Chemical Composition of Methanol Extracts from Leaves and Flowers of Anemonopsis macrophylla (Ranunculaceae)
Abstract
:1. Introduction
2. Results and Discussion
2.1. Analysis of the Set of Bioactive Compounds in the A. macrophylla Extracts by LC-HRMS
2.1.1. Coumarins
2.1.2. Furochromones
2.1.3. Phenolic Acids
2.1.4. Flavonoids
2.1.5. Other Classes of Compounds
2.2. A Comparative Analysis of Concentrations of the Identified Compounds between Leaf and Flower Methanol Extracts from A. macrophylla
3. Materials and Methods
3.1. Plant Material and Preparation of the Extract
3.2. LC-HRMS Analysis of Metabolites in the A. macrophylla Extracts
3.3. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Compton, J.; Culham, A.; Gibbings, J.; Jury, S. Phylogeny of Actaea including Cimicifuga (Ranunculaceae) inferred from nrDNA ITS sequence variation. Biochem. Syst. Ecol. 1998, 26, 185–197. [Google Scholar] [CrossRef]
- Wang, W.; Li, R.Q.; Chen, Z.D. Systematic position of Asteropyrum (Ranunculaceae) inferred from chloroplast and nuclear sequences. Plant Syst. Evol. 2005, 255, 41–54. [Google Scholar] [CrossRef]
- Yuan, Q.; Yang, Q.E. Tribal relationships of Beesia, Eranthis and seven other genera of Ranunculaceae: Evidence from cytological characters. Bot. J. Linn. Soc. 2006, 150, 267–289. [Google Scholar] [CrossRef]
- Erst, A.S.; Petrova, N.V.; Kaidash, O.A.; Wang, W.; Kostikova, V.A. The Genus Eranthis: Prospects of Research on Its Phytochemistry, Pharmacology, and Biotechnology. Plants 2023, 12, 3795. [Google Scholar] [CrossRef] [PubMed]
- Compton, J.A.; Culham, A. Phylogeny and circumscription of tribe Actaeeae (Ranunculaceae). Syst. Bot. 2002, 27, 502–511. [Google Scholar]
- Tamura, M. Eranthis. In Die Natürlichen Pflanzenfamilien; Duncker und Humblot: Berlin, Germany, 1995; Volume 17, pp. 253–255. [Google Scholar]
- Tamura, M. Ranunculaceae. In Flowering Plants Dicotyledons; Springer: Cham, Switzerland, 1993; pp. 563–583. [Google Scholar]
- Ling, Y.Y.; Xiang, K.L.; Peng, H.W.; Erst, A.S.; Lian, L.; Zhao, L.; Jabbour, F.; Wang, W. Biogeographic diversification of Actaea (Ranunculaceae): Insights into the historical assembly of deciduous broad-leaved forests in the Northern Hemisphere. Mol. Phylogenet. Evol. 2023, 186, 107870. [Google Scholar] [CrossRef]
- Loconte, H.L.; Cambell, M.; Stevenson, D.W. Ordinal and familial relationships of Ranunculid genera. Plant Syst. Evol. Suppl. 1995, 9, 99–118. [Google Scholar]
- Erst, A.S.; Chernonosov, A.A.; Petrova, N.V.; Kulikovskiy, M.S.; Maltseva, S.Y.; Wang, W.; Kostikova, V.A. Investigation of chemical constituents of Eranthis longistipitata (Ranunculaceae): Coumarins and furochromones. Int. J. Mol. Sci. 2022, 23, 406. [Google Scholar] [CrossRef]
- Abuzaid, H.; Amin, E.; Moawad, A.; Abdelmohsen, U.R.; Hetta, M.; Mohammed, R. Liquid Chromatography High Resolution Mass Spectrometry Analysis, Phytochemical and Biological Study of Two Aizoaceae Plants: A New Kaempferol Derivative from Trianthema portulacastrum L. Pharmacogn. Res. 2020, 12, 212. [Google Scholar]
- Annunziata, F.; Pinna, C.; Dallavalle, S.; Tamborini, L.; Pinto, A. An overview of coumarin as a versatile and readily accessible scaffold with broad-ranging biological activities. Int. J. Mol. Sci. 2020, 21, 4618. [Google Scholar] [CrossRef]
