Recent Advances in the Diagnosis, Pathogenesis, and Management of Myxoinflammatory Fibroblastic Sarcoma
Abstract
1. Introduction
2. Clinical Characteristics
3. Imaging Features
4. Pathogenesis
5. Histopathology
6. Management
6.1. Localized Disease
6.2. Advanced/Metastatic Disease
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montgomery, E.A.; Devaney, K.O.; Giordano, T.J.; Weiss, S.W. Inflammatory myxohyaline tumor of distal extremities with virocyte or Reed-Sternberg-like cells: A distinctive lesion with features simulating inflammatory conditions, Hodgkin’s disease, and various sarcomas. Mod. Pathol. 1998, 11, 384–391. [Google Scholar] [PubMed]
- Meis-Kindblom, J.M.; Kindblom, L.G. Acral myxoinflammatory fibroblastic sarcoma: A low-grade tumor of the hands and feet. Am. J. Surg. Pathol. 1998, 22, 911–924. [Google Scholar] [CrossRef]
- Michal, M. Inflammatory myxoid tumor of the soft parts with bizarre giant cells. Pathol. Res. Pract. 1998, 194, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, E.A.; Antonescu, C.R.; Folpe, A.L. Myxoinflammatory fibroblastic sarcoma. In World Health Organization (WHO) Classification of Soft Tissue and Bone Tumours, 5th ed.; International Agency for Research on Cancer (IARC): Lyon, France, 2020; pp. 116–118. [Google Scholar]
- Stacchiotti, S.; Frezza, A.M.; Blay, J.Y.; Baldini, E.H.; Bonvalot, S.; Bovée, J.V.M.G.; Callegaro, D.; Casali, P.G.; Chiang, R.C.; Demetri, G.D.; et al. Ultra-rare sarcomas: A consensus paper from the Connective Tissue Oncology Society community of experts on the incidence threshold and the list of entities. Cancer 2021, 127, 2934–2942. [Google Scholar] [CrossRef] [PubMed]
- Nishio, J. Updates on the cytogenetics and molecular cytogenetics of benign and intermediate soft tissue tumors. Oncol. Lett. 2013, 5, 12–18. [Google Scholar] [CrossRef]
- Michal, M.; Kazakov, D.V.; Hadravský, L.; Kinkor, Z.; Kuroda, N.; Michal, M. High-grade myxoinflammatory fibroblastic sarcoma: A report of 23 cases. Ann. Diagn. Pathol. 2015, 19, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Pulvers, J.N.; Roberts, S.T.; Wignall, A.; Chan, R.C.F.; Muljono, A.; Toon, C.W. A rare case of high grade myxoinflammatory fibroblastic sarcoma of the neck with PRAME immuno-expression: A potential pitfall. Pathology 2022, 54, 486–488. [Google Scholar] [CrossRef]
- Laskin, W.B.; Fetsch, J.F.; Miettinen, M. Myxoinflammatory fibroblastic sarcoma: A clinicopathologic analysis if 104 cases, with emphasis on predictors of outcome. Am. J. Surg. Pathol. 2014, 38, 1–12. [Google Scholar] [CrossRef]
- Weiss, V.L.; Antonescu, C.R.; Alaggio, R.; Cates, J.M.; Gaskin, D.; Stefanovici, C.; Coffin, C.M. Myxoinflammatory fibroblastic sarcoma in children and adolescents: Clinicopathologic aspects of a rare neoplasm. Pediatr. Dev. Pathol. 2013, 16, 425–431. [Google Scholar] [CrossRef]
- Lombardi, R.; Jovine, E.; Zanini, N.; Salone, M.C.; Gambarotti, M.; Righi, A.; Balladelli, A.; Colangeli, M.; Rocca, M. A case of lung metastasis in myxoinflammatory fibroblastic sarcoma: Analytical review of one hundred and thirty eight cases. Int. Orthop. 2013, 37, 2429–2436. [Google Scholar] [CrossRef]
- Suster, D.; Michal, M.; Huang, H.; Ronen, S.; Springborn, S.; Debiec-Rychter, M.; Billings, S.D.; Goldblum, J.R.; Rubin, B.P.; Michal, M.; et al. Myxoinflammatory fibroblastic sarcoma: An immunohistochemical and molecular genetic study of 73 cases. Mod. Pathol. 2020, 33, 2520–2533. [Google Scholar] [CrossRef] [PubMed]
