nagoshi, H.; Mizutani, S.; Shimura, Y.; Yamamoto-Sugitani, M.; et al. Detection of chromosomal abnormalities by G-banding and prognostic impact in follicular lymphoma in the rituximab era. Int. J. Hematol. 2017, 105, 658–667. [Google Scholar] [CrossRef]
  66. Bussot, L.; Chevalier, S.; Cristante, J.; Grange, B.; Tesson, B.; Deteix-Santana, C.; Orsini-Piocelle, F.; Leyronnas, C.; Dupire, S.; Gressin, R.; et al. Adverse outcome in follicular lymphoma is associated with MYC rearrangements but not MYC extra copies. Br. J. Haematol. 2021, 194, 382–392. [Google Scholar] [CrossRef]
  67. Okosun, J.; Bödör, C.; Wang, J.; Araf, S.; Yang, C.Y.; Pan, C.; Boller, S.; Cittaro, D.; Bozek, M.; Iqbal, S.; et al. Integrated genomic analysis identifies recurrent mutations and evolution patterns driving the initiation and progression of follicular lymphoma. Nat. Genet. 2014, 46, 176–181. [Google Scholar] [CrossRef]
  68. Pasqualucci, L.; Khiabanian, H.; Fangazio, M.; Vasishtha, M.; Messina, M.; Holmes, A.B.; Ouillette, P.; Trifonov, V.; Rossi, D.; Tabbò, F.; et al. Genetics of follicular lymphoma transformation. Cell Rep. 2014, 6, 130–140. [Google Scholar] [CrossRef]
  69. Crouch, S.; Painter, D.; Barrans, S.L.; Roman, E.; Beer, P.A.; Cooke, S.L.; Glover, P.; Van Hoppe, S.J.L.; Webster, N.; Lacy, S.E.; et al. Molecular subclusters of follicular lymphoma: A report from the United Kingdom’s Haematological Malignancy Research Network. Blood Adv. 2022, 6, 5716–5731. [Google Scholar] [CrossRef]
  70. Correia, C.; Maurer, M.J.; McDonough, S.J.; Schneider, P.A.; Ross, P.E.; Novak, A.J.; Feldman, A.L.; Cerhan, J.R.; Slager, S.L.; Witzig, T.E.; et al. Relationship between BCL2 mutations and follicular lymphoma outcome in the chemoimmunotherapy era. Blood Cancer J. 2023, 13, 81. [Google Scholar] [CrossRef]
  71. Hatipoğlu, T.; Esmeray Sönmez, E.; Hu, X.; Yuan, H.; Danyeli, A.E.; Şeyhanlı, A.; Önal-Süzek, T.; Zhang, W.; Akman, B.; Olgun, A.; et al. Plasma Concentrations and Cancer-Associated Mutations in Cell-Free Circulating DNA of Treatment-Naive Follicular Lymphoma for Improved Non-Invasive Diagnosis and Prognosis. Front. Oncol. 2022, 12, 870487. [Google Scholar] [CrossRef]
  72. Correia, C.; Schneider, P.A.; Dai, H.; Dogan, A.; Maurer, M.J.; Church, A.K.; Novak, A.J.; Feldman, A.L.; Wu, X.; Ding, H.; et al. BCL2 mutations are associated with increased risk of transformation and shortened survival in follicular lymphoma. Blood 2015, 125, 658–667. [Google Scholar] [CrossRef]
  73. Sakhinia, E.; Glennie, C.; Hoyland, J.A.; Menasce, L.P.; Brady, G.; Miller, C.; Radford, J.A.; Byers, R.J. Clinical quantitation of diagnostic and predictive gene expression levels in follicular and diffuse large B-cell lymphoma by RT-PCR gene expression profiling. Blood 2007, 109, 3922–3928. [Google Scholar] [CrossRef]
  74. Bellido, M.; Capello, D.; Altés, A.; Estivill, C.; Gaidano, G.; Pujol, R.; Bordes, R.; Baiget, M.; Saglio, G.; Sierra, J.; et al. Bcl-6 p53 mutations in lymphomas carrying the bcl-2/Jh rearrangement. Haematologica 2002, 87, 908–917. [Google Scholar]
  75. Jardin, F.; Ruminy, P.; Parmentier, F.; Picquenot, J.M.; Courel, M.N.; Bertrand, P.; Buchonnet, G.; Tilly, H.; Bastard, C. Clinical and biological relevance of single-nucleotide polymorphisms and acquired somatic mutations of the BCL6 first intron in follicular lymphoma. Leukemia 2005, 19, 1824–1830. [Google Scholar] [CrossRef]
  76. Hershenfeld, S.A.; Tobin, J.W.D.; Shelton, V.; Calvente, L.; Lajkosz, K.; Liu, T.; Brodtkorb, M.; d’Amore, F.A.; Ludvigsen, M.; Baetz, T.; et al. Single gene mutations and prognosis in limited-stage follicular lymphoma treated with radiation therapy. Br. J. Haematol. 2024. [Google Scholar] [CrossRef]
  77. Huet, S.; Xerri, L.; Tesson, B.; Mareschal, S.; Taix, S.; Mescam-Mancini, L.; Sohier, E.; Carrère, M.; Lazarovici, J.; Casasnovas, O.; et al. EZH2 alterations in follicular lymphoma: Biological and clinical correlations. Blood Cancer J. 2017, 7, e555. [Google Scholar] [CrossRef]
  78. Martínez-Laperche, C.; Sanz-Villanueva, L.; Díaz Crespo, F.J.; Muñiz, P.; Martín Rojas, R.; Carbonell, D.; Chicano, M.; Suárez-González, J.; Menárguez, J.; Kwon, M.; et al. EZH2 mutations at diagnosis in follicular lymphoma: A promising biomarker to guide frontline treatment. BMC Cancer 2022, 22, 982. [Google Scholar] [CrossRef]
  79. Bödör, C.; O’Riain, C.; Wrench, D.; Matthews, J.; Iyengar, S.; Tayyib, H.; Calaminici, M.; Clear, A.; Iqbal, S.; Quentmeier, H.; et al. EZH2 Y641 mutations in follicular lymphoma. Leukemia 2011, 25, 726–729. [Google Scholar] [CrossRef]
  80. Szumera-CieĆkiewicz, A.; Poleszczuk, J.; Paszkiewicz-Kozik, E.; Rymkiewicz, G.; SokÓŁ, K.; Borysiuk, A.; Kotarska, M.; Owczarek, D.; Kawecka, M.; Pytlak, B.; et al. EZH2 Expression in Follicular Lymphoma Is Variable and Independent from the Progression of Disease Within 24 Months of First Treatment. Anticancer. Res. 2020, 40, 6685–6697. [Google Scholar] [CrossRef]
  81. Barisic, D.; Chin, C.R.; Meydan, C.; Teater, M.; Tsialta, I.; Mlynarczyk, C.; Chadburn, A.; Wang, X.; Sarkozy, M.; Xia, M.; et al. ARID1A orchestrates SWI/SNF-mediated sequential binding of transcription factors with ARID1A loss driving pre-memory B cell fate and lymphomagenesis. Cancer Cell 2024, 42, 583–604.e511. [Google Scholar] [CrossRef]
  82. Bastard, C.; Deweindt, C.; Kerckaert, J.P.; Lenormand, B.; Rossi, A.; Pezzella, F.; Fruchart, C.; Duval, C.; Monconduit, M.; Tilly, H. LAZ3 rearrangements in non-Hodgkin’s lymphoma: Correlation with histology, immunophenotype, karyotype, and clinical outcome in 217 patients. Blood 1994, 83, 2423–2427. [Google Scholar] [CrossRef]
  83. Yano, T.; Jaffe, E.S.; Longo, D.L.; Raffeld, M. MYC rearrangements in histologically progressed follicular lymphomas. Blood 1992, 80, 758–767. [Google Scholar] [CrossRef]
  84. Chaudhary, S.; Brown, N.; Song, J.Y.; Yang, L.; Skrabek, P.; Nasr, M.R.; Wong, J.T.; Bedell, V.; Murata-Collins, J.; Kochan, L.; et al. Relative frequency and clinicopathologic characteristics of MYC-rearranged follicular lymphoma. Hum. Pathol. 2021, 114, 19–27. [Google Scholar] [CrossRef]
  85. Aukema, S.M.; van Pel, R.; Nagel, I.; Bens, S.; Siebert, R.; Rosati, S.; van den Berg, E.; Bosga-Bouwer, A.G.; Kibbelaar, R.E.; Hoogendoorn, M.; et al. MYC expression and translocation analyses in low-grade and transformed follicular lymphoma. Histopathology 2017, 71, 960–971. [Google Scholar] [CrossRef]
  86. Chen, Y.P.; Kim, H.J.; Wu, H.; Price-Troska, T.; Villasboas, J.C.; Jalali, S.; Feldman, A.L.; Novak, A.J.; Yang, Z.Z.; Ansell, S.M. SIRPα expression delineates subsets of intratumoral monocyte/macrophages with different functional and prognostic impact in follicular lymphoma. Blood Cancer J. 2019, 9, 84. [Google Scholar] [CrossRef]
  87. Bouska, A.; Zhang, W.; Gong, Q.; Iqbal, J.; Scuto, A.; Vose, J.; Ludvigsen, M.; Fu, K.; Weisenburger, D.D.; Greiner, T.C.; et al. Combined copy number and mutation analysis identifies oncogenic pathways associated with transformation of follicular lymphoma. Leukemia 2017, 31, 83–91. [Google Scholar] [CrossRef]
  88. Sander, C.A.; Yano, T.; Clark, H.M.; Harris, C.; Longo, D.L.; Jaffe, E.S.; Raffeld, M. p53 mutation is associated with progression in follicular lymphomas. Blood 1993, 82, 1994–2004. [Google Scholar] [CrossRef]
  89. Alhejaily, A.; Day, A.G.; Feilotter, H.E.; Baetz, T.; Lebrun, D.P. Inactivation of the CDKN2A tumor-suppressor gene by deletion or methylation is common at diagnosis in follicular lymphoma and associated with poor clinical outcome. Clin. Cancer Res. 2014, 20, 1676–1686. [Google Scholar] [CrossRef]
  90. Taniguchi, T.; Chikatsu, N.; Takahashi, S.; Fujita, A.; Uchimaru, K.; Asano, S.; Fujita, T.; Motokura, T. Expression of p16INK4A and p14ARF in hematological malignancies. Leukemia 1999, 13, 1760–1769. [Google Scholar] [CrossRef]
  91. Coiffier, B.; Li, W.; Henitz, E.D.; Karkera, J.D.; Favis, R.; Gaffney, D.; Shapiro, A.; Theocharous, P.; Elsayed, Y.A.; van de Velde, H.; et al. Prespecified candidate biomarkers identify follicular lymphoma patients who achieved longer progression-free survival with bortezomib-rituximab versus rituximab. Clin. Cancer Res. 2013, 19, 2551–2561. [Google Scholar] [CrossRef]
  92. Baecklund, F.; Foo, J.N.; Bracci, P.; Darabi, H.; Karlsson, R.; Hjalgrim, H.; Rosenquist, R.; Adami, H.O.; Glimelius, B.; Melbye, M.; et al. A comprehensive evaluation of the role of genetic variation in follicular lymphoma survival. BMC Med. Genet. 2014, 15, 113. [Google Scholar] [CrossRef]
  93. Carlotti, E.; Palumbo, G.A.; Oldani, E.; Tibullo, D.; Salmoiraghi, S.; Rossi, A.; Golay, J.; Pulsoni, A.; Foà, R.; Rambaldi, A. FcgammaRIIIA and FcgammaRIIA polymorphisms do not predict clinical outcome of follicular non-Hodgkin’s lymphoma patients treated with sequential CHOP and rituximab. Haematologica 2007, 92, 1127–1130. [Google Scholar] [CrossRef]
  94. Ghesquières, H.; Cartron, G.; Seymour, J.F.; Delfau-Larue, M.H.; Offner, F.; Soubeyran, P.; Perrot, A.; Brice, P.; Bouabdallah, R.; Sonet, A.; et al. Clinical outcome of patients with follicular lymphoma receiving chemoimmunotherapy in the PRIMA study is not affected by FCGR3A and FCGR2A polymorphisms. Blood 2012, 120, 2650–2657. [Google Scholar] [CrossRef]
  95. Strefford, J.C.; Nowicka, M.; Hargreaves, C.E.; Burton, C.; Davies, A.; Ganderton, R.; Hiddemann, W.; Iriyama, C.; Klapper, W.; Latham, K.V.; et al. Single-nucleotide Fcγ receptor polymorphisms do not impact obinutuzumab/rituximab outcome in patients with lymphoma. Blood Adv. 2021, 5, 2935–2944. [Google Scholar] [CrossRef]
  96. Cartron, G.; Dacheux, L.; Salles, G.; Solal-Celigny, P.; Bardos, P.; Colombat, P.; Watier, H. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood 2002, 99, 754–758. [Google Scholar] [CrossRef]
  97. Rossi, D.; Bruscaggin, A.; La Cava, P.; Galimberti, S.; Ciabatti, E.; Luminari, S.; Rigacci, L.; Tucci, A.; Pulsoni, A.; Bertoldero, G.; et al. The genotype of MLH1 identifies a subgroup of follicular lymphoma patients who do not benefit from doxorubicin: FIL-FOLL study. Haematologica 2015, 100, 517–524. [Google Scholar] [CrossRef]
  98. Prochazka, V.; Papajik, T.; Gazdova, J.; Divoka, M.; Rozmanova, S.; Faber, E.; Raida, L.; Kucerova, L.; Langova, K.; Jarosova, M.; et al. FcγRIIIA receptor genotype does not influence an outcome in patients with follicular lymphoma treated with risk-adapted immunochemotherapy. Neoplasma 2011, 58, 263–270. [Google Scholar] [CrossRef]
  99. Zhou, X.; Hu, W.; Qin, X. The role of complement in the mechanism of action of rituximab for B-cell lymphoma: Implications for therapy. Oncologist 2008, 13, 954–966. [Google Scholar] [CrossRef]