- Bourgaud, F.; Hehn, A.; Larbat, R.; Doerper, S.; Gontier, E.; Kellner, S.; Matern, U. Biosynthesis of coumarins in plants: A major pathway still to be unraveled for cytochrome P450 enzymes. Phytochem. Rev. 2006, 5, 293–308. [Google Scholar] [CrossRef]
- Matern, U.; Lüer, P.; Kreusch, D. Biosynthesis of coumarins. In Comprehensive Natural Products Chemistry: Polyketides and Other Secondary Metabolites Including Fatty Acids and Their Derivatives; Sankawa, U., Ed.; Elsevier: Amsterdam, The Netherlands, 1999; Volume 1, pp. 623–637. [Google Scholar]
- Zhu, J.J.; Jiang, J.G. Pharmacological and nutritional effects of natural coumarins and their structure-activity relationships. Mol. Nutr. Food Res. 2018, 62, 1701073. [Google Scholar] [CrossRef]
- Liu, B.; Raeth, T.; Beuerle, T. A novel 4-hydroxycoumarin biosynthesic pathway. Plant Mol. Biol. 2010, 72, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. Biomed. Res. Int. 2013, 2013, 963248. [Google Scholar] [CrossRef] [PubMed]
- Budantsev, A.L. (Ed.) Plant Resources of Russia: Wild Flowering Plants, Their Component Composition and Biological Activity. T. 1: Families Magnoliaceae—Juglandaceae, Ulmaceae, Moraceae, Cannabaceae, Urticaceae; KMK: Saint Petersburg, Russia; Moscow, Russia, 2008; 421p. (In Russian) [Google Scholar]
- Zhao, X.H.; Chen, D.H.; Si, J.Y.; Pan, R.I.; Shen, L.G. Studies on the phenolic acid constituents from Chinese medicine “sheng-ma”, rhizome of Cimicifuga foetida L. Yao Xue Xue Bao = Acta Pharm. Sinica 2002, 37, 535–538. [Google Scholar]
- Niu, X.; Qin, R.; Zhao, Y.; Han, L.; Lu, J.; Lv, C. Simultaneous determination of 19 constituents in Cimicifugae rhizome by HPLC-DAD and screening for antioxidants through DPPH free radical scavenging assay. Biomed. Chromatogr. 2019, 33, 4624. [Google Scholar] [CrossRef]
- Silvan, A.M.; Abad, M.J.; Bermejo, P.; Sollhuber, M.; Villar, A. Antiinflammatory activity of coumarins from Santolina oblongifolia. J. Nat. Prod. 1996, 59, 1183–1185. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, X.; Xu, W.; Farzaneh, F.; Xu, R. The structure and pharmacological functions of coumarins and their derivatives. Curr. Med. Chem. 2009, 16, 4236–4260. [Google Scholar] [CrossRef]
- Pan, R.; Gao, X.; Lu, D.; Xu, X.; Xia, Y.; Dai, Y. Prevention of FGF-2-angiogenesis by scopoletin, a coumarin compound isolated from Erycibe obtusifolia Benth. and its mechanism of action. Int. Immunopharmacol. 2011, 11, 2007–2016. [Google Scholar] [CrossRef]
- Witaicenis, A.; Seito, L.N.; Chagas, A.S.; de Almeda, L.; Luchini, A.C.; Rodrigues-Orsi, P.; Cestari, S.H.; Di Stasi, L.C. Antioxidant and intestinal anti-inflammatory effects of plant-derived coumarin derivatives. Phytomedicine 2014, 21, 240–246. [Google Scholar] [CrossRef]
- Grover, J.; Jachak, S.M. Coumarins as privileged scaffold for anti-inflammatory drug development. RSC Adv. 2015, 5, 38892–38905. [Google Scholar] [CrossRef]
- Wei, Y.; Peng, W.; Wang, D.; Hao, S.H.; Li, W.W.; Ding, F. Design, synthesis, antifungal activity, and 3D-QSAR of coumarin derivatives. J. Pest. Sci. 2018, 43, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.K.; Kumar, S.; Chand, K.; Kathuria, A.; Gupta, A.; Jain, R. An update on natural occurrence and biological activity of chromones. Curr. Med. Chem. 2011, 18, 3825–3852. [Google Scholar] [CrossRef] [PubMed]