- Tejwani, A.; Kobayashi, W.; Chen, Y.L.; Rosenberg, A.E.; Yoon, S.; Raskin, K.A.; Rosenthal, D.I.; Nielsen, G.P.; Hornicek, F.J.; Delaney, T.F. Management of acral myxoinflammatory fibroblastic sarcoma. Cancer 2010, 116, 5733–5739. [Google Scholar] [CrossRef] [PubMed]
- Togral, G.; Arikan, M.; Aktas, E.; Gungor, S. Giant myxoinflammatory fibroblastic sarcoma with bone invasion: A very rare clinical entity and literature review. Chin. J. Cancer 2014, 33, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.E.; Dodd, L.; Martinez, S.; Brigman, B.E. Case reports: Acral myxoinflammatory fibroblastic sarcoma: A report of five cases and literature review. Clin. Orthop. Relat. Res. 2006, 445, 254–260. [Google Scholar] [CrossRef]
- Narváez, J.A.; Martinez, S.; Dodd, L.G.; Brigman, B.E. Acral myxoinflammatory fibroblastic sarcoma: MRI findings in four cases. Am. J. Roentgenol. 2007, 188, 1302–1305. [Google Scholar] [CrossRef] [PubMed]
- Gaetke-Udager, K.; Yablon, C.M.; Lucas, D.R.; Morag, Y. Myxoinflammatory fibroblastic sarcoma: Spectrum of disease and imaging presentation. Skeletal Radiol. 2016, 45, 347–356. [Google Scholar] [CrossRef]
- Tateishi, U.; Hasegawa, T.; Onaya, H.; Satake, M.; Arai, Y.; Moriyama, N. Myxoinflammatory fibroblastic sarcoma: MR appearance and pathologic correlation. Am. J. Roentgenol. 2005, 184, 1749–1753. [Google Scholar] [CrossRef]
- Kumar, R.; Lefkowitz, R.A.; Neto, A.D. Myxoinflammatory fibroblastic sarcoma: Clinical, imaging, management and outcome in 29 patients. J. Comput. Assist. Tomogr. 2017, 41, 104–115. [Google Scholar] [CrossRef]
- Lambert, I.; Debiec-Rychter, M.; Guelinckx, P.; Hagemeijer, A.; Sciot, R. Acral myxoinflammatory fibroblastic sarcoma with unique clonal chromosomal changes. Virchows Arch. 2001, 438, 509–512. [Google Scholar] [CrossRef]
- Hallor, K.H.; Sciot, R.; Staaf, J.; Heidenblad, M.; Rydholm, A.; Bauer, H.C.; Aström, K.; Domanski, H.A.; Meis, J.M.; Kindblom, L.G.; et al. Two genetic pathways, t(1;10) and amplification of 3p11-12, in myxoinflammatory fibroblastic sarcoma, haemosiderotic fibrolipomatous tumour, and morphologically similar lesions. J. Pathol. 2009, 217, 716–727. [Google Scholar] [CrossRef]
- Wettach, G.R.; Boyd, L.J.; Lawce, H.J.; Magenis, R.E.; Mansoor, A. Cytogenetic analysis of a hemosiderotic fibrolipomatous tumor. Cancer Genet. Cytogenet. 2008, 182, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Antonescu, C.R.; Zhang, L.; Nielsen, G.P.; Rosenberg, A.E.; Dal Cin, P.; Fletcher, C.D.M. Consistent t(1;10) with rearrangements of TGFBR3 and MGEA5 in both myxoinflammatory fibroblastic sarcoma and hemosiderotic fibrolipomatous tumor. Genes Chromosomes Cancer 2011, 50, 757–764. [Google Scholar] [CrossRef]
- Elco, C.P.; Mariño-Enríquez, A.; Abraham, J.A.; Dal Cin, P.; Hornick, J.L. Hybrid myxoinflammatory fibroblastic sarcoma/ hemosiderotic fibrolipomatous tumor: Report of a case providing further evidence for a pathogenetic link. Am. J. Surg. Pathol. 2010, 34, 1723–1727. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Pan, Z.; Siegal, G.P.; Winokur, T.S.; Carroll, A.J.; Jhala, D. Complex analysis of a recurrent pleomorphic hyalinizing angiectatic tumor of soft parts. Hum. Pathol. 2012, 43, 121–126. [Google Scholar] [CrossRef]