  100. Weiner, G.J. Rituximab: Mechanism of action. Semin. Hematol. 2010, 47, 115–123. [Google Scholar] [CrossRef]
  101. Salles, G.; Barrett, M.; Foà, R.; Maurer, J.; O’Brien, S.; Valente, N.; Wenger, M.; Maloney, D.G. Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience. Adv. Ther. 2017, 34, 2232–2273. [Google Scholar] [CrossRef]
  102. Bezombes, C.; Fournié, J.J.; Laurent, G. Direct effect of rituximab in B-cell-derived lymphoid neoplasias: Mechanism, regulation, and perspectives. Mol. Cancer Res. 2011, 9, 1435–1442. [Google Scholar] [CrossRef]
  103. Gibson, T.M.; Wang, S.S.; Cerhan, J.R.; Maurer, M.J.; Hartge, P.; Habermann, T.M.; Davis, S.; Cozen, W.; Lynch, C.F.; Severson, R.K.; et al. Inherited genetic variation and overall survival following follicular lymphoma. Am. J. Hematol. 2012, 87, 724–726. [Google Scholar] [CrossRef]
  104. Wang, S.S.; Maurer, M.J.; Morton, L.M.; Habermann, T.M.; Davis, S.; Cozen, W.; Lynch, C.F.; Severson, R.K.; Rothman, N.; Chanock, S.J.; et al. Polymorphisms in DNA repair and one-carbon metabolism genes and overall survival in diffuse large B-cell lymphoma and follicular lymphoma. Leukemia 2009, 23, 596–602. [Google Scholar] [CrossRef]
  105. Aschebrook-Kilfoy, B.; Zheng, T.; Foss, F.; Ma, S.; Han, X.; Lan, Q.; Holford, T.; Chen, Y.; Leaderer, B.; Rothman, N.; et al. Polymorphisms in immune function genes and non-Hodgkin lymphoma survival. J. Cancer Surviv. 2012, 6, 102–114. [Google Scholar] [CrossRef]
  106. García-Álvarez, M.; Alonso-Álvarez, S.; Prieto-Conde, I.; Jiménez, C.; Sarasquete, M.E.; Chillón, M.C.; Medina, A.; Balanzategui, A.; Maldonado, R.; Antón, A.; et al. Immunoglobulin gene rearrangement IGHV3-48 is a predictive marker of histological transformation into aggressive lymphoma in follicular, l.y.m.p.h.o.m.a.s. Blood Cancer J. 2019, 9, 52. [Google Scholar] [CrossRef]
  107. Berget, E.; Molven, A.; Løkeland, T.; Helgeland, L.; Vintermyr, O.K. IGHV gene usage and mutational status in follicular lymphoma: Correlations with prognosis and patient age. Leuk. Res. 2015, 39, 702–708. [Google Scholar] [CrossRef]
  108. Assis-Mendonça, G.R.; Fattori, A.; Rocha, R.M.; Lourenço, G.J.; Delamain, M.T.; Nonogaki, S.; de Lima, V.C.C.; Colleoni, G.W.B.; de Souza, C.A.; Soares, F.A.; et al. An integrative microenvironment approach for follicular lymphoma: Roles of inflammatory cell subsets and immune-response polymorphisms on disease clinical course. Oncotarget 2020, 11, 3153–3173. [Google Scholar] [CrossRef]
  109. Ito, Y.; Umezu, T.; Tadokoro, K.; Saito, Y.; Katagiri, S.; Suguro, T.; Asano, M.; Yoshizawa, S.; Akahane, D.; Tanaka, Y.; et al. BIM deletion polymorphism accounts for lack of favorable outcome in Japanese females with follicular lymphoma. Leuk. Lymphoma 2019, 60, 1283–1288. [Google Scholar] [CrossRef]
  110. Racila, E.; Link, B.K.; Weng, W.K.; Witzig, T.E.; Ansell, S.; Maurer, M.J.; Huang, J.; Dahle, C.; Halwani, A.; Levy, R.; et al. A polymorphism in the complement component C1qA correlates with prolonged response following rituximab therapy of follicular lymphoma. Clin. Cancer Res. 2008, 14, 6697–6703. [Google Scholar] [CrossRef]
  111. Charbonneau, B.; Maurer, M.J.; Fredericksen, Z.S.; Zent, C.S.; Link, B.K.; Novak, A.J.; Ansell, S.M.; Weiner, G.J.; Wang, A.H.; Witzig, T.E.; et al. Germline variation in complement genes and event-free survival in follicular and diffuse large B-cell lymphoma. Am. J. Hematol. 2012, 87, 880–885. [Google Scholar] [CrossRef]
  112. Wrench, D.; Leighton, P.; Skibola, C.F.; Conde, L.; Cazier, J.B.; Matthews, J.; Iqbal, S.; Carlotti, E.; Bödör, C.; Montoto, S.; et al. SNP rs6457327 in the HLA region on chromosome 6p is predictive of the transformation of follicular lymphoma. Blood 2011, 117, 3147–3150. [Google Scholar] [CrossRef]
  113. Wrench, D.; Waters, R.; Carlotti, E.; Iqbal, S.; Matthews, J.; Calaminici, M.; Gribben, J.; Lister, T.A.; Fitzgibbon, J. Clinical relevance of MDM2 SNP 309 and TP53 Arg72Pro in follicular lymphoma. Haematologica 2009, 94, 148–150. [Google Scholar] [CrossRef]
  114. Nielsen, K.R.; Steffensen, R.; Bendtsen, M.D.; Rodrigo-Domingo, M.; Baech, J.; Haunstrup, T.M.; Bergkvist, K.S.; Schmitz, A.; Boedker, J.S.; Johansen, P.; et al. Inherited Inflammatory Response Genes Are Associated with B-Cell Non-Hodgkin’s Lymphoma Risk and Survival. PLoS ONE 2015, 10, e0139329. [Google Scholar] [CrossRef]
  115. Bararia, D.; Hildebrand, J.A.; Stolz, S.; Haebe, S.; Alig, S.; Trevisani, C.P.; Osorio-Barrios, F.; Bartoschek, M.D.; Mentz, M.; Pastore, A.; et al. Cathepsin S Alterations Induce a Tumor-Promoting Immune Microenvironment in Follicular Lymphoma. Cell Rep. 2020, 31, 107522. [Google Scholar] [CrossRef]
  116. Charbonneau, B.; Wang, A.H.; Maurer, M.J.; Asmann, Y.W.; Zent, C.S.; Link, B.K.; Ansell, S.M.; Weiner, G.J.; Ozsan, N.; Feldman, A.L.; et al. CXCR5 polymorphisms in non-Hodgkin lymphoma risk and prognosis. Cancer Immunol. Immunother. 2013, 62, 1475–1484. [Google Scholar] [CrossRef]
  117. Mondello, P.; Fama, A.; Larson, M.C.; Feldman, A.L.; Villasboas, J.C.; Yang, Z.Z.; Galkin, I.; Svelolkin, V.; Postovalova, E.; Bagaev, A.; et al. Lack of intrafollicular memory CD4 + T cells is predictive of early clinical failure in newly diagnosed follicular lymphoma. Blood Cancer J. 2021, 11, 130. [Google Scholar] [CrossRef]
  118. Ghielmini, M.; Rufibach, K.; Salles, G.; Leoncini-Franscini, L.; Léger-Falandry, C.; Cogliatti, S.; Fey, M.; Martinelli, G.; Stahel, R.; Lohri, A.; et al. Single agent rituximab in patients with follicular or mantle cell lymphoma: Clinical and biological factors that are predictive of response and event-free survival as well as the effect of rituximab on the immune system: A study of the Swiss Group for Clinical Cancer Research (SAKK). Ann. Oncol. 2005, 16, 1675–1682. [Google Scholar]
  119. Hohaus, S.; Mansueto, G.; Massini, G.; D’Alo, F.; Giachelia, M.; Martini, M.; Larocca, L.M.; Voso, M.T.; Leone, G. Glutathione-S-transferase genotypes influence prognosis in follicular non-Hodgkin’s Lymphoma. Leuk. Lymphoma 2007, 48, 564–569. [Google Scholar] [CrossRef]
  120. Launay, E.; Pangault, C.; Bertrand, P.; Jardin, F.; Lamy, T.; Tilly, H.; Tarte, K.; Bastard, C.; Fest, T. High rate of TNFRSF14 gene alterations related to 1p36 region in de novo follicular lymphoma and impact on prognosis. Leukemia 2012, 26, 559–562. [Google Scholar] [CrossRef]
  121. Burack, W.R.; Li, H.; Adlowitz, D.; Spence, J.M.; Rimsza, L.M.; Shadman, M.; Spier, C.M.; Kaminski, M.S.; Leonard, J.P.; Leblanc, M.L.; et al. Subclonal TP53 mutations are frequent and predict resistance to radioimmunotherapy in follicular lymphoma. Blood Adv. 2023, 7, 5082–5090. [Google Scholar] [CrossRef]
  122. De Mendonça, G.R.; Brito, A.B.; Rocha, R.M.; Delamain, M.T.; de Andrade Natal, R.; Soares, F.A.; Colleoni, G.W.; Souza, C.A.; Vassallo, J.; Lima, C.S. Association of VEGFA-2578 C>A polymorphism with clinicopathological aspects and outcome in follicular lymphoma patients. Blood Cancer J. 2016, 6, e464. [Google Scholar] [CrossRef]
  123. Lu, Y.; Abdou, A.M.; Cerhan, J.R.; Morton, L.M.; Severson, R.K.; Davis, S.; Cozen, W.; Rothman, N.; Bernstein, L.; Chanock, S.; et al. Human leukocyte antigen class I and II alleles and overall survival in diffuse large B-cell lymphoma and follicular lymphoma. Sci. World J. 2011, 11, 2062–2070. [Google Scholar] [CrossRef]
  124. Dave, S.S.; Wright, G.; Tan, B.; Rosenwald, A.; Gascoyne, R.D.; Chan, W.C.; Fisher, R.I.; Braziel, R.M.; Rimsza, L.M.; Grogan, T.M.; et al. Prediction of survival in follicular lymphoma based on molecular features of tumor-infiltrating immune cells. N. Engl. J. Med. 2004, 351, 2159–2169. [Google Scholar] [CrossRef]
  125. Staiger, A.M.; Hoster, E.; Jurinovic, V.; Winter, S.; Leich, E.; Kalla, C.; Möller, P.; Bernd, H.W.; Feller, A.C.; Koch, K.; et al. Localized- and advanced-stage follicular lymphomas differ in their gene expression profiles. Blood 2020, 135, 181–190. [Google Scholar] [CrossRef]
  126. Huet, S.; Tesson, B.; Jais, J.P.; Feldman, A.L.; Magnano, L.; Thomas, E.; Traverse-Glehen, A.; Albaud, B.; Carrère, M.; Xerri, L.; et al. A gene-expression profiling score for prediction of outcome in patients with follicular lymphoma: A retrospective training and validation analysis in three international cohorts. Lancet Oncol. 2018, 19, 549–561. [Google Scholar] [CrossRef]
  127. Silva, A.; Bassim, S.; Sarkozy, C.; Mottok, A.; Lackraj, T.; Jurinovic, V.; Brodtkorb, M.; Lingjaerde, O.C.; Sehn, L.H.; Gascoyne, R.D.; et al. Convergence of risk prediction models in follicular lymphoma. Haematologica 2019, 104, e252–e255. [Google Scholar] [CrossRef]
  128. Brodtkorb, M.; Lingjærde, O.C.; Huse, K.; Trøen, G.; Hystad, M.; Hilden, V.I.; Myklebust, J.H.; Leich, E.; Rosenwald, A.; Delabie, J.; et al. Whole-genome integrative analysis reveals expression signatures predicting transformation in follicular lymphoma. Blood 2014, 123, 1051–1054. [Google Scholar] [CrossRef]
  129. Steen, C.B.; Leich, E.; Myklebust, J.H.; Lockmer, S.; Wise, J.F.; Wahlin, B.E.; Østenstad, B.; Liestøl, K.; Kimby, E.; Rosenwald, A.; et al. A clinico-molecular predictor identifies follicular lymphoma patients at risk of early transformation after first-line immunotherapy. Haematologica 2019, 104, e460–e464. [Google Scholar] [CrossRef]
  130. Gentles, A.J.; Alizadeh, A.A.; Lee, S.I.; Myklebust, J.H.; Shachaf, C.M.; Shahbaba, B.; Levy, R.; Koller, D.; Plevritis, S.K. A pluripotency signature predicts histologic transformation and influences survival in follicular lymphoma patients. Blood 2009, 114, 3158–3166. [Google Scholar] [CrossRef]
  131. Tsukamoto, T.; Tokuda, Y.; Nakano, M.; Tashiro, K.; Kuroda, J. Expression of activated B-cell gene signature is predictive of the outcome of follicular lymphoma. Blood Adv. 2022, 6, 1932–1936. [Google Scholar] [CrossRef]
  132. Bolen, C.R.; McCord, R.; Huet, S.; Frampton, G.M.; Bourgon, R.; Jardin, F.; Dartigues, P.; Punnoose, E.A.; Szafer-Glusman, E.; Xerri, L.; et al. Mutation load and an effector T-cell gene signature may distinguish immunologically distinct and clinically relevant lymphoma subsets. Blood Adv. 2017, 1, 1884–1890. [Google Scholar] [CrossRef]
  133. Zhong, C.; Chao, C.R.; Song, J.Y.; Weisenburger, D.D.; Luo, J.; Ding, Y.C.; Neuhausen, S.L.; Bernstein, L.; Cozen, W.; Wang, S.S. Follicular lymphoma polygenic risk score is associated with increased disease risk but improved overall survival among women in a population based case-control in Los Angeles County California. Cancer Epidemiol. 2020, 65, 101688. [Google Scholar] [CrossRef]