- Khadem, S.; Marles, R.J. Chromone and flavonoid alkaloids: Occurrence and bioactivity. Molecules 2012, 17, 191–206. [Google Scholar] [CrossRef]
- Klymchenko, A.S.; Pivovarenko, V.G.; Demchenko, A.P. Perturbation of planarity as the possible mechanism of solvent-dependent variations of fluorescence quantum yield in 2-aryl-3-hydroxychromones. Mol. Biomol. Spectros. 2003, 59, 787–792. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef]
- Avanesyan, A.A.; Pashkov, A.N.; Simonyan, N.A.; Simonyan, A.V.; Myachina, O.V. Anti-radical activity of cinnamic acid derivatives. Pharm. Chem. J. 2009, 43, 18–19. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, S.; Hao, S.; Zhang, Z.; Wang, W.; Yao, S. Double roles of hydroxycinnamic acid derivatives in protection against lysozyme oxidation. Biochim. Biophys. Acta Gen. Subj. 2006, 1760, 1810–1818. [Google Scholar] [CrossRef]
- Urbaniak, A.; Molski, M.; Szelag, M. Quantum-chemical calculations of the antioxidant properties of trans-p-coumaric acid and trans-sinapinic acid. Comp. Methods Sci. Technol. 2012, 18, 117–128. [Google Scholar] [CrossRef]
- Cheng, J.C.; Dai, F.; Zhou, B.; Yang, L.; Liu, Z.L. Antioxidant activity of hydroxycinnamic acid derivatives in human low density lipoprotein: Mechanism and structure-activity relationship. Food Chem. 2007, 104, 132–139. [Google Scholar] [CrossRef]
- Moazzen, A.; Öztinen, N.; Ak-Sakalli, E.; Koşar, M. Structure-antiradical activity relationships of 25 natural antioxidant phenolic compounds from different classes. Heliyon 2022, 8, e10467. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Xie, M.; He, L.; Song, X.; Cao, T. Chlorogenic acid: A review on its mechanisms of anti-inflammation, disease treatment, and related delivery systems. Front. Pharmacol. 2023, 14, 1218015. [Google Scholar] [CrossRef]
- De Lima, G.D.A.; Rodrigues, M.P.; de Mendes, T.A.O.; Moreira, G.A.; Siqueira, G.A.; da Silva, A.M.; Vaz, B.G.; Fietto, J.L.R.; Bressan, G.C.; Machado-Neves, M. Synthesis and antimetastatic activity evaluation of cinnamic acid derivatives containing 1,2,3-triazolic portions. Toxicol. In Vitro 2018, 53, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Korošec, B.; Sova, M.; Turk, S.; Kraševec, N.; Novak, M.; Lah, L.; Stojan, J.; Podobnik, B.; Berne, S.; Zupanec, N.; et al. Antifungal activity of cinnamic acid derivatives involves inhibition of benzoate 4-hydroxylase (CYP53). J. Appl. Microbiol. 2014, 116, 955–966. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.Y.; Chen, Z.M.; Zhou, Z.L.; Huang, G.L.; Zhou, Q.; Xi, Y.J. New cinnamic acid derivatives with potential neuroprotective activities from the stems of Melicope ptelefolia. Phytochem. Lett. 2023, 53, 161–165. [Google Scholar] [CrossRef]
- De, P.; Baltas, M.; Bedos-Belval, F. Cinnamic acid derivatives as anticancer agents—A review. Curr. Med. Chem. 2011, 18, 1672–1703. [Google Scholar] [CrossRef]
- Fonseca, A.C.; Lima, M.S.; Sousa, A.F.; Silvestre, A.J.; Coelho, J.F.J.; Serra, A.C. Cinnamic acid derivatives as promising building blocks for advanced polymers: Synthesis, properties and applications. Polym. Chem. 2019, 14, 1696–1723. [Google Scholar] [CrossRef]
- Ukrainets, I.V.; Petrushova, L.A.; Dzyubenko, S.P.; Grinevich, L.A.; Sim, G. Synthesis and biological properties of {[(4-hydroxy-1-methyl-2,2-di-oxido-1H-2,1-benzothiazin-3-yl]amino}-benzoic acid and their derivatives. Pharm. Chem. J. 2017, 51, 30–31. [Google Scholar] [CrossRef]