- Mansoor, A.; Fidda, N.; Himoe, E.; Payne, M.; Lawce, H.; Magenis, R.E. Myxoinflammatory fibroblastic sarcoma with complex supernumerary ring chromosomes composed of chromosome 3 segments. Cancer Genet. Cytogenet. 2004, 152, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Ida, C.M.; Rolig, K.A.; Hulshizer, R.L.; Van Dyke, D.L.; Randolph, J.L.; Jenkins, R.B.; Nascimento, A.G.; Oliveira, A.M. Myxoinflammatory fibroblastic sarcoma showing t(2:6)(q31;p21.3) as a sole cytogenetic abnormality. Cancer Genet. Cytogenet. 2007, 177, 139–142. [Google Scholar] [CrossRef]
- Baumhoer, D.; Glatz, K.; Schulten, H.J.; Füzesi, L.; Fricker, R.; Kettelhack, C.; Hasenboehler, P.; Oberholzer, M.; Jundt, G. Myxoinflammatory fibroblastic sarcoma: Investigations by comparative genomic hybridization of two cases and review of the literature. Virchows Arch. 2007, 451, 923–928. [Google Scholar] [CrossRef] [PubMed]
- Fagerstedt, K.W.; Salonen, T.; Zhao, F.; Kytölä, S.; Böhling, T.; Andersson, L.C. Establishment of a spontaneously transformed cell line (JU-PI) from a myxoinflammatory fibroblastic sarcoma. Tumor Biol. 2018, 40, 1010428318777936. [Google Scholar] [CrossRef]
- Arbajian, E.; Hofvander, J.; Magnusson, L.; Mertens, F. Deep sequencing of myxoinflammatory fibroblastic sarcoma. Genes Chromosomes Cancer 2020, 59, 309–317. [Google Scholar] [CrossRef]
- Kao, Y.C.; Ranucci, V.; Zhang, L.; Sung, Y.S.; Athanasian, E.A.; Swanson, D.; Dickson, B.C.; Antonescu, C.R. Recurrent BRAF gene rearrangements in myxoinflammatory fibroblastic sarcomas, but not hemosiderotic fibrolipomatous tumors. Am. J. Surg. Pathol. 2017, 41, 1456–1465. [Google Scholar] [CrossRef]
- Klubíčková, N.; Agaimy, A.; Hájková, V.; Ptáková, N.; Grossmann, P.; Šteiner, P.; Michal, M.; Michal, M. RNA-sequencing of myxoinflammatory fibroblastic sarcomas reveals a novel SND1::BRAF fusion and 3 different molecular aberrations with the potential to upregulate theTEAD1 gene including SEC23IP::VGLL3 and TEAD1::MRTFB gene fusions. Virchows Arch. 2022, 481, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Dickson, B.C.; Antonescu, C.R.; Demicco, E.G.; Leong, D.I.; Anderson, N.D.; Swanson, D.; Zhang, L.; Fletcher, C.D.M.; Hornick, J.L. Hybrid schwannoma-perineurioma frequently harbors VGLL3 rearrangement. Mod. Pathol. 2021, 34, 1116–1124. [Google Scholar] [CrossRef] [PubMed]
- Agaimy, A.; Dermawan, J.K.; Leong, I.; Stoehr, R.; Swanson, D.; Weinreb, I.; Zhang, L.; Antonescu, C.R.; Dickson, B.C. Recurrent VGLL3 fusions define a distinctive subset of spindle cell rhabdomyosarcoma with an indolent clinical course and striking predilection for the head and neck. Genes Chromosomes Cancer 2022, 61, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Hori, N.; Okada, K.; Takakura, Y.; Takano, H.; Yamaguchi, N.; Yamaguchi, N. Vestigial-like family member 3 (VGLL3), a cofactor for TEAD transcription factors, promotes cancer cell proliferation by activating the Hippo pathway. J. Biol. Chem. 2020, 295, 8798–8807. [Google Scholar] [CrossRef]
- Hélias-Rodzewicz, Z.; Pérot, G.; Chibon, F.; Ferreira, C.; Lagarde, P.; Terrier, P.; Coindre, J.M.; Aurias, A. YAP1 and VGLL3, encoding two cofactors of TEAD transcription factors, are amplified and overexpressed in a subset of soft tissue sarcomas. Genes Chromosomes Cancer 2010, 49, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Takakura, Y.; Hori, N.; Terada, N.; Machida, M.; Yamaguchi, N.; Takano, H.; Yamaguchi, N. VGLL3 activates inflammatory responses by inducing interleukin-1α secretion. FASEB J. 2021, 35, e21996. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.M.; Sukov, W.R.; Montgomery, E.; Goldblum