  134. Taskinen, M.; Valo, E.; Karjalainen-Lindsberg, M.L.; Hautaniemi, S.; Meri, S.; Leppä, S. Signal transducers and activators of transcription 5a-dependent cross-talk between follicular lymphoma cells and tumor microenvironment characterizes a group of patients with improved outcome after R-CHOP. Clin. Cancer Res. 2010, 16, 2615–2623. [Google Scholar] [CrossRef]
  135. Roider, T.; Baertsch, M.A.; Fitzgerald, D.; Vöhringer, H.; Brinkmann, B.J.; Czernilofsky, F.; Knoll, M.; Llaó-Cid, L.; Mathioudaki, A.; Faßbender, B.; et al. Multimodal and spatially resolved profiling identifies distinct patterns of T cell infiltration in nodal B cell lymphoma entities. Nat. Cell Biol. 2024, 26, 478–489. [Google Scholar] [CrossRef]
  136. Zhang, T.; Liu, H.; Gao, F.; Gong, W.; Cui, Y.; He, J.; Li, L.; Qiu, L.; Qian, Z.; Zhou, S.; et al. m6A-Regulator Expression Signatures Identify a Subset of Follicular Lymphoma Harboring an Exhausted Tumor Microenvironment. Front. Immunol. 2022, 13, 922471. [Google Scholar] [CrossRef]
  137. Carreras, J.; Roncador, G.; Hamoudi, R. Artificial Intelligence Predicted Overall Survival and Classified Mature B-Cell Neoplasms Based on Immuno-Oncology and Immune Checkpoint Panels. Cancers 2022, 14, 5318. [Google Scholar] [CrossRef]
  138. Menter, T.; Hayoz, S.; Zucca, E.; Kimby, E.; Dirnhofer, S.; Tzankov, A. Immunomodulatory drugs may overcome the negative prognostic role of active Th17 axis in follicular lymphoma: Evidence from the SAKK35/10 trial. Br. J. Haematol. 2020, 190, e258–e261. [Google Scholar] [CrossRef]
  139. Tobin, J.W.D.; Keane, C.; Gunawardana, J.; Mollee, P.; Birch, S.; Hoang, T.; Lee, J.; Li, L.; Huang, L.; Murigneux, V.; et al. Progression of Disease within 24 Months in Follicular Lymphoma Is Associated With Reduced Intratumoral Immune Infiltration. J. Clin. Oncol. 2019, 37, 3300–3309. [Google Scholar] [CrossRef]
  140. Glas, A.M.; Knoops, L.; Delahaye, L.; Kersten, M.J.; Kibbelaar, R.E.; Wessels, L.A.; van Laar, R.; van Krieken, J.H.; Baars, J.W.; Raemaekers, J.; et al. Gene-expression and immunohistochemical study of specific T-cell subsets and accessory cell types in the transformation and prognosis of follicular lymphoma. J. Clin. Oncol. 2007, 25, 390–398. [Google Scholar] [CrossRef]
  141. Fernández-Garnacho, E.M.; Nadeu, F.; Martín, S.; Mozas, P.; Rivero, A.; Delgado, J.; Giné, E.; López-Guillermo, A.; Duran-Ferrer, M.; Salaverria, I.; et al. MALAT1 expression is associated with aggressive behavior in indolent B-cell neoplasms. Sci. Rep. 2023, 13, 16839. [Google Scholar] [CrossRef]
  142. Byers, R.J.; Sakhinia, E.; Joseph, P.; Glennie, C.; Hoyland, J.A.; Menasce, L.P.; Radford, J.A.; Illidge, T. Clinical quantitation of immune signature in follicular lymphoma by RT-PCR-based gene expression profiling. Blood 2008, 111, 4764–4770. [Google Scholar] [CrossRef]
  143. Björck, E.; Ek, S.; Landgren, O.; Jerkeman, M.; Ehinger, M.; Björkholm, M.; Borrebaeck, C.A.; Porwit-MacDonald, A.; Nordenskjöld, M. High expression of cyclin B1 predicts a favorable outcome in patients with follicular lymphoma. Blood 2005, 105, 2908–2915. [Google Scholar] [CrossRef]
  144. Bohen, S.P.; Troyanskaya, O.G.; Alter, O.; Warnke, R.; Botstein, D.; Brown, P.O.; Levy, R. Variation in gene expression patterns in follicular lymphoma and the response to rituximab. Proc. Natl. Acad. Sci. USA 2003, 100, 1926–1930. [Google Scholar] [CrossRef]
  145. Provencio, M.; Rodríguez, M.; Cantos, B.; Sabín, P.; Quero, C.; García-Arroyo, F.R.; Rueda, A.; Maximiano, C.; Rodríguez-Abreu, D.; Sánchez, A.; et al. mRNA in exosomas as a liquid biopsy in non-Hodgkin Lymphoma: A multicentric study by the Spanish Lymphoma Oncology Group. Oncotarget 2017, 8, 50949–50957. [Google Scholar] [CrossRef]
  146. Zhao, W.L.; Daneshpouy, M.E.; Mounier, N.; Brière, J.; Leboeuf, C.; Plassa, L.F.; Turpin, E.; Cayuela, J.M.; Ameisen, J.C.; Gisselbrecht, C.; et al. Prognostic significance of bcl-xL gene expression and apoptotic cell counts in follicular lymphoma. Blood 2004, 103, 695–697. [Google Scholar] [CrossRef]
  147. Harjunpää, A.; Taskinen, M.; Nykter, M.; Karjalainen-Lindsberg, M.L.; Nyman, H.; Monni, O.; Hemmer, S.; Yli-Harja, O.; Hautaniemi, S.; Meri, S.; et al. Differential gene expression in non-malignant tumour microenvironment is associated with outcome in follicular lymphoma patients treated with rituximab, C.H.O.P. Br. J. Haematol. 2006, 135, 33–42. [Google Scholar] [CrossRef]
  148. Zhou, Y.; Wang, S.; Tao, Y.; Chen, H.; Qin, Y.; He, X.; Zhou, S.; Liu, P.; Yang, J.; Yang, S.; et al. Low CCL19 expression is associated with adverse clinical outcomes for follicular lymphoma patients treated with chemoimmunotherapy. J. Transl. Med. 2021, 19, 399. [Google Scholar] [CrossRef]
  149. Herold, T.; Mulaw, M.A.; Jurinovic, V.; Seiler, T.; Metzeler, K.H.; Dufour, A.; Schneider, S.; Kakadia, P.M.; Spiekermann, K.; Mansmann, U.; et al. High expression of MZB1 predicts adverse prognosis in chronic lymphocytic leukemia, follicular lymphoma and diffuse large B-cell lymphoma and is associated with a unique gene expression signature. Leuk. Lymphoma 2013, 54, 1652–1657. [Google Scholar] [CrossRef]
  150. Laurent, C.; Flores, M.; Chartier, L.; Huet, S.; Bolen, C.R.; Venstrom, J.M.; Chassagne-Clément, C.; Dartigues-Cuilléres, P.; Charlotte, F.; Tesson, B.; et al. Long-term follow-up confirms the favourable prognostic impact of high numbers of tumour infiltrating CD3 T-cells in follicular lymphoma patients treated by rituximab-maintenance regimen. Br. J. Haematol. 2023, 202, 686–689. [Google Scholar] [CrossRef]
  151. Taskinen, M.; Jantunen, E.; Kosma, V.M.; Bono, P.; Karjalainen-Lindsberg, M.L.; Leppä, S. Prognostic impact of CD31-positive microvessel density in follicular lymphoma patients treated with immunochemotherapy. Eur. J. Cancer. 2010, 46, 2506–2512. [Google Scholar] [CrossRef]
  152. Carreras, J.; Lopez-Guillermo, A.; Kikuti, Y.Y.; Itoh, J.; Masashi, M.; Ikoma, H.; Tomita, S.; Hiraiwa, S.; Hamoudi, R.; Rosenwald, A.; et al. High TNFRSF14 and low BTLA are associated with poor prognosis in Follicular Lymphoma and in Diffuse Large B-cell Lymphoma transformation. J. Clin. Exp. Hematop. 2019, 59, 1–16. [Google Scholar] [CrossRef]
  153. Krajnović, M.; Radojković, M.; Davidović, R.; Dimitrijević, B.; Krtolica, K. Prognostic significance of epigenetic inactivation of p16, p15, MGMT and DAPK genes in follicular lymphoma. Med. Oncol. 2013, 30, 441. [Google Scholar] [CrossRef]
  154. Giachelia, M.; Bozzoli, V.; D’Alò, F.; Tisi, M.C.; Massini, G.; Maiolo, E.; Guidi, F.; Cupelli, E.; Martini, M.; Larocca, L.M.; et al. Quantification of DAPK1 promoter methylation in bone marrow and peripheral blood as a follicular lymphoma biomarker. J. Mol. Diagn. 2014, 16, 467–476. [Google Scholar] [CrossRef]
  155. Arzuaga-Mendez, J.; Lopez-Santillan, M.; Garcia-Ruiz, J.C.; Lopez-Lopez, E.; Martin-Guerrero, I. Systematic review of the potential of MicroRNAs in the management of patients with follicular lymphoma. Crit. Rev. Oncol. Hematol. 2021, 159, 103247. [Google Scholar] [CrossRef]
  156. Li, J.; Zou, J.; Wan, X.; Sun, C.; Peng, F.; Chu, Z.; Hu, Y. The Role of Noncoding RNAs in B-Cell Lymphoma. Front. Oncol. 2020, 10, 577890. [Google Scholar] [CrossRef]
  157. Larrabeiti-Etxebarria, A.; Lopez-Santillan, M.; Santos-Zorrozua, B.; Lopez-Lopez, E.; Garcia-Orad, A. Systematic Review of the Potential of MicroRNAs in Diffuse Large B Cell Lymphoma. Cancers 2019, 11, 144. [Google Scholar] [CrossRef]
  158. Lopez-Santillan, M.; Larrabeiti-Etxebarria, A.; Arzuaga-Mendez, J.; Lopez-Lopez, E.; Garcia-Orad, A. Circulating miRNAs as biomarkers in diffuse large B-cell lymphoma: A systematic review. Oncotarget 2018, 9, 22850–22861. [Google Scholar] [CrossRef]
  159. Musilova, K.; Mraz, M. MicroRNAs in B-cell lymphomas: How a complex biology gets more complex. Leukemia 2015, 29, 1004–1017. [Google Scholar] [CrossRef]
  160. Devan, J.; Janikova, A.; Mraz, M. New concepts in follicular lymphoma biology: From BCL2 to epigenetic regulators and non-coding RNAs. Semin. Oncol. 2018, 45, 291–302. [Google Scholar] [CrossRef]
  161. Fassina, A.; Marino, F.; Siri, M.; Zambello, R.; Ventura, L.; Fassan, M.; Simonato, F.; Cappellesso, R. The miR-17-92 microRNA cluster: A novel diagnostic tool in large B-cell malignancies. Lab. Investig. 2012, 92, 1574–1582. [Google Scholar] [CrossRef]
  162. Musilova, K.; Devan, J.; Cerna, K.; Seda, V.; Pavlasova, G.; Sharma, S.; Oppelt, J.; Pytlik, R.; Prochazka, V.; Prouzova, Z.; et al. miR-150 downregulation contributes to the high-grade transformation of follicular lymphoma by upregulating FOXP1 levels. Blood 2018, 132, 2389–2400. [Google Scholar] [CrossRef]
  163. Mottok, A.; Jurinovic, V.; Farinha, P.; Rosenwald, A.; Leich, E.; Ott, G.; Horn, H.; Klapper, W.; Boesl, M.; Hiddemann, W.; et al. FOXP1 expression is a prognostic biomarker in follicular lymphoma treated with rituximab and chemotherapy. Blood 2018, 131, 226–235. [Google Scholar] [CrossRef]
  164. Lawrie, C.H.; Chi, J.; Taylor, S.; Tramonti, D.; Ballabio, E.; Palazzo, S.; Saunders, N.J.; Pezzella, F.; Boultwood, J.; Wainscoat, J.S.; et al. Expression of microRNAs in diffuse large B cell lymphoma is associated with immunophenotype, survival and transformation from follicular lymphoma. J. Cell Mol. Med. 2009, 13, 1248–1260. [Google Scholar] [CrossRef]
  165. Lou, X.; Fu, J.; Zhao, X.; Zhuansun, X.; Rong, C.; Sun, M.; Niu, H.; Wu, L.; Zhang, Y.; An, L.; et al. MiR-7e-5p downregulation promotes transformation of low-grade follicular lymphoma to aggressive lymphoma by modulating an immunosuppressive stroma through the upregulation of FasL in M1 macrophages. J. Exp. Clin. Cancer Res. 2020, 39, 237. [Google Scholar] [CrossRef]
  166. Freedman, A.; Jacobsen, E. Follicular lymphoma: 2020 update on diagnosis and management. Am. J. Hematol. 2020, 95, 316–327. [Google Scholar] [CrossRef]
  167. López, C.; Mozas, P.; López-Guillermo, A.; Beà, S. Molecular Pathogenesis of Follicular Lymphoma: From Genetics to Clinical Practice. Hemato 2022, 3, 595–614. [Google Scholar] [CrossRef]
  168. Richendollar, B.G.; Pohlman, B.; Elson, P.; Hsi, E.D. Follicular programmed death 1-positive lymphocytes in the tumor microenvironment are an independent prognostic factor in follicular lymphoma. Hum. Pathol. 2011, 42, 552–557. [Google Scholar] [CrossRef]
  169. Torlakovic, E.E.; Bilalovic, N.; Golouh, R.; Zidar, A.; Angel, S. Prognostic significance of PU.1 in follicular lymphoma. J. Pathol. 2006, 209, 352–359. [Google Scholar] [CrossRef]
  170. Socha, D.S.; Zhao, X.; Bodo, J.; Durkin, L.; Hsi, E.D. Decreased BIM expression in BCL2-negative follicular lymphoma: A potential mechanism for resistance to apoptosis. Hum. Pathol. 2021, 107, 1–8. [Google Scholar] [CrossRef]