- Shen, B.J.; Qin, K.M.; Zhang, X.H.; Liu, Q.D.; Cai, H.; Liu, X.; Cai, B.C. Study on quality evaluation of cimicifugae rhizome from different producing areas by HPLC fingerprint. Chin. J. Chin. Mater. Med. 2013, 38, 2155–2158. [Google Scholar]
- Sakai, S.; Ochiai, H.; Mantani, N.; Kogure, T.; Shibahara, N.; Terasawa, K. Administration of isoferulic acid improved the survival rate of lethal influenza virus pneumonia in mice. Mediat. Inflamm. 2001, 10, 93–96. [Google Scholar] [CrossRef]
- Chen, C.; Liu, J.; Li, B.; Wang, T.; Wang, E.; Wang, G. Isoferulic acid affords the antiviral potential and restrains white spot syndrome virus proliferation in crayfish (Procambarus clarkia). Aquacult. Fish. 2022, in press. [Google Scholar] [CrossRef]
- Liu, I.M.; Hsu, F.L.; Chen, C.F.; Cheng, J.T. Antihyperglycemic action of isoferulic acid in streptozotocin-induced diabetic. Br. J. Pharmacol. 2000, 129, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Yin, T.; Wang, X.; Zhang, F.; Pan, G.; Lv, H.; Wang, X.; Orgah, J.O.; Zhu, Y.; Wu, H. Traditional uses, phytochemistry, pharmacology and toxicology of the genus Cimicifuga: A review. J. Ethnopharmacol. 2017, 14, 264–282. [Google Scholar] [CrossRef]
- Jahn, A.; Petersen, M. Fukinolic acid and cimicifugic acids: A review. Phytochem. Rev. 2022, 21, 1247–1271. [Google Scholar] [CrossRef]
- Budantsev, A.L. (Ed.) Plant Resources of Russia: Wild Flowering Plants, Their Component Composition and Biological Activity: Families Fabaceae—Apiaceae; KMK: Saint Petersburg, Russia; Moscow, Russia, 2010; Volume 3, 601p. (In Russian) [Google Scholar]
- Dong, C.X.; Shi, S.P.; Wu, K.S.; Tu, P.F. Chemical constituents from the roots and rhizomes of Clematis hexapetala Pall. Z. Naturforsch. 2007, 62, 854–858. [Google Scholar] [CrossRef]
- Simmler, C.; Hajirahimkhan, A.; Lankin, D.C.; Bolton, J.L.; Jones, T.; Soejarto, D.D.; Chen, S.N.; Pauli, G.F. Dynamic residual complexity of the isoquiritigenin-liquiritigenin interconversion during bioassay. J. Agric. Food Chem. 2013, 61, 2146–2157. [Google Scholar] [CrossRef]
- Peng, F.; Du, Q.; Peng, C.; Wang, N.; Tang, H.; Xie, X.; Shen, J.; Chen, J. A review: The pharmacology of isoliquiritigenin. Phytother. Res. 2015, 29, 969–977. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Yang, J.; Wen, Q.; Li, Y. Isoquiritigenin, a flavonoid from licorice, relaxes guinea-pig tracheal smooth muscle in vitro and in vivo: Role of cGMP/PKG. Eur. J. Pharmacol. 2008, 587, 257–266. [Google Scholar] [CrossRef]
- Wu, M.; Wu, Y.; Deng, B.; Li, J.; Cao, H.; Qu, Y.; Qian, X.; Zhong, G. Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. Oncotarget 2016, 7, 85318–85331. [Google Scholar] [CrossRef]
- Yu, S.M.; Kuo, S.C. Vasorelaxant effect of isoliquiritigenin, a novel soluble guanylate cyclase activator, in rat aorta. Br. J. Pharmacol. 1995, 114, 1587–1594. [Google Scholar] [CrossRef]
- Behzad, S.; Sureda, A.; Barreca, D.; Nabavi, S.F.; Rastrelli, L.; Nabavi, S.M. Health effects of phloretin: From chemistry to medicine. Phytochem. Rev. 2017, 16, 527–533. [Google Scholar] [CrossRef]
- Kovalikova, Z.; Lnenicka, J.; Andrys, R. The Influence of Locality on Phenolic Profile and Antioxidant Capacity of Bud Extracts. Foods 2021, 10, 1608. [Google Scholar] [CrossRef]