  171. Sohani, A.R.; Maurer, M.J.; Giri, S.; Pitcher, B.; Chadburn, A.; Said, J.W.; Bartlett, N.L.; Czuczman, M.S.; Martin, P.; Rosenbaum, C.A.; et al. Biomarkers for Risk Stratification in Patients With Previously Untreated Follicular Lymphoma Receiving Anti-CD20-based Biological Therapy. Am. J. Surg. Pathol. 2021, 45, 384–393. [Google Scholar] [CrossRef]
  172. Camacho, F.I.; Bellas, C.; Corbacho, C.; Caleo, A.; Arranz-Sáez, R.; Cannata, J.; Menárguez, J.; Sánchez-Verde, L.; González-Camacho, L.; Pérez-Martín, M.E.; et al. Improved demonstration of immunohistochemical prognostic markers for survival in follicular lymphoma cells. Mod. Pathol. 2011, 24, 698–707. [Google Scholar] [CrossRef]
  173. Logsdon, M.D.; Meyn, R.E.; Besa, P.C., Jr.; Pugh, W.C.; Stephens, L.C.; Peters, L.J.; Milas, L.; Cox, J.D.; Cabanillas, F.; Brisbay, S.; et al. Apoptosis and the Bcl-2 gene family -- patterns of expression and prognostic value in stage I and II follicular center lymphoma. Int. J. Radiat. Oncol. Biol. Phys. 1999, 44, 19–29. [Google Scholar] [CrossRef]
  174. Llanos, M.; Alvarez-Argüelles, H.; Alemán, R.; Oramas, J.; Diaz-Flores, L.; Batista, N. Prognostic significance of Ki-67 nuclear proliferative antigen, bcl-2 protein, and p53 expression in follicular and diffuse large B-cell lymphoma. Med. Oncol. 2001, 18, 15–22. [Google Scholar] [CrossRef]
  175. Kelley, T.; Beck, R.; Absi, A.; Jin, T.; Pohlman, B.; Hsi, E. Biologic predictors in follicular lymphoma: Importance of markers of immune response. Leuk. Lymphoma 2007, 48, 2403–2411. [Google Scholar] [CrossRef]
  176. Michels, J.; Foria, V.; Mead, B.; Jackson, G.; Mullee, M.; Johnson, P.W.; Packham, G. Immunohistochemical analysis of the antiapoptotic Mcl-1 and Bcl-2 proteins in follicular lymphoma. Br. J. Haematol. 2006, 132, 743–746. [Google Scholar] [CrossRef]
  177. Farinha, P.; Masoudi, H.; Skinnider, B.F.; Shumansky, K.; Spinelli, J.J.; Gill, K.; Klasa, R.; Voss, N.; Connors, J.M.; Gascoyne, R.D. Analysis of multiple biomarkers shows that lymphoma-associated macrophage (LAM) content is an independent predictor of survival in follicular lymphoma (FL). Blood 2005, 106, 2169–2174. [Google Scholar] [CrossRef]
  178. Bilalovic, N.; Blystad, A.K.; Golouh, R.; Nesland, J.M.; Selak, I.; Trinh, D.; Torlakovic, E. Expression of bcl-6 and CD10 protein is associated with longer overall survival and time to treatment failure in follicular lymphoma. Am. J. Clin. Pathol. 2004, 121, 34–42. [Google Scholar] [CrossRef]
  179. Nichols, M.M.; Ondrejka, S.L.; Patil, S.; Durkin, L.; Hill, B.T.; Hsi, E.D. Ki67 proliferation index in follicular lymphoma is associated with favorable outcome in patients treated with R-CHOP. Leuk Lymphoma 2023, 64, 1433–1441. [Google Scholar] [CrossRef]
  180. Scherer, F.; van der Burgt, M.; Kiełbasa, S.M.; Bertinetti-Lapatki, C.; Dühren von Minden, M.; Mikesch, K.; Zirlik, K.; de Wreede, L.; Veelken, H.; Navarrete, M.A. Selection patterns of B-cell receptors and the natural history of follicular lymphoma. Br. J. Haematol. 2016, 175, 972–975. [Google Scholar] [CrossRef]
  181. Madsen, C.; Lauridsen, K.L.; Plesner, T.L.; Monrad, I.; Honoré, B.; Hamilton-Dutoit, S.; d’Amore, F.; Ludvigsen, M. High intratumoral expression of vimentin predicts histological transformation in patients with follicular lymphoma. Blood Cancer J. 2019, 9, 35. [Google Scholar] [CrossRef]
  182. Xerri, L.; Bachy, E.; Fabiani, B.; Canioni, D.; Chassagne-Clément, C.; Dartigues-Cuilléres, P.; Charlotte, F.; Brousse, N.; Rousselet, M.C.; Foussard, C.; et al. Identification of MUM1 as a prognostic immunohistochemical marker in follicular lymphoma using computerized image analysis. Hum. Pathol. 2014, 45, 2085–2093. [Google Scholar] [CrossRef]
  183. Sweetenham, J.W.; Goldman, B.; LeBlanc, M.L.; Cook, J.R.; Tubbs, R.R.; Press, O.W.; Maloney, D.G.; Fisher, R.I.; Rimsza, L.M.; Braziel, R.M.; et al. Prognostic value of regulatory T cells, lymphoma-associated macrophages, and MUM-1 expression in follicular lymphoma treated before and after the introduction of monoclonal antibody therapy: A Southwest Oncology Group Study. Ann. Oncol. 2010, 21, 1196–1202. [Google Scholar] [CrossRef]
  184. Gulmann, C.; Espina, V.; Petricoin, E.; 3rd Longo, D.L.; Santi, M.; Knutsen, T.; Raffeld, M.; Jaffe, E.S.; Liotta, L.A.; Feldman, A.L. Proteomic analysis of apoptotic pathways reveals prognostic factors in follicular lymphoma. Clin. Cancer Res. 2005, 11, 5847–5855. [Google Scholar] [CrossRef]
  185. Wahlin, B.E.; Sander, B.; Christensson, B.; Kimby, E. CD8+ T-cell content in diagnostic lymph nodes measured by flow cytometry is a predictor of survival in follicular lymphoma. Clin. Cancer Res. 2007, 13 Pt 1, 388–397. [Google Scholar] [CrossRef]
  186. Weng, W.K.; Levy, R. Expression of complement inhibitors CD46, CD55, and CD59 on tumor cells does not predict clinical outcome after rituximab treatment in follicular non-Hodgkin lymphoma. Blood 2001, 98, 1352–1357. [Google Scholar] [CrossRef]
  187. Budau, L.; Wilhelm, C.; Moll, R.; Jäkel, J.; Hirt, C.; Dölken, G.; Maschmeyer, G.; Neubauer, E.; Strauch, K.; Burchert, A.; et al. Low number of intrafollicular T cells may predict favourable response to rituximab-based immuno-chemotherapy in advanced follicular lymphoma: A secondary analysis of a randomized clinical trial. J. Cancer Res. Clin. Oncol. 2019, 145, 2149–2156. [Google Scholar] [CrossRef]
  188. Klapper, W.; Hoster, E.; Rölver, L.; Schrader, C.; Janssen, D.; Tiemann, M.; Bernd, H.W.; Determann, O.; Hansmann, M.L.; Möller, P.; et al. Tumor sclerosis but not cell proliferation or malignancy grade is a prognostic marker in advanced-stage follicular lymphoma: The German Low Grade Lymphoma Study Group. J. Clin. Oncol. 2007, 25, 3330–3336. [Google Scholar] [CrossRef]
  189. Yoshimura, T.; Miyoshi, H.; Shimono, J.; Nakashima, K.; Takeuchi, M.; Yanagida, E.; Yamada, K.; Shimasaki, Y.; Moritsubo, M.; Furuta, T.; et al. CD37 expression in follicular lymphoma. Ann. Hematol. 2022, 101, 1067–1075. [Google Scholar] [CrossRef]
  190. De Jong, D.; Koster, A.; Hagenbeek, A.; Raemaekers, J.; Veldhuizen, D.; Heisterkamp, S.; de Boer, J.P.; van Glabbeke, M. Impact of the tumor microenvironment on prognosis in follicular lymphoma is dependent on specific treatment protocols. Haematologica 2009, 94, 70–77. [Google Scholar] [CrossRef]
  191. Szumera-Ciećkiewicz, A.; Rymkiewicz, G.; Sokół, K.; Paszkiewicz-Kozik, E.; Borysiuk, A.; Poleszczuk, J.; Bachnio, K.; Bystydzienski, Z.; Woroniecka, R.; Grygalewicz, B.; et al. Significance of CD10 protein expression in the diagnostics of follicular lymphoma: A comparison of conventional immunohistochemistry with flow cytometry supported by the establishment of BCL2 and BCL6 rearrangements. Int. J. Lab. Hematol. 2020, 42, 453–463. [Google Scholar] [CrossRef]
  192. Li, C.; Zhang, W.; Zhao, D.; Yang, P.; Wan, W.; Liu, S.; Jing, H. Development of a new risk scoring system based on spleen involvement and the lymphocyte/monocyte ratio for follicular lymphoma patients. Leuk. Res. 2022, 123, 106980. [Google Scholar] [CrossRef]
  193. Wang, X.; Nissen, M.; Gracias, D.; Kusakabe, M.; Simkin, G.; Jiang, A.; Duns, G.; Sarkozy, C.; Hilton, L.; Chavez, E.A.; et al. Single-cell profiling reveals a memory B cell-like subtype of follicular lymphoma with increased transformation risk. Nat. Commun. 2022, 13, 6772. [Google Scholar] [CrossRef]
  194. De Jong, D. Molecular pathogenesis of follicular lymphoma: A cross talk of genetic and immunologic factors. J. Clin. Oncol. 2005, 23, 6358–6363. [Google Scholar] [CrossRef]
  195. Menter, T.; Tzankov, A.; Zucca, E.; Kimby, E.; Hultdin, M.; Sundström, C.; Beiske, K.; Cogliatti, S.; Banz, Y.; Cathomas, G.; et al. Prognostic implications of the microenvironment for follicular lymphoma under immunomodulation therapy. Br. J. Haematol. 2020, 189, 707–717. [Google Scholar] [CrossRef]
  196. Wahlin, B.E.; Aggarwal, M.; Montes-Moreno, S.; Gonzalez, L.F.; Roncador, G.; Sanchez-Verde, L.; Christensson, B.; Sander, B.; Kimby, E. A unifying microenvironment model in follicular lymphoma: Outcome is predicted by programmed death-1--positive, regulatory, cytotoxic, and helper T cells and macrophages. Clin. Cancer Res. 2010, 16, 637–650. [Google Scholar] [CrossRef]
  197. Alvaro, T.; Lejeune, M.; Salvadó, M.T.; Lopez, C.; Jaén, J.; Bosch, R.; Pons, L.E. Immunohistochemical patterns of reactive microenvironment are associated with clinicobiologic behavior in follicular lymphoma patients. J. Clin. Oncol. 2006, 24, 5350–5357. [Google Scholar] [CrossRef]
  198. Laurent, C.; Müller, S.; Do, C.; Al-Saati, T.; Allart, S.; Larocca, L.M.; Hohaus, S.; Duchez, S.; Quillet-Mary, A.; Laurent, G.; et al. Distribution, function, and prognostic value of cytotoxic T lymphocytes in follicular lymphoma: A 3-D tissue-imaging study. Blood 2011, 118, 5371–5379. [Google Scholar] [CrossRef]
  199. Gravelle, P.; Do, C.; Franchet, C.; Mueller, S.; Oberic, L.; Ysebaert, L.; Larocca, L.M.; Hohaus, S.; Calmels, M.N.; Frenois, F.X.; et al. Impaired functional responses in follicular lymphoma CD8(+)TIM-3(+) T lymphocytes following TCR engagement. Oncoimmunology 2016, 5, e1224044. [Google Scholar] [CrossRef]
  200. Nesterova, E.S.; Kravchenko, S.K.; Gemdjian, E.G.; Osmanov, E.A.; Kovrigina, A.M. Tumor-associated cytotoxic lymphocytes and macrophages as predictive factors in follicular lymphoma. Biochem. (Mosc.) Suppl. Ser. A Membr. Cell Biol. 2014, 8, 198–205. [Google Scholar]
  201. Blaker, Y.N.; Spetalen, S.; Brodtkorb, M.; Lingjaerde, O.C.; Beiske, K.; Østenstad, B.; Sander, B.; Wahlin, B.E.; Melen, C.M.; Myklebust, J.H.; et al. The tumour microenvironment influences survival and time to transformation in follicular lymphoma in the rituximab era. Br. J. Haematol. 2016, 175, 102–114. [Google Scholar] [CrossRef]
  202. Gršković, P.; Hančić, S.; Dotlić, S.; Matulić, M.; Ostojić Kolonić, S.; Gašparov, S.; Dominis, M.; Korać, P. CD4+/CD57+/CD69+ T lymphocytes and CD14+ dendritic cells accumulate in advanced follicular lymphoma. Immunobiology 2022, 227, 152257. [Google Scholar] [CrossRef]
  203. Lee, A.M.; Clear, A.J.; Calaminici, M.; Davies, A.J.; Jordan, S.; MacDougall, F.; Matthews, J.; Norton, A.J.; Gribben, J.G.; Lister, T.A.; et al. Number of CD4+ cells and location of forkhead box protein P3-positive cells in diagnostic follicular lymphoma tissue microarrays correlates with outcome. J. Clin. Oncol. 2006, 24, 5052–5059. [Google Scholar] [CrossRef]
  204. Szumera-Ciećkiewicz, A.; Poleszczuk, J.; Kuczkiewicz-Siemion, O.; Paszkiewicz-Kozik, E.; Rymkiewicz, G.; Sokół, K.; Borysiuk, A.; Kotarska, M.; Kawecka, M.; Owczarek, D.; et al. PD1 distribution pattern, regardless of the cell origin, is an independent microenvironmental prognostic factor for progression-free survival in follicular lymphoma. Pathol. Res. Pract. 2020, 216, 153096. [Google Scholar] [CrossRef]
  205. Farinha, P.; Al-Tourah, A.; Gill, K.; Klasa, R.; Connors, J.M.; Gascoyne, R.D. The architectural pattern of FOXP3-positive T cells in follicular lymphoma is an independent predictor of survival and histologic transformation. Blood 2010, 115, 289–295. [Google Scholar] [CrossRef]
  206. Carreras, J.; Lopez-Guillermo, A.; Fox, B.C.; Colomo, L.; Martinez, A.; Roncador, G.; Montserrat, E.; Campo, E.; Banham, A.H. High numbers of tumor-infiltrating FOXP3-positive regulatory T cells are associated with improved overall survival in follicular lymphoma. Blood 2006, 108, 2957–2964. [Google Scholar] [CrossRef]
  207. Li, C.; Guo, N.; Han, S.; Yu, H.; Lei, T.; Chen, X.; Peng, S.; Yang, H.; Wu, M. Impact of positive CD4 cells on event-free survival in follicular lymphoma patients. Cancer Med. 2024, 13, e70117. [Google Scholar] [CrossRef]
  208. Fahlquist Hagert, C.; Degn, S.E. T follicular regulatory cells: Guardians of the germinal centre? Scand. J. Immunol. 2020, 92, e12942. [Google Scholar] [CrossRef]
  209. Smeltzer, J.P.; Jones, J.M.; Ziesmer, S.C.; Grote, D.M.; Xiu, B.; Ristow, K.M.; Yang, Z.Z.; Nowakowski, G.S.; Feldman, A.L.; Cerhan, J.R.; et al. Pattern of CD14+ follicular dendritic cells and PD1+ T cells independently predicts time to transformation in follicular lymphoma. Clin. Cancer Res. 2014, 20, 2862–2872. [Google Scholar] [CrossRef]
  210. Tzankov, A.; Meier, C.; Hirschmann, P.; Went, P.; Pileri, S.A.; Dirnhofer, S. Correlation of high numbers of intratumoral FOXP3+ regulatory T cells with improved survival in germinal center-like diffuse large B-cell lymphoma, follicular lymphoma and classical Hodgkin’s lymphoma. Haematologica 2008, 93, 193–200. [Google Scholar] [CrossRef]
  211. Chevalier, N.; Mueller, M.; Mougiakakos, D.; Ihorst, G.; Marks, R.; Schmitt-Graeff, A.; Veelken, H. Analysis of dendritic cell subpopulations in follicular lymphoma with respect to the tumor immune microenvironment. Leuk. Lymphoma 2016, 57, 2150–2160. [Google Scholar] [CrossRef]
  212. Tsakiroglou, A.M.; Astley, S.; Dave, M.; Fergie, M.; Harkness, E.; Rosenberg, A.; Sperrin, M.; West, C.; Byers, R.; Linton, K. Immune infiltrate diversity confers a good prognosis in follicular lymphoma. Cancer Immunol. Immunother. 2021, 70, 3573–3585. [Google Scholar] [CrossRef]
  213. Nelson, L.S.; Mansfield, J.R.; Lloyd, R.; Oguejiofor, K.; Salih, Z.; Menasce, L.P.; Linton, K.M.; Rose, C.J.; Byers, R.J. Automated prognostic pattern detection shows favourable diffuse pattern of FOXP3(+) Tregs in follicular lymphoma. Br. J. Cancer 2015, 113, 1197–1205. [Google Scholar] [CrossRef]
  214. Carreras, J.; Lopez-Guillermo, A.; Roncador, G.; Villamor, N.; Colomo, L.; Martinez, A.; Hamoudi, R.; Howat, W.J.; Montserrat, E.; Campo, E. High numbers of tumor-infiltrating programmed cell death 1-positive regulatory lymphocytes are associated with improved overall survival in follicular lymphoma. J. Clin. Oncol. 2009, 27, 1470–1476. [Google Scholar] [CrossRef]
  215. Saifi, M.; Maran, A.; Raynaud, P.; Picot, M.C.; Quittet, P.; Cartron, G.; Rossi, J.F.; Costes, V. High ratio of interfollicular CD8/FOXP3-positive regulatory T cells is associated with a high FLIPI index and poor overall survival in follicular lymphoma. Exp. Ther. Med. 2010, 1, 933–938. [Google Scholar] [CrossRef]
  216. Hagos, Y.B.; Akarca, A.U.; Ramsay, A.; Rossi, R.L.; Pomplun, S.; Ngai, V.; Moioli, A.; Gianatti, A.; McNamara, C.; Rambaldi, A.; et al. High inter-follicular spatial co-localization of CD8+FOXP3+ with CD4+CD8+ cells predicts favorable outcome in follicular lymphoma. Hematol. Oncol. 2022, 40, 541–553. [Google Scholar] [CrossRef]
  217. Koch, K.; Hoster, E.; Unterhalt, M.; Ott, G.; Rosenwald, A.; Hansmann, M.L.; Engelhard, M.; Hiddemann, W.; Klapper, W. The composition of the microenvironment in follicular lymphoma is associated with the stage of the disease. Hum. Pathol. 2012, 43, 2274–2281. [Google Scholar] [CrossRef]
  218. Spasevska, I.; Sharma, A.; Steen, C.B.; Josefsson, S.E.; Blaker, Y.N.; Kolstad, A.; Rustad, E.H.; Meyer, S.; Isaksen, K.; Chellappa, S.; et al. Diversity of intratumoral regulatory T cells in B-cell non-Hodgkin lymphoma. Blood Adv. 2023, 7, 7216–7230. [Google Scholar] [CrossRef]
  219. Fujiwara, S.; Muroi, K.; Tatara, R.; Matsuyama, T.; Ohmine, K.; Suzuki, T.; Mori, M.; Nagai, T.; Tanaka, A.; Ozawa, K. Clinical features of de novo CD25-positive follicular lymphoma. Leuk. Lymphoma 2014, 55, 307–313. [Google Scholar] [CrossRef]
  220. Yang, Z.Z.; Kim, H.J.; Villasboas, J.C.; Price-Troska, T.; Jalali, S.; Wu, H.; Luchtel, R.A.; Polley, M.C.; Novak, A.J.; Ansell, S.M. Mass Cytometry Analysis Reveals that Specific Intratumoral CD4(+) T Cell Subsets Correlate with Patient Survival in Follicular Lymphoma. Cell Rep. 2019, 26, 2178–2193.e2173. [Google Scholar] [CrossRef]
  221. Liston, A.; Aloulou, M. A fresh look at a neglected regulatory lineage: CD8(+)Foxp3(+) Regulatory T cells. Immunol. Lett. 2022, 247, 22–26. [Google Scholar] [CrossRef]
  222. Chung, Y.; Tanaka, S.; Chu, F.; Nurieva, R.I.; Martinez, G.J.; Rawal, S.; Wang, Y.H.; Lim, H.; Reynolds, J.M.; Zhou, X.H.; et al. Follicular regulatory T cells expressing Foxp3 and Bcl-6 suppress germinal center reactions. Nat. Med. 2011, 17, 983–988. [Google Scholar] [CrossRef]
  223. Gonzalez-Figueroa, P.; Roco, J.A.; Papa, I.; Núñez Villacís, L.; Stanley, M.; Linterman, M.A.; Dent, A.; Canete, P.F.; Vinuesa, C.G. Follicular regulatory T cells produce neuritin to regulate B cells. Cell 2021, 184, 1775–1789.e1719. [Google Scholar] [CrossRef]
  224. Linterman, M.A.; Pierson, W.; Lee, S.K.; Kallies, A.; Kawamoto, S.; Rayner, T.F.; Srivastava, M.; Divekar, D.P.; Beaton, L.; Hogan, J.J.; et al. Foxp3+ follicular regulatory T cells control the germinal center response. Nat. Med. 2011, 17, 975–982. [Google Scholar] [CrossRef]
  225. Wollenberg, I.; Agua-Doce, A.; Hernández, A.; Almeida, C.; Oliveira, V.G.; Faro, J.; Graca, L. Regulation of the germinal center reaction by Foxp3+ follicular regulatory T cells. J. Immunol. 2011, 187, 4553–4560. [Google Scholar] [CrossRef]
  226. Lu, Y.; Craft, J. T Follicular Regulatory Cells: Choreographers of Productive Germinal Center Responses. Front. Immunol. 2021, 12, 679909. [Google Scholar] [CrossRef]
  227. Qi, J.; Liu, C.; Bai, Z.; Li, X.; Yao, G. T follicular helper cells and T follicular regulatory cells in autoimmune diseases. Front. Immunol. 2023, 14, 1178792. [Google Scholar] [CrossRef]
  228. Graca, L.; Jacobsen, J.; Kumar, S. The expanding family of T follicular regulatory cells. Sci. Immunol. 2023, 8, eadg7526. [Google Scholar] [CrossRef]
  229. Le Coz, C.; Oldridge, D.A.; Herati, R.S.; De Luna, N.; Garifallou, J.; Cruz Cabrera, E.; Belman, J.P.; Pueschl, D.; Silva, L.V.; Knox, A.V.C.; et al. Human T follicular helper clones seed the germinal center-resident regulatory pool. Sci. Immunol. 2023, 8, eade8162. [Google Scholar] [CrossRef]
  230. Fonseca, V.R.; Ribeiro, F.; Graca, L. T follicular regulatory (Tfr) cells: Dissecting the complexity of Tfr-cell compartments. Immunol. Rev. 2019, 288, 112–127. [Google Scholar] [CrossRef]
  231. Sage, P.T.; Sharpe, A.H. The multifaceted functions of follicular regulatory T cells. Curr. Opin. Immunol. 2020, 67, 68–74. [Google Scholar] [CrossRef]
  232. Yang, Z.Z.; Kim, H.J.; Wu, H.; Tang, X.; Yu, Y.; Krull, J.; Larson, D.P.; Moore, R.M.; Maurer, M.J.; Pavelko, K.D.; et al. T-cell phenotype including CD57(+) T follicular helper cells in the tumor microenvironment correlate with a poor outcome in follicular lymphoma. Blood Cancer J. 2023, 13, 124. [Google Scholar] [CrossRef]
  233. Butsch, R.; Lukas Waelti, S.; Schaerer, S.; Braun, J.; Korol, D.; Probst-Hensch, N.; Moch, H.; Kurrer, M. Intratumoral plasmacytoid dendritic cells associate with increased survival in patients with follicular lymphoma. Leuk. Lymphoma 2011, 52, 1230–1238. [Google Scholar] [CrossRef]
  234. Ramsay, A.G.; Clear, A.J.; Kelly, G.; Fatah, R.; Matthews, J.; Macdougall, F.; Lister, T.A.; Lee, A.M.; Calaminici, M.; Gribben, J.G. Follicular lymphoma cells induce T-cell immunologic synapse dysfunction that can be repaired with lenalidomide: Implications for the tumor microenvironment and immunotherapy. Blood 2009, 114, 4713–4720. [Google Scholar] [CrossRef]
  235. Meirav, K.; Ginette, S.; Tamar, T.; Iris, B.; Arnon, N.; Abraham, A. Extrafollicular PD1 and Intrafollicular CD3 Expression Are Associated With Survival in Follicular Lymphoma. Clin. Lymphoma Myeloma Leuk. 2017, 17, 645–649. [Google Scholar] [CrossRef]
  236. Taskinen, M.; Karjalainen-Lindsberg, M.L.; Nyman, H.; Eerola, L.M.; Leppä, S. A high tumor-associated macrophage content predicts favorable outcome in follicular lymphoma patients treated with rituximab and cyclophosphamide-doxorubicin-vincristine-prednisone. Clin. Cancer Res. 2007, 13, 5784–5789. [Google Scholar] [CrossRef]
  237. Miyashita, H.; Taoka, K.; Kume, A.; Ushiku, A.; Ushiku, T.; Toyama, K.; Kurokawa, M. Clinical usefulness of a novel classification of T cell distribution patterns in the tumor microenvironment of follicular lymphoma to detect transformation. Ann. Hematol. 2022, 101, 2477–2483. [Google Scholar] [CrossRef]
  238. Li, Y.; Hu, S.; Zuo, Z.; Hong, M.; Lin, P.; Li, S.; Konoplev, S.; Wang, Z.; Khoury, J.D.; Young, K.H.; et al. CD5-positive follicular lymphoma: Clinicopathologic correlations and outcome in 88 cases. Mod. Pathol. 2015, 28, 787–798. [Google Scholar] [CrossRef]
  239. Miyoshi, H.; Sato, K.; Yoshida, M.; Kimura, Y.; Kiyasu, J.; Ichikawa, A.; Ishibashi, Y.; Arakawa, F.; Nakamura, Y.; Nakashima, S.; et al. CD5-positive follicular lymphoma characterized by CD25, MUM1, low frequency of t(14;18) and poor prognosis. Pathol. Int. 2014, 64, 95–103. [Google Scholar] [CrossRef]
  240. Deng, Y.; Ma, J.; Zhao, S.; Yang, M.; Sun, Y.; Zhang, Q. Expression of glucose transporter-1 in follicular lymphoma affected tumor-infiltrating immunocytes and was related to progression of disease within 24 months. Transl. Oncol. 2023, 28, 101614. [Google Scholar] [CrossRef]
  241. Chu, F.; Li, H.S.; Liu, X.; Cao, J.; Ma, W.; Ma, Y.; Weng, J.; Zhu, Z.; Cheng, X.; Wang, Z.; et al. CXCR5(+)CD8(+) T cells are a distinct functional subset with an antitumor activity. Leukemia 2019, 33, 2640–2653. [Google Scholar] [CrossRef]