- Hudec, J.; Burdová, M.; Kobida, L.U.; Komora, L.; Macho, V.; Kogan, G.; Turianica, I.; Kochanová, R.; Ložek, O.; Habán, M.; et al. Antioxidant capacity changes and phenolic profile of Echinacea purpurea, nettle (Urtica dioica L.), and dandelion (Taraxacum officinale) after application of polyamine and phenolic biosynthesis regulators. J. Agric. Food Chem. 2007, 55, 5689–5696. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhu, W.; Xiang, Q.; Kim, J.; Dufresne, C.; Liu, Y.; Li, T.; Chen, S. Creation of a Plant Metabolite Spectral Library for Untargeted and Targeted Metabolomics. Int. J. Mol. Sci. 2023, 24, 2249. [Google Scholar] [CrossRef] [PubMed]
ID | Identified Compounds | tR (min) | Calcd. Mass (Da) | Found Mass (Da) | Delta of Mass (ppm) | Fragmentation (m/z) | Score | Mode | L | Fl |
---|---|---|---|---|---|---|---|---|---|---|
Coumarins | ||||||||||
1 | Fraxin | 5.60 | 370.090 | 370.089 | −2.11 | 207.029, 163.039 | 61.9 1 | Negative | + | + |
2 | Esculin | 6.20 | 340.079 | 340.079 | −1.65 | 177.018 | 78.9 1/95.8 2 | Negative | + | + |
3 | Fraxetin | 6.38 | 208.037 | 208.034 | −1.29 | 163.039, 149.096, 135.044 | - | Positive | + | + |
4 | Esculetin | 10.57 | 178.027 | 178.027 | 1.91 | - | - | Positive | + | + |
5 | Scopoletin | 11.98 | 192.042 | 192.042 | 0.77 | - | - | Positive | + | + |
6 | Scoparone | 13.39 | 206.058 | 206.058 | 1.79 | - | - | Positive | + | + |
7 | Coumarin | 21.45 | 146.037 | 146.037 | 1.37 | 119.050, 105.070, 91.055, 66.039 | 77.0 2 | Positive | + | + |
8 | 7-Ethoxycoumarin | 23.90 | 190.063 | 190.063 | 0.90 | 121.103, 93.072 | 61.7 2 | Positive | + | + |
9 | 6,7-Dimethoxy-4-methylcoumarin | 23.91 | 220.074 | 220.074 | 1.04 | - | - | Positive | + | + |
10 | 8-Acetyl-6,7-dimethoxycoumarin | 25.05 | 248.068 | 248.069 | 0.42 | - | - | Positive | + | + |
11 | Methoxsalen | 26.92 | 216.042 | 216.043 | 1.81 | - | - | Positive | + | + |
12 | Isopimpinellin | 27.15 | 246.053 | 246.053 | 0.51 | - | - | Positive | + | + |
13 | 4-Methylumbelliferyl- glucuronide | 27.20 | 352.079 | 352.080 | 1.71 | - | - | Positive | + | + |
14 | 4-Methylumbelliferyl- galactopyranoside | 28.52 | 338.100 | 338.100 | 0.30 | - | - | Positive | + | + |
15 | Trioxsalen | 33.39 | 228.079 | 228.079 | 0.07 | - | - | Positive | + | + |
16 | Maraniol | 40.83 | 204.079 | 204.079 | 1.18 | - | - | Positive | + | + |
Furochromones | ||||||||||
17 | Khelloside | 8.33 | 408.106 | 408.103 | −5.70 | - | - | Positive | + | + |
18 | Visnagin | 24.05 | 230.058 | 230.058 | 0.60 | - | - | Positive | + | + |
Phenolic acids | ||||||||||
19 | 5-Caffeoylshikimic acid | 1.78 | 336.085 | 336.084 | −1.64 | 178,034 161,023 135,044 | - | Negative | + | + |
20 | Quinic acid | 1.84 | 192.063 | 192.062 | −4.57 | 111.008, 93.033, 87.008, 85.026 | 87.7 1/90.2 2 | Negative | + | + |
21 | Cryptochlorogenic acid | 1.84 | 354.095 | 354.095 | −0.92 | 163.039, 145.026, 135.044 | 86.8 1 | Positive | + | + |
22 | Neochlorogenic acid | 2.40 | 354.095 | 354.095 | −1.48 | 191.055, 179.034, 173.045, 135.044 | 88.4 1/94.7 2 | Negative | + | + |
23 | 4-Aminobenzoic acid | 5.51 | 137.048 | 137.048 | −0.39 | 111.044, 93.034, 65.039 | 74.6 2 | Positive | + | + |
24 | Caffeic acid | 5.78 | 180.042 | 180.042 | 0.28 | 163.039, 145.028, 135.044, 117.035, 107.049 | 89.7 1/91.2 2 | Positive | + | + |
25 | Cinnamic acid | 6.64 | 148.052 | 148.053 | 1.05 | 131.050, 103,055 | - | Positive | + | + |
26 | 2-Methylbenzoic acid | 7.12 | 136.052 | 136.051 | −8.48 | 135.044, 117.034, 107.049 | 80.3 1 | Negative | + | + |
27 | Isoferulic acid | 7.49 | 194.058 | 194.058 | 1.42 | 177.055, 163.039, 145.028, 117.034 | 83.4 1 | Positive | + | + |
28 | Chlorogenic acid | 7.71 | 354.095 | 354.095 | −0.55 | 183.039, 145.029, 136.044 | 89.7 1/92.5 2 | Positive | + | + |
29 | 2-Hydroxy-4-methoxycinnamic acid | 8.90 | 194.058 | 194.058 | 0.75 | 177.054, 153.054, 133.064 | 75.6 1 | Positive | + | + |
30 | 2-Hydroxycinnamic acid | 9.30 | 164.047 | 164.046 | −6.37 | 119.049 | 82.6 1 | Negative | + | + |
31 | 2,4-Dihydroxybenzoic acid | 9.71 | 154.027 | 154.026 | −6.83 | 109.028, 66.038, 67.018 | 77.2 1/92.4 2 | Negative | + | + |
32 | 5-p-Coumaroylquinic acid | 9.76 | 338.100 | 338.100 | −0.59 | 191.055, 173.044, 163.039, 93.033 | 83.0 1 | Positive | + | + |
33 | 3,4-Dimethoxycinnamic acid | 9.96 | 208.074 | 208.074 | 0.44 | 191.107, 163.112 | 53.6 2 | Negative | + | + |
34 | 3-O-Feruloylquinic acid | 10.74 | 368.111 | 368.111 | −0.30 | 191.055, 134.037, 93.033 | 85.4 1 | Positive | + | + |
35 | Sinapinic acid | 12.67 | 224.068 | 224.068 | −3.48 | 208.037, 193.013, 164.049 | 84.2 1 | Negative | + | + |
36 | 4,5-Dicaffeoylquinic acid | 15.18 | 516.127 | 516.126 | −0.58 | 191.056, 179.034, 173.045, 136.044 | 77.2 1 | Negative | + | + |
37 | Ferulic acid | 15.61 | 194.058 | 194.057 | −4.64 | 193.050, 178.027, 134.038 | 83.2 1 | Negative | + | + |
38 | (E)-p-Coumaric acid | 21.45 | 164.047 | 164.048 | 1.60 | 147.044, 119.049 | - | Positive | + | + |
39 | 5-Carboxyvanillic acid | 24.03 | 212.032 | 212.032 | 0.89 | - | - | Positive | + | + |
Flavonoids | ||||||||||
40 | Quercetin 3,7-dihexoside | 6.67 | 626.148 | 626.148 | −0.86 | - | - | Positive | + | + |
41 | Dihydrokaempferol-7- glucoside | 8.67 | 450.116 | 450.116 | −0.67 | 287.056, 259.060, 178.998, 125.023 | 84.1 1 | Negative | + | + |
42 | Gossypin | 10.96 | 480.090 | 480.090 | −1.07 | - | - | Positive | + | + |
43 | Quercetin-6-O- xylopyranosyl- glucopyranoside | 11.17 | 596.138 | 596.138 | −0.04 | 300.027, 271.025, 255.029, 178.998, 151.003 | 87.8 1 | Negative | + | + |
44 | Iridin | 11.28 | 522.137 | 522.137 | −1.31 | - | - | Negative | + | + |
45 | Quercetin-3-glucoside | 11.62 | 464.095 | 464.095 | −0.03 | 303.050, 285.040, 229.047, 137.023, 85.029 | 93.1 1 | Positive | + | + |
46 | Kaempferol | 11.75 | 286.048 | 286.048 | 0.03 | 287.549, 241.019, 213.055, 165.018, 153.018 | 97.1 1 | Positive | + | + |
47 | Rutin | 11.99 | 610.153 | 610.153 | 0.11 | 300.027, 271.025, 255.029, 178.998, 151.003 | 92.6 1 | Negative | + | + |
48 | Rhamnetin-3-O-xylopyranosyl-glucopyranoside | 12.21 | 610.153 | 610.153 | −0.34 | 314.043, 299.019, 271.025, 243.030 | 83.5 1 | Negative | + | + |
49 | Quercetin | 12.43 | 302.043 | 302.043 | 0.08 | 303.050, 285.039, 257.045, 229.050, 165.018, 137.023 | 98.6 1 | Positive | + | + |
50 | Trifolin | 12.97 | 448.101 | 448.100 | −0.79 | 304.054, 287.055, 85.029, 61.028 | 87.5 1 | Positive | + | + |
51 | Patulitrin | 13.34 | 494.106 | 494.105 | −1.38 | - | - | Negative | + | + |
52 | Nicotiflorin | 13.51 | 594.158 | 594.158 | −0.81 | 287.055, 85.029 | - | Positive | + | + |
53 | Kaempferol-7-O- glucoside | 13.54 | 448.101 | 448.100 | −0.79 | 304.054, 287.055, 119.086 | 82.1 1 | Positive | + | + |
54 | Luteolin | 13.55 | 286.048 | 286.048 | −0.01 | 287,055 | 74.9 1 | Positive | + | + |
55 | Phloridzin | 13.73 | 436.137 | 436.136 | −1.12 | 435.205, 96.959 | - | Positive | + | + |
56 | Narcissin | 13.78 | 624.169 | 624.169 | 0.42 | - | - | Positive | + | + |
57 | Astilbin | 14.31 | 450.116 | 450.116 | −1.03 | 151.003, 125.023 | 62 1 | Negative | + | + |
58 | Prunin | 14.44 | 434.121 | 434.121 | 0.16 | - | - | Positive | + | + |
59 | Auriculoside | 19.28 | 450.153 | 450.153 | 0.74 | - | - | Positive | + | + |
60 | Cirsimarin | 19.75 | 476.132 | 476.132 | 0.56 | - | - | Positive | + | + |
61 | Naringin dihydrochalcone | 20.16 | 582.195 | 582.195 | −0.35 | - | - | Negative | + | + |
62 | Phloretin | 26.49 | 274.084 | 274.084 | 0.70 | - | - | Positive | + | + |
63 | Nobiletin | 27.27 | 402.131 | 402.132 | 0.69 | - | - | Positive | + | + |
64 | Glycitein | 27.67 | 284.068 | 284.068 | −1.86 | - | - | Negative | + | + |
65 | Tiliroside | 30.00 | 594.137 | 594.137 | −0.62 | - | - | Positive | + | + |
66 | Isoliquiritigenin | 30.47 | 256.074 | 256.073 | −0.37 | - | - | Positive | + | + |
Triterpenoids | ||||||||||
67 | Ursolic acid | 20.85 | 456.360 | 456.360 | 0.32 | 203.180, 189.164, 163.148, 95.086 | 89.6 1/90.2 2 | Positive | + | + |
68 | Lupenone | 21.87 | 424.371 | 424.371 | 0.01 | - | - | Positive | + | + |
69 | Oleanolic acid | 22.27 | 456.361 | 456.361 | 0.79 | - | - | Positive | + | + |
70 | Cucurbitacin I | 25.72 | 514.293 | 514.294 | 1.35 | - | - | Positive | + | + |
71 | Cucurbitacin S | 27.39 | 498.298 | 498.298 | 0.38 | - | - | Positive | + | + |
Fatty acids and derivatives | ||||||||||
72 | Suberic acid | 11.42 | 174.089 | 174.089 | −5.92 | 129.091, 111.080 | 83.4 1/95.4 2 | Negative | + | + |
73 | Azelaic acid | 15.32 | 188.105 | 188.104 | −5.29 | 125.096 | 84.0 1/94.2 2 | Negative | + | + |
74 | Eicosapentaenoic acid | 18.11 | 302.226 | 302.225 | 0.99 | 303.050 | - | Positive | + | + |
75 | 3-Oxopalmitic acid | 20.62 | 270.219 | 270.219 | −0.21 | - | - | Positive | + | + |
76 | Adipic acid | 21.36 | 146.058 | 146.058 | 0.31 | - | - | Positive | + | + |
77 | Docosahexaenoic acid | 22.13 | 328.240 | 328.240 | −0.18 | 145.101, 133.106, 119.086, | 84.6 1 | Positive | + | + |
78 | (15Z)-9,12,13-Trihydroxy-15-octadecenoic acid | 24.10 | 330.241 | 330.240 | −1.72 | 329.232, 171.102, 139.112 | 85.9 1 | Negative | + | + |
79 | Phloionolic acid | 29.18 | 332.256 | 332.256 | −1.15 | 313.238, 187.097, 157.086 | - | Negative | + | + |
80 | 12-Oxophytodienoic acid | 29.81 | 292.204 | 292.204 | 0.13 | 275.204, 147.119, 133.103 | 84.2 | Positive | + | + |
81 | 9,10-Dihydroxystearic acid | 33.88 | 316.261 | 316.261 | −2.14 | 297.243, 279.233, 171.102, 127.112 | - | Positive | + | + |
82 | 13-OH-9Z,11E,15Z-Octadecatrienoic acid | 35.43 | 294.219 | 294.219 | −1.59 | 275.201, 223.133, 195.138 | 78.3 1 | Negative | + | + |
83 | 13-Hydroxyoctadecadienoic acid | 37.34 | 296.235 | 296.235 | −2.01 | 277.217, 195.138, 171.102 | 85.0 1 | Negative | + | + |
84 | 16-Hydroxyhexadecanoic acid | 43.74 | 272.235 | 272.235 | −1.75 | 253.217, 225.222 | 88.2 1/89.9 2 | Negative | + | + |
85 | Linolenelaidic acid | 44.87 | 278.225 | 278.225 | 0.53 | 123.119, 109.103 | - | Positive | + | + |
86 | Ethyl palmitoleate | 48.88 | 282.256 | 282.256 | −0.12 | 135.117, 97.102, 83.036, 69.071 | 79.9 1 | Positive | + | + |
Amino acids | ||||||||||
87 | Histidine | 1.55 | 155.069 | 155.070 | 1.21 | 110.071, 95.061 | 98.6 1 | Positive | + | + |
88 | Arginine | 1.55 | 174.112 | 174.112 | 0.90 | 130.097, 116.071, 70.061 | 80.6 1 | Positive | + | + |
89 | Glutamine | 1.68 | 146.069 | 146.068 | −7.42 | 127.052, 109.034, 84.044 | 78.7 1/87.8 2 | Positive | + | + |
90 | Adenine | 1.75 | 135.055 | 135.055 | 1.65 | 119.049, 94.066 | 62.2 2 | Positive | + | + |
91 | Valine | 1.77 | 117.080 | 117.080 | 2.63 | 72.082, 55.055 | 82.5 1/89.5 2 | Positive | + | + |
92 | Glutamic acid | 1.82 | 147.053 | 147.053 | 0.70 | - | - | Positive | + | + |
93 | Proline | 1.90 | 115.063 | 115.064 | 3.36 | 116.071, 70.066 | 98.7 2 | Positive | + | + |
94 | Leucine | 2.60 | 131.095 | 131.095 | 1.34 | 132.081, 86.097 | 84.3 1/94.3 2 | Positive | + | + |
Sugars | ||||||||||
95 | α,α-Trehalose | 2.34 | 342.116 | 342.116 | −1.75 | 161.023, 113.023, 101.023, 89.023 | 92.5 2 | Negative | + | + |
Organic acids | ||||||||||
96 | Threonic acid | 1.74 | 136.037 | 136.036 | −8.11 | 135.044, 75.008 | 84.72 | Negative | + | + |
97 | Gluconic acid | 1.74 | 196.058 | 196.057 | −4.64 | 177.039, 129.018, 75.008 | 84.8 1/89.2 2 | Negative | + | + |
98 | trans-Aconitic acid | 1.77 | 174.016 | 174.015 | −5.76 | 129.018, 85.028 | 62.4 1/88.9 2 | Negative | + | + |
99 | Maleic acid | 1.86 | 116.011 | 116.010 | −9.84 | 115.002, 71.013 | 72.7 1/93.3 2 | Negative | + | + |
100 | Malic acid | 1.87 | 134.023 | 134.020 | −8.32 | 115.002, 71.013 | 81.0 1/98.7 2 | Negative | + | + |
101 | Succinic acid | 2.39 | 118.027 | 118.027 | 2.81 | 99.008, 73.028 | 72.4 1/96.0 2 | Positive | + | + |
102 | Citramalic acid | 2.31 | 148.037 | 148.036 | −7.14 | 129.018, 103.039, 85.028, 59.013 | 90.5 2 | Negative | + | + |
103 | Propane-1,2,3-tricarboxylic acid | 2.35 | 176.032 | 176.031 | −5.57 | 157.013, 113.023, 87.020, 69.033 | 92.7 2 | Negative | + | + |
104 | Citric acid | 2.37 | 192.027 | 192.026 | −4.67 | 111.008, 87.008, 85.028, 57.033 | 94.4 2 | Negative | + | + |
105 | Citraconic acid | 2.46 | 130.027 | 130.025 | −8.75 | 129.018, 85.026 | 84.8 1/99.9 2 | Negative | + | + |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kostikova, V.A.; Petrova, N.V.; Chernonosov, A.A.; Koval, V.V.; Kovaleva, E.R.; Wang, W.; Erst, A.S. Chemical Composition of Methanol Extracts from Leaves and Flowers of Anemonopsis macrophylla (Ranunculaceae). Int. J. Mol. Sci. 2024, 25, 989. https://doi.org/10.3390/ijms25020989
Kostikova VA, Petrova NV, Chernonosov AA, Koval VV, Kovaleva ER, Wang W, Erst AS. Chemical Composition of Methanol Extracts from Leaves and Flowers of Anemonopsis macrophylla (Ranunculaceae). International Journal of Molecular Sciences. 2024; 25(2):989. https://doi.org/10.3390/ijms25020989
Chicago/Turabian StyleKostikova, Vera A., Natalia V. Petrova, Alexander A. Chernonosov, Vladimir V. Koval, Evgeniia R. Kovaleva, Wei Wang, and Andrey S. Erst. 2024. "Chemical Composition of Methanol Extracts from Leaves and Flowers of Anemonopsis macrophylla (Ranunculaceae)" International Journal of Molecular Sciences 25, no. 2: 989. https://doi.org/10.3390/ijms25020989