  242. Frank, M.J.; Reagan, P.M.; Bartlett, N.L.; Gordon, L.I.; Friedberg, J.W.; Czerwinski, D.K.; Long, S.R.; Hoppe, R.T.; Janssen, R.; Candia, A.F.; et al. In Situ Vaccination with a TLR9 Agonist and Local Low-Dose Radiation Induces Systemic Responses in Untreated Indolent Lymphoma. Cancer Discov. 2018, 8, 1258–1269. [Google Scholar] [CrossRef]
  243. Yang, Z.Z.; Grote, D.M.; Xiu, B.; Ziesmer, S.C.; Price-Troska, T.L.; Hodge, L.S.; Yates, D.M.; Novak, A.J.; Ansell, S.M. TGF-β upregulates CD70 expression and induces exhaustion of effector memory T cells in B-cell non-Hodgkin’s lymphoma. Leukemia 2014, 28, 1872–1884. [Google Scholar] [CrossRef]
  244. Yanagida, E.; Miyoshi, H.; Takeuchi, M.; Shimono, J.; Nakashima, K.; Yamada, K.; Kawamoto, K.; Moritsubo, M.; Shimasaki, Y.; Inoue, K.; et al. Clinicopathological analysis of immunohistochemical expression of immune checkpoint molecules in follicular lymphoma. Hematol. Oncol. 2022, 40, 530–540. [Google Scholar] [CrossRef]
  245. Yang, Z.Z.; Grote, D.M.; Ziesmer, S.C.; Xiu, B.; Novak, A.J.; Ansell, S.M. PD-1 expression defines two distinct T-cell sub-populations in follicular lymphoma that differentially impact patient survival. Blood Cancer J. 2015, 5, e281. [Google Scholar] [CrossRef]
  246. Tumedei, M.M.; Piccinini, F.; Azzali, I.; Pirini, F.; Bravaccini, S.; De Matteis, S.; Agostinelli, C.; Castellani, G.; Zanoni, M.; Cortesi, M.; et al. Follicular Lymphoma Microenvironment Traits Associated with Event-Free Survival. Int. J. Mol. Sci. 2023, 24, 9909. [Google Scholar] [CrossRef]
  247. Yang, Z.Z.; Kim, H.J.; Villasboas, J.C.; Chen, Y.P.; Price-Troska, T.; Jalali, S.; Wilson, M.; Novak, A.J.; Ansell, S.M. Expression of LAG-3 defines exhaustion of intratumoral PD-1(+) T cells and correlates with poor outcome in follicular lymphoma. Oncotarget 2017, 8, 61425–61439. [Google Scholar] [CrossRef]
  248. Wu, H.; Tang, X.; Kim, H.J.; Jalali, S.; Pritchett, J.C.; Villasboas, J.C.; Novak, A.J.; Yang, Z.Z.; Ansell, S.M. Expression of KLRG1 and CD127 defines distinct CD8(+) subsets that differentially impact patient outcome in follicular lymphoma. J. Immunother. Cancer 2021, 9. [Google Scholar] [CrossRef]
  249. Milcent, B.; Josseaume, N.; Petitprez, F.; Riller, Q.; Amorim, S.; Loiseau, P.; Toubert, A.; Brice, P.; Thieblemont, C.; Teillaud, J.L.; et al. Recovery of central memory and naive peripheral T cells in Follicular Lymphoma patients receiving rituximab-chemotherapy based regimen. Sci. Rep. 2019, 9, 13471. [Google Scholar] [CrossRef]
  250. Muenst, S.; Hoeller, S.; Willi, N.; Dirnhofera, S.; Tzankov, A. Diagnostic and prognostic utility of PD-1 in B cell lymphomas. Dis. Markers. 2010, 29, 47–53. [Google Scholar] [CrossRef]
  251. Beck Enemark, M.; Monrad, I.; Madsen, C.; Lystlund Lauridsen, K.; Honoré, B.; Plesner, T.L.; Hamilton-Dutoit, S.J.; d’Amore, F.; Ludvigsen, M. PD-1 Expression in Pre-Treatment Follicular Lymphoma Predicts the Risk of Subsequent High-Grade Transformation. Onco Targets Ther. 2021, 14, 481–489. [Google Scholar] [CrossRef]
  252. Takahashi, H.; Tomita, N.; Sakata, S.; Tsuyama, N.; Hashimoto, C.; Ohshima, R.; Matsuura, S.; Ogawa, K.; Yamamoto, W.; Kameda, Y.; et al. Prognostic significance of programmed cell death-1-positive cells in follicular lymphoma patients may alter in the rituximab era. Eur. J. Haematol. 2013, 90, 286–290. [Google Scholar] [CrossRef]
  253. Sarkozy, C.; Wu, S.; Takata, K.; Aoki, T.; Neriah, S.B.; Milne, K.; Goodyear, T.; Strong, C.; Rastogi, T.; Hilton, L.K.; et al. Integrated single cell analysis reveals co-evolution of malignant B cells and tumor micro-environment in transformed follicular lymphoma. Cancer Cell 2024, 42, 1003–1017.e1006. [Google Scholar] [CrossRef]
  254. Yang, Z.Z.; Kim, H.J.; Wu, H.; Jalali, S.; Tang, X.; Krull, J.E.; Ding, W.; Novak, A.J.; Ansell, S.M. TIGIT Expression Is Associated with T-cell Suppression and Exhaustion and Predicts Clinical Outcome and Anti-PD-1 Response in Follicular Lymphoma. Clin. Cancer Res. 2020, 26, 5217–5231. [Google Scholar] [CrossRef]
  255. Enemark, M.B.H.; Sørensen, E.F.; Hybel, T.E.; Andersen, M.D.; Madsen, C.; Lauridsen, K.L.; Honoré, B.; d’Amore, F.; Plesner, T.L.; Hamilton-Dutoit, S.J.; et al. IDO1 Protein Is Expressed in Diagnostic Biopsies from Both Follicular and Transformed Follicular Patients. Int. J. Mol. Sci. 2023, 24, 7314. [Google Scholar] [CrossRef]
  256. Nasir, A.; Hegerova, L.; Yousaf, H.; Forster, C.L.; Shanley, R.; Linden, M.A.; Bachanova, V.; Yohe, S. Digital and manual interfollicular Ki-67 are associated with a progression-free survival in patients with low-grade follicular lymphoma. Am. J. Clin. Pathol. 2023. [CrossRef]
  257. Masaki, A.; Ishida, T.; Maeda, Y.; Ito, A.; Suzuki, S.; Narita, T.; Kinoshita, S.; Yoshida, T.; Ri, M.; Kusumoto, S.; et al. Clinical significance of tryptophan catabolism in follicular lymphoma. Hematol. Oncol. 2020, 38, 742–753. [Google Scholar] [CrossRef]
  258. Shiozawa, E.; Yamochi-Onizuka, T.; Yamochi, T.; Yamamoto, Y.; Naitoh, H.; Kawakami, K.; Nakamaki, T.; Tomoyasu, S.; Kushima, M.; Ota, H. Disappearance of CD21-positive follicular dendritic cells preceding the transformation of follicular lymphoma: Immunohistological study of the transformation using CD21, p53, Ki-67, and P-glycoprotein. Pathol. Res. Pract. 2003, 199, 293–302. [Google Scholar] [CrossRef]
  259. Olteanu, H.; Fenske, T.S.; Harrington, A.M.; Szabo, A.; He, P.; Kroft, S.H. CD23 expression in follicular lymphoma: Clinicopathologic correlations. Am. J. Clin. Pathol. 2011, 135, 46–53. [Google Scholar] [CrossRef]
  260. Jin, M.K.; Hoster, E.; Dreyling, M.; Unterhalt, M.; Hiddemann, W.; Klapper, W. Follicular dendritic cells in follicular lymphoma and types of non-Hodgkin lymphoma show reduced expression of CD23, CD35 and CD54 but no association with clinical outcome. Histopathology 2011, 58, 586–592. [Google Scholar] [CrossRef]
  261. Misiak, J.; Jean, R.; Rodriguez, S.; Deleurme, L.; Lamy, T.; Tarte, K.; Amé-Thomas, P. Human Lymphoid Stromal Cells Contribute to Polarization of Follicular T Cells Into IL-4 Secreting Cells. Front. Immunol. 2020, 11, 559866. [Google Scholar] [CrossRef]
  262. Willenbrock, K.; Renné, C.; Rottenkolber, M.; Klapper, W.; Dreyling, M.; Engelhard, M.; Küppers, R.; Hansmann, M.L.; Jungnickel, B. The expression of activation induced cytidine deaminase in follicular lymphoma is independent of prognosis and stage. Histopathology 2009, 54, 509–512. [Google Scholar] [CrossRef]
  263. Li, Y.J.; Jiang, W.Q.; Rao, H.L.; Huang, J.J.; Xia, Y.; Huang, H.Q.; Lin, T.Y.; Xia, Z.J.; Li, S.; Li, Z.M. Expression of BAFF and BAFF-R in follicular lymphoma: Correlation with clinicopathologic characteristics and survival outcomes. PLoS ONE. 2012, 7, e50936. [Google Scholar] [CrossRef]
  264. Clear, A.J.; Lee, A.M.; Calaminici, M.; Ramsay, A.G.; Morris, K.J.; Hallam, S.; Kelly, G.; Macdougall, F.; Lister, T.A.; Gribben, J.G. Increased angiogenic sprouting in poor prognosis FL is associated with elevated numbers of CD163+ macrophages within the immediate sprouting microenvironment. Blood 2010, 115, 5053–5056. [Google Scholar] [CrossRef]
  265. Gouni, S.; Marques-Piubelli, M.L.; Strati, P. Follicular lymphoma and macrophages: Impact of approved and novel therapies. Blood Adv. 2021, 5, 4303–4312. [Google Scholar] [CrossRef]
  266. Andjelic, B.; Mihaljevic, B.; Todorovic, M.; Bila, J.; Jakovic, L.; Jovanovic, M.P. The number of lymphoma-associated macrophages in tumor tissue is an independent prognostic factor in patients with follicular lymphoma. Appl. Immunohistochem. Mol. Morphol. 2012, 20, 41–46. [Google Scholar] [CrossRef]
  267. Canioni, D.; Salles, G.; Mounier, N.; Brousse, N.; Keuppens, M.; Morchhauser, F.; Lamy, T.; Sonet, A.; Rousselet, M.C.; Foussard, C.; et al. High numbers of tumor-associated macrophages have an adverse prognostic value that can be circumvented by rituximab in patients with follicular lymphoma enrolled onto the GELA-GOELAMS FL-2000 trial. J. Clin. Oncol. 2008, 26, 440–446. [Google Scholar] [CrossRef]
  268. Kridel, R.; Xerri, L.; Gelas-Dore, B.; Tan, K.; Feugier, P.; Vawda, A.; Canioni, D.; Farinha, P.; Boussetta, S.; Moccia, A.A.; et al. The Prognostic Impact of CD163-Positive Macrophages in Follicular Lymphoma: A Study from the BC Cancer Agency and the Lymphoma Study Association. Clin. Cancer Res. 2015, 21, 3428–3435. [Google Scholar] [CrossRef]
  269. Farinha, P.; Kyle, A.H.; Minchinton, A.I.; Connors, J.M.; Karsan, A.; Gascoyne, R.D. Vascularization predicts overall survival and risk of transformation in follicular lymphoma. Haematologica 2010, 95, 2157–2160. [Google Scholar] [CrossRef]
  270. Alvaro, T.; Lejeune, M.; Camacho, F.I.; Salvadó, M.T.; Sánchez, L.; García, J.F.; Lopez, C.; Jaén, J.; Bosch, R.; Pons, L.E.; et al. The presence of STAT1-positive tumor-associated macrophages and their relation to outcome in patients with follicular lymphoma. Haematologica 2006, 91, 1605–1612. [Google Scholar]
  271. Valero, J.G.; Matas-Céspedes, A.; Arenas, F.; Rodriguez, V.; Carreras, J.; Serrat, N.; Guerrero-Hernández, M.; Yahiaoui, A.; Balagué, O.; Martin, S.; et al. The receptor of the colony-stimulating factor-1 (CSF-1R) is a novel prognostic factor and therapeutic target in follicular lymphoma. Leukemia 2021, 35, 2635–2649. [Google Scholar] [CrossRef]
  272. Glennie, M.J.; French, R.R.; Cragg, M.S.; Taylor, R.P. Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol. Immunol. 2007, 44, 3823–3837. [Google Scholar] [CrossRef]
  273. Koster, A.; van Krieken, J.H.; Mackenzie, M.A.; Schraders, M.; Borm, G.F.; van der Laak, J.A.; Leenders, W.; Hebeda, K.; Raemaekers, J.M. Increased vascularization predicts favorable outcome in follicular lymphoma. Clin. Cancer Res. 2005, 11, 154–161. [Google Scholar] [CrossRef]
  274. Jelicic, J.; Balint, M.T.; Jovanovic, M.P.; Boricic, N.; Micev, M.; Stojsic, J.; Antic, D.; Andjelic, B.; Bila, J.; Balint, B.; et al. The Role of Lymphocyte to Monocyte Ratio, Microvessel Density and HiGH CD44 Tumor Cell Expression in Non Hodgkin Lymphomas. Pathol. Oncol. Res. 2016, 22, 567–577. [Google Scholar] [CrossRef]
  275. Jørgensen, J.M.; Sørensen, F.B.; Bendix, K.; Nielsen, J.L.; Olsen, M.L.; Funder, A.M.; d’Amore, F. Angiogenesis in non-Hodgkin’s lymphoma: Clinico-pathological correlations and prognostic significance in specific subtypes. Leuk. Lymphoma 2007, 48, 584–595. [Google Scholar] [CrossRef]
  276. Ohe, R.; Meng, H.X.; Yamada, A.; Ye Aung, N.; Kabasawa, T.; Tamura, Y.; Utsunomiya, A.; Tamazawa, N.; Kawamura, I.; Kitaoka, T.; et al. Good prognosis for follicular lymphoma with estrogen receptor α-positive follicular dendritic cells. Hematol. Oncol. 2020, 38, 293–300. [Google Scholar] [CrossRef]
  277. Jørgensen, J.M.; Sørensen, F.B.; Bendix, K.; Nielsen, J.L.; Funder, A.; Karkkainen, M.J.; Tainola, T.; Sørensen, A.B.; Pedersen, F.S.; D’Amore, F. Expression level, tissue distribution pattern, and prognostic impact of vascular endothelial growth factors VEGF and VEGF-C and their receptors Flt-1, KDR, and Flt-4 in different subtypes of non-Hodgkin lymphomas. Leuk. Lymphoma 2009, 50, 1647–1660. [Google Scholar] [CrossRef]
  278. Bose, S.; Le, A. Glucose Metabolism in Cancer. Adv. Exp. Med. Biol. 2018, 1063, 3–12. [Google Scholar]
  279. Martinez-Outschoorn, U.E.; Peiris-Pagés, M.; Pestell, R.G.; Sotgia, F.; Lisanti, M.P. Cancer metabolism: A therapeutic perspective. Nat. Rev. Clin. Oncol. 2017, 14, 11–31. [Google Scholar] [CrossRef]
  280. Zheng, J. Energy metabolism of cancer: Glycolysis versus oxidative phosphorylation (Review). Oncol. Lett. 2012, 4, 1151–1157. [Google Scholar] [CrossRef]
  281. Monrad, I.; Madsen, C.; Lauridsen, K.L.; Honoré, B.; Plesner, T.L.; Hamilton-Dutoit, S.; d’Amore, F.; Ludvigsen, M. Glycolytic biomarkers predict transformation in patients with follicular lymphoma. PLoS ONE 2020, 15, e0233449. [Google Scholar] [CrossRef]
  282. El-Sharkawy, A.; Malki, A. Vitamin D Signaling in Inflammation and Cancer: Molecular Mechanisms and Therapeutic Implications. Molecules 2020, 25, 3219. [Google Scholar] [CrossRef]
  283. Sheeley, M.P.; Andolino, C.; Kiesel, V.A.; Teegarden, D. Vitamin D regulation of energy metabolism in cancer. Br. J. Pharmacol. 2022, 179, 2890–2905. [Google Scholar] [CrossRef]
  284. Kelly, J.L.; Salles, G.; Goldman, B.; Fisher, R.I.; Brice, P.; Press, O.; Casasnovas, O.; Maloney, D.G.; Soubeyran, P.; Rimsza, L.; et al. Low Serum Vitamin D Levels Are Associated With Inferior Survival in Follicular Lymphoma: A Prospective Evaluation in SWOG and LYSA Studies. J. Clin. Oncol. 2015, 33, 1482–1490. [Google Scholar] [CrossRef]
  285. Tracy, S.I.; Maurer, M.J.; Witzig, T.E.; Drake, M.T.; Ansell, S.M.; Nowakowski, G.S.; Thompson, C.A.; Inwards, D.J.; Johnston, P.B.; Micallef, I.N.; et al. Vitamin D insufficiency is associated with an increased risk of early clinical failure in follicular lymphoma. Blood Cancer J. 2017, 7, e595. [Google Scholar] [CrossRef]
  286. Federico, M.; Caballero Barrigón, M.D.; Marcheselli, L.; Tarantino, V.; Manni, M.; Sarkozy, C.; Alonso-Álvarez, S.; Wondergem, M.; Cartron, G.; Lopez-Guillermo, A.; et al. Rituximab and the risk of transformation of follicular lymphoma: A retrospective pooled analysis. Lancet Haematol. 2018, 5, e359–e367. [Google Scholar] [CrossRef]
  287. Madsen, C.; Clausen, M.R.; Plesner, T.L.; Pasanen, A.; Kuismanen, T.; Bentzen, H.H.; Jørgensen, J.M.; Sillesen, I.B.; Himmelstrup, B.M.; Rønnov-Jessen, D.; et al. Up-front rituximab maintenance improves outcome in patients with follicular lymphoma: A collaborative Nordic study. Blood Adv. 2018, 2, 1562–1571. [Google Scholar] [CrossRef]
  288. Neumann, F.; Acker, F.; Schormann, C.; Pfreundschuh, M.; Bittenbring, J.T. Determination of optimum vitamin D3 levels for NK cell-mediated rituximab- and obinutuzumab-dependent cellular cytotoxicity. Cancer Immunol. Immunother. 2018, 67, 1709–1718. [Google Scholar] [CrossRef]
  289. Enemark, M.B.H.; Wolter, K.; Campbell, A.J.; Andersen, M.D.; Sørensen, E.F.; Hybel, T.E.; Madsen, C.; Lauridsen, K.L.; Plesner, T.L.; Hamilton-Dutoit, S.J.; et al. Proteomics identifies apoptotic markers as predictors of histological transformation in patients with follicular lymphoma. Blood Adv. 2023, 7, 7418–7432. [Google Scholar] [CrossRef]
  290. Naidoo, K.; Clay, V.; Hoyland, J.A.; Swindell, R.; Linton, K.; Illidge, T.; Radford, J.A.; Byers, R.J. YY1 expression predicts favourable outcome in follicular lymphoma. J. Clin. Pathol. 2011, 64, 125–129. [Google Scholar] [CrossRef]
  291. Huang, Q.; Li, F.; Liu, X.; Li, W.; Shi, W.; Liu, F.F.; O’Sullivan, B.; He, Z.; Peng, Y.; Tan, A.C.; et al. Caspase 3-mediated stimulation of tumor cell repopulation during cancer radiotherapy. Nat. Med. 2011, 17, 860–866. [Google Scholar] [CrossRef]
  292. Castillo Ferrer, C.; Berthenet, K.; Ichim, G. Apoptosis—Fueling the oncogenic fire. Febs J. 2021, 288, 4445–4463. [Google Scholar] [CrossRef]
  293. Enemark, M.B.; Hybel, T.E.; Madsen, C.; Lauridsen, K.L.; Honoré, B.; Plesner, T.L.; Hamilton-Dutoit, S.; d’Amore, F.; Ludvigsen, M. Tumor-Tissue Expression of the Hyaluronic Acid Receptor RHAMM Predicts Histological Transformation in Follicular Lymphoma Patients. Cancers 2022, 14, 1316. [Google Scholar] [CrossRef]
  294. Dong, T.; Liu, Z.; Zhao, S.; Hu, C.; Liu, Y.; Ma, W.; Zhang, Q. The Expression of CD9 and PIK3CD is Associated with Prognosis of Follicular Lymphoma. J. Cancer 2015, 6, 1222–1229. [Google Scholar] [CrossRef]
  295. Kiaii, S.; Clear, A.J.; Ramsay, A.G.; Davies, D.; Sangaralingam, A.; Lee, A.; Calaminici, M.; Neuberg, D.S.; Gribben, J.G. Follicular lymphoma cells induce changes in T-cell gene expression and function: Potential impact on survival and risk of transformation. J. Clin. Oncol. 2013, 31, 2654–2661. [Google Scholar] [CrossRef]
  296. Suzuki, Y.; Yoshida, T.; Horie, R.; Tsuruta, T.; Togano, T.; Ohsaka, M.; Miyazaki, K.; Danbara, M.; Ohtani, S.; Okayasu, I.; et al. Constitutive activity of nuclear transcription factor kappaB is observed in follicular lymphoma. J. Clin. Exp. Hematop. 2010, 50, 45–50. [Google Scholar] [CrossRef]
  297. Anderson, M.W.; Zhao, S.; Ai, W.Z.; Tibshirani, R.; Levy, R.; Lossos, I.S.; Natkunam, Y. C-C chemokine receptor 1 expression in human hematolymphoid neoplasia. Am. J. Clin. Pathol. 2010, 133, 473–483. [Google Scholar] [CrossRef]
  298. Wood, B.; Sikdar, S.; Choi, S.J.; Virk, S.; Alhejaily, A.; Baetz, T.; LeBrun, D.P. Abundant expression of interleukin-21 receptor in follicular lymphoma cells is associated with more aggressive disease. Leuk. Lymphoma 2013, 54, 1212–1220. [Google Scholar] [CrossRef]
  299. Nishi, T.; Takahashi, H.; Hashimura, M.; Yoshida, T.; Ohta, Y.; Saegusa, M. FilGAP, a Rac-specific Rho GTPase-activating protein, is a novel prognostic factor for follicular lymphoma. Cancer Med. 2015, 4, 808–818. [Google Scholar] [CrossRef]
  300. Ludvigsen, M.; Madsen, C.; Kamper, P.; Hamilton-Dutoit, S.J.; Bendix, K.; d’Amore, F.; Honoré, B. Histologically transformed follicular lymphoma exhibits protein profiles different from both non-transformed follicular and de novo diffuse large B-cell lymphoma. Blood Cancer J. 2015, 5, e293. [Google Scholar] [CrossRef]
  301. Shimono, J.; Miyoshi, H.; Yoshida, N.; Kato, T.; Sato, K.; Sugio, T.; Miyawaki, K.; Kurita, D.; Sasaki, Y.; Kawamoto, K.; et al. Analysis of GNA13 Protein in Follicular Lymphoma and its Association With Poor Prognosis. Am. J. Surg. Pathol. 2018, 42, 1466–1471. [Google Scholar] [CrossRef]
  302. Pennanen, H.; Kuittinen, O.; Soini, Y.; Turpeenniemi-Hujanen, T. Prognostic significance of p53 and matrix metalloproteinase-9 expression in follicular lymphoma. Eur. J. Haematol. 2008, 81, 289–297. [Google Scholar] [CrossRef]
  303. Meier, C.; Hoeller, S.; Bourgau, C.; Hirschmann, P.; Schwaller, J.; Went, P.; Pileri, S.A.; Reiter, A.; Dirnhofer, S.; Tzankov, A. Recurrent numerical aberrations of JAK2 and deregulation of the JAK2-STAT cascade in lymphomas. Mod. Pathol. 2009, 22, 476–487. [Google Scholar] [CrossRef]
  304. Krishnadasan, R.; Bifulco, C.; Kim, J.; Rodov, S.; Zieske, A.W.; Vanasse, G.J. Overexpression of SOCS3 is associated with decreased survival in a cohort of patients with de novo follicular lymphoma. Br. J. Haematol. 2006, 135, 72–75. [Google Scholar] [CrossRef]
  305. Peroja, P.; Haapasaari, K.M.; Mannisto, S.; Miinalainen, I.; Koivunen, P.; Leppä, S.; Karjalainen-Lindsberg, M.L.; Kuusisto, M.E.; Turpeenniemi-Hujanen, T.; Kuittinen, O.; et al. Total peroxiredoxin expression is associated with survival in patients with follicular lymphoma. Virchows Arch. 2016, 468, 623–630. [Google Scholar] [CrossRef]
  306. Pasanen, A.K.; Kuitunen, H.; Haapasaari, K.M.; Karihtala, P.; Kyllönen, H.; Soini, Y.; Turpeenniemi-Hujanen, T.; Kuittinen, O. Expression and prognostic evaluation of oxidative stress markers in an immunohistochemical study of B-cell derived lymphomas. Leuk. Lymphoma 2012, 53, 624–631. [Google Scholar] [CrossRef]
  307. Alavaikko, M.; Aine, R.; Rinne, A.; Järvinen, M.; Blanco, G.; Apaja-Sarkkinen, M.; Hopsu-Havu, V.K. Behaviour of dendritic reticulum cells possessing immunoreactive acid cysteine-proteinase inhibitor in human lymphoid secondary follicles and in follicular-centre cell lymphomas. Int. J. Cancer 1985, 35, 319–325. [Google Scholar] [CrossRef]
  308. AlJohani, N.; Choi, S.J.; Day, A.G.; Alhejaily, A.; Virk, S.; Baetz, T.; LeBrun, D.P. Abundant expression of BMI1 in follicular lymphoma is associated with reduced overall survival. Leuk. Lymphoma 2018, 59, 2211–2219. [Google Scholar] [CrossRef]
  309. Sun, R.X.; Coste, J.; Segara, C.; Rousset, T.; Fabbro, M.; Rème, T.; Legouffe, E.; Klein, B.; Rossi, J.F. MBR rearrangement and P-glycoprotein expression are not independent prognostic factors like p53 protein in malignant lymphoma. Clin. Lab. Haematol. 1998, 20, 87–94. [Google Scholar] [CrossRef]
  310. Sandison, H.E.; Usher, S.; Karimiani, E.G.; Ashton, G.; Menasce, L.P.; Radford, J.A.; Linton, K.; Byers, R.J. PLK1 and YY1 interaction in follicular lymphoma is associated with unfavourable outcome. J. Clin. Pathol. 2013, 66, 764–767. [Google Scholar] [CrossRef]
  311. Banoei, M.M.; Mahé, E.; Mansoor, A.; Stewart, D.; Winston, B.W.; Habibi, H.R.; Shabani-Rad, M.T. NMR-based metabolomic profiling can differentiate follicular lymphoma from benign lymph node tissues and may be predictive of outcome. Sci. Rep. 2022, 12, 8294. [Google Scholar] [CrossRef]
  312. Nozaki, K.; Sugahara, H.; Ueda, S.; Ishikawa, J.; Karasuno, T.; Iida, M.; Kamae, T.; Moriyama, Y.; Kawakami, M.; Kosugi, S.; et al. Pretreatment levels of serum soluble interleukin-2 receptor are useful in selecting the treatment regimen for newly diagnosed advanced-stage follicular lymphoma with low tumor burden. Int. J. Hematol. 2021, 114, 217–221. [Google Scholar] [CrossRef]
  313. Yoshizato, T.; Nannya, Y.; Imai, Y.; Ichikawa, M.; Kurokawa, M. Clinical significance of serum-soluble interleukin-2 receptor in patients with follicular lymphoma. Clin. Lymphoma Myeloma Leuk. 2013, 13, 410–416. [Google Scholar] [CrossRef]
  314. Kusano, Y.; Yokoyama, M.; Terui, Y.; Inoue, N.; Takahashi, A.; Yamauchi, H.; Tsuyama, N.; Nishimura, N.; Mishima, Y.; Takeuchi, K.; et al. High pretreatment level of soluble interleukin-2 receptor is a robust prognostic factor in patients with follicular lymphoma treated with R-CHOP-like therapy. Blood Cancer J. 2017, 7, e614. [Google Scholar] [CrossRef]
  315. Mozas, P.; Rivas-Delgado, A.; Rivero, A.; Dlouhy, I.; Nadeu, F.; Balagué, O.; González-Farré, B.; Baumann, T.; Giné, E.; Delgado, J.; et al. High serum levels of IL-2R, IL-6, and TNF-α are associated with higher tumor burden and poorer outcome of follicular lymphoma patients in the rituximab era. Leuk. Res. 2020, 94, 106371. [Google Scholar] [CrossRef]
  316. Nozaki, K.; Sugahara, H.; Ueda, S.; Ishikawa, J.; Fuji, S.; Masaie, H.; Tada, Y.; Karasuno, T.; Iida, M.; Mitsui, H.; et al. Pretreatment serum soluble interleukin-2 receptor level predicts survival in patients with newly diagnosed follicular lymphoma. Leuk. Lymphoma 2020, 61, 2113–2121. [Google Scholar] [CrossRef]
  317. Yamamoto, M.; Tanaka, K.; Umezawa, Y.; Nagao, T.; Toyota, S.; Miura, O. Soluble Interleukin-2 Receptor Level at Diagnosis Predicts Prognosis of Patients With Follicular Lymphoma Irrespective of Initial Management Strategy. Anticancer. Res. 2019, 39, 5115–5122. [Google Scholar] [CrossRef]
  318. Mir, M.A.; Maurer, M.J.; Ziesmer, S.C.; Slager, S.L.; Habermann, T.; Macon, W.R.; Link, B.K.; Syrbu, S.; Witzig, T.; Friedberg, J.W.; et al. Elevated serum levels of IL-2R, IL-1RA, and CXCL9 are associated with a poor prognosis in follicular lymphoma. Blood 2015, 125, 992–998. [Google Scholar] [CrossRef]
  319. Umino, K.; Fujiwara, S.I.; Ito, S.; Mashima, K.; Minakata, D.; Nakano, H.; Yamasaki, R.; Kawasaki, Y.; Sugimoto, M.; Ashizawa, M.; et al. Serum soluble interleukin-2 receptor level at diagnosis predicts transformation in patients with follicular lymphoma. Leuk. Lymphoma 2017, 58, 316–323. [Google Scholar] [CrossRef]
  320. Procházka, V.; Papajík, T.; Faber, E.; Raida, L.; Kapitáňová, Z.; Langová, K.; Prouzová, Z.; Jarošová, M.; Indrák, K. Soluble interleukin-2 receptor level predicts survival in patients with follicular lymphoma treated with cyclophosphamide, doxorubicin, vincristine and prednisone chemotherapy in the rituximab era. Leuk. Lymphoma 2014, 55, 1584–1590. [Google Scholar] [CrossRef]
  321. Yang, Z.Z.; Grote, D.M.; Ziesmer, S.C.; Manske, M.K.; Witzig, T.E.; Novak, A.J.; Ansell, S.M. Soluble IL-2Rα facilitates IL-2-mediated immune responses and predicts reduced survival in follicular B-cell non-Hodgkin lymphoma. Blood 2011, 118, 2809–2820. [Google Scholar] [CrossRef]
  322. Catellani, S.; Poggi, A.; Bruzzone, A.; Dadati, P.; Ravetti, J.L.; Gobbi, M.; Zocchi, M.R. Expansion of Vdelta1 T lymphocytes producing IL-4 in low-grade non-Hodgkin lymphomas expressing UL-16-binding proteins. Blood 2007, 109, 2078–2085. [Google Scholar] [CrossRef]
  323. Yang, Z.Z.; Grote, D.M.; Ziesmer, S.C.; Niki, T.; Hirashima, M.; Novak, A.J.; Witzig, T.E.; Ansell, S.M. IL-12 upregulates TIM-3 expression and induces T cell exhaustion in patients with follicular B cell non-Hodgkin lymphoma. J. Clin. Investig. 2012, 122, 1271–1282. [Google Scholar] [CrossRef]
  324. Li, Y.J.; Li, Z.M.; Xia, Z.J.; Li, S.; Xia, Y.; Huang, H.Q.; Huang, J.J.; Yi, P.Y.; Jiang, W.Q. High APRIL but not BAFF serum levels are associated with poor outcome in patients with follicular lymphoma. Ann. Hematol. 2015, 94, 79–88. [Google Scholar] [CrossRef]
  325. Rawal, S.; Chu, F.; Zhang, M.; Park, H.J.; Nattamai, D.; Kannan, S.; Sharma, R.; Delgado, D.; Chou, T.; Lin, H.Y.; et al. Cross talk between follicular Th cells and tumor cells in human follicular lymphoma promotes immune evasion in the tumor microenvironment. J. Immunol. 2013, 190, 6681–6693. [Google Scholar] [CrossRef]
  326. Rogers, L.M.; Mott, S.L.; Smith, B.J.; Link, B.K.; Sahin, D.; Weiner, G.J. Complement-Regulatory Proteins CFHR1 and CFHR3 and Patient Response to Anti-CD20 Monoclonal Antibody Therapy. Clin. Cancer Res. 2017, 23, 954–961. [Google Scholar] [CrossRef]
  327. Procházka, V.; Faber, E.; Raida, L.; Kapitáňová, Z.; Langová, K.; Indrák, K.; Papajík, T. High serum carbohydrate antigen-125 (CA-125) level predicts poor outcome in patients with follicular lymphoma independently of the FLIPI score. Int. J. Hematol. 2012, 96, 58–64. [Google Scholar] [CrossRef]
  328. Witzig, T.E.; Maurer, M.J.; Habermann, T.M.; Link, B.K.; Micallef, I.N.; Nowakowski, G.S.; Ansell, S.M.; Colgan, J.P.; Inwards, D.J.; Porrata, L.F.; et al. Elevated monoclonal and polyclonal serum immunoglobulin free light chain as prognostic factors in B- and T-cell non-Hodgkin lymphoma. Am. J. Hematol. 2014, 89, 1116–1120. [Google Scholar] [CrossRef]
  329. Rai, S.; Inoue, H.; Hanamoto, H.; Matsuda, M.; Maeda, Y.; Wada, Y.; Haeno, T.; Watatani, Y.; Kumode, T.; Hirase, C.; et al. Low absolute lymphocyte count is a poor prognostic factor for untreated advanced follicular lymphoma treated with rituximab plus bendamustine: Results of the prospective phase 2 CONVERT trial. Int. J. Hematol. 2021, 114, 205–216. [Google Scholar] [CrossRef]
  330. Yoshida, N.; Oda, M.; Kuroda, Y.; Katayama, Y.; Okikawa, Y.; Masunari, T.; Fujiwara, M.; Nishisaka, T.; Sasaki, N.; Sadahira, Y.; et al. Clinical significance of sIL-2R levels in B-cell lymphomas. PLoS ONE 2013, 8, e78730. [Google Scholar] [CrossRef]
  331. Kawaguchi, T.; Ohwada, C.; Takeuchi, M.; Shimizu, N.; Sakaida, E.; Takeda, Y.; Sakai, S.; Tsukamoto, S.; Yamazaki, A.; Sugita, Y.; et al. LR11, a novel biomarker identified in follicular lymphoma. Br. J. Haematol. 2013, 163, 277–280. [Google Scholar] [CrossRef]
  332. Stevens, J.; Waters, R.; Sieniawska, C.; Kassam, S.; Montoto, S.; Fitzgibbon, J.; Rohatiner, A.; Lister, A.; Joel, S. Serum selenium concentration at diagnosis and outcome in patients with haematological malignancies. Br. J. Haematol. 2011, 154, 448–456. [Google Scholar] [CrossRef]
  333. Procházka, V.; Faber, E.; Raida, L.; Langová, K.; Indrák, K.; Papajík, T. High baseline serum thymidine kinase 1 level predicts unfavorable outcome in patients with follicular lymphoma. Leuk. Lymphoma 2012, 53, 1306–1310. [Google Scholar] [CrossRef]
  334. Xue, L.G.; Shen, H.R.; Gao, R.; Du, K.X.; Xing, T.Y.; Wang, W.T.; Wang, L.; Li, J.Y.; Liang, J.H.; Xu, W. Low T3 syndrome as a predictor of poor outcomes in patients with follicular lymphoma. Ann. Hematol. 2023, 102, 851–862. [Google Scholar] [CrossRef]
  335. Matsuo, T.; Tashiro, H.; Shirasaki, R.; Sumiyoshi, R.; Yamamoto, T.; Saito, S.; Matsumoto, K.; Ooi, J.; Shirafuji, N. Serum high-density lipoprotein cholesterol level has a significant prognostic impact on outcomes of follicular lymphoma patients. Medicine 2022, 101, e29541. [Google Scholar] [CrossRef]
  336. Jiménez-Ubieto, A.; Poza, M.; Martin-Muñoz, A.; Ruiz-Heredia, Y.; Dorado, S.; Figaredo, G.; Rosa-Rosa, J.M.; Rodriguez, A.; Barcena, C.; Navamuel, L.P.; et al. Real-life disease monitoring in follicular lymphoma patients using liquid biopsy ultra-deep sequencing, P.E.T./.C.T. Leukemia 2023, 37, 659–669. [Google Scholar] [CrossRef]
  337. Sarkozy, C.; Huet, S.; Carlton, V.E.; Fabiani, B.; Delmer, A.; Jardin, F.; Delfau-Larue, M.H.; Hacini, M.; Ribrag, V.; Guidez, S.; et al. The prognostic value of clonal heterogeneity and quantitative assessment of plasma circulating clonal IG-VDJ sequences at diagnosis in patients with follicular lymphoma. Oncotarget 2017, 8, 8765–8774. [Google Scholar] [CrossRef]
  338. Zhao, M.; Li, Q.; Yang, J.; Zhang, M.; Liu, X.; Zhang, H.; Huang, Y.; Li, J.; Bao, J.; Wang, J.; et al. Application of circulating tumour DNA in terms of prognosis prediction in Chinese follicular lymphoma patients. Front. Genet. 2023, 14, 1066808. [Google Scholar] [CrossRef]
  339. Shirouchi, Y.; Mishima, Y.; Takayama, T.; Minowa, S.; Ishihara, Y.; Tamba, M.; Hirano, M.; Onda, N.; Takeuchi, K.; Maruyama, D. Serum cell-free DNA concentration as a possible prognostic marker in newly diagnosed diffuse large B-cell lymphoma. Biomed. Res. 2022, 43, 99–106. [Google Scholar] [CrossRef]
  340. Casulo, C. Follicular lymphoma: Is there an optimal way to define risk? Hematology Am. Soc. Hematol. Educ. Program 2021, 2021, 313–319. [Google Scholar] [CrossRef]
  341. Rajamäki, A.; Sunela, K.; Prusila, R.E.I.; Kuusisto, M.E.L.; Mercadal, S.; Selander, T.; Kuitunen, H.; Pollari, M.; Jantunen, E.; Nystrand, I.; et al. Female patients with follicular lymphoma have a better prognosis if primary remission lasts over 24 months. Leuk. Lymphoma 2021, 62, 1639–1647. [Google Scholar] [CrossRef]
  342. Radkiewicz, C.; Bruchfeld, J.B.; Weibull, C.E.; Jeppesen, M.L.; Frederiksen, H.; Lambe, M.; Jakobsen, L.; El-Galaly, T.C.; Smedby, K.E.; Wästerlid, T. Sex differences in lymphoma incidence and mortality by subtype: A population-based study. Am. J. Hematol. 2023, 98, 23–30. [Google Scholar] [CrossRef]
Figure 1. PRISMA flow diagram. The search strategy for the present review. * Review papers, case reports, studies of a non-FL study population, studies of relapse/refractory FL, studies of non-human tissues (i.e., animal models, cell line studies), studies with no molecular biomarkers evaluated, and otherwise irrelevant papers were excluded.
Figure 1. PRISMA flow diagram. The search strategy for the present review. * Review papers, case reports, studies of a non-FL study population, studies of relapse/refractory FL, studies of non-human tissues (i.e., animal models, cell line studies), studies with no molecular biomarkers evaluated, and otherwise irrelevant papers were excluded.
Ijms 25 11179 g001
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Enemark, M.H.; Hemmingsen, J.K.; Jensen, M.L.; Kridel, R.; Ludvigsen, M. Molecular Biomarkers in Prediction of High-Grade Transformation and Outcome in Patients with Follicular Lymphoma: A Comprehensive Systemic Review. Int. J. Mol. Sci. 2024, 25, 11179. https://doi.org/10.3390/ijms252011179

AMA Style

Enemark MH, Hemmingsen JK, Jensen ML, Kridel R, Ludvigsen M. Molecular Biomarkers in Prediction of High-Grade Transformation and Outcome in Patients with Follicular Lymphoma: A Comprehensive Systemic Review. International Journal of Molecular Sciences. 2024; 25(20):11179. https://doi.org/10.3390/ijms252011179

Chicago/Turabian Style

Enemark, Marie Hairing, Jonas Klejs Hemmingsen, Maja Lund Jensen, Robert Kridel, and Maja Ludvigsen. 2024. "Molecular Biomarkers in Prediction of High-Grade Transformation and Outcome in Patients with Follicular Lymphoma: A Comprehensive Systemic Review" International Journal of Molecular Sciences 25, no. 20: 11179. https://doi.org/10.3390/ijms252011179

APA Style

Enemark, M. H., Hemmingsen, J. K., Jensen, M. L., Kridel, R., & Ludvigsen, M. (2024). Molecular Biomarkers in Prediction of High-Grade Transformation and Outcome in Patients with Follicular Lymphoma: A Comprehensive Systemic Review. International Journal of Molecular Sciences, 25(20), 11179. https://doi.org/10.3390/ijms252011179

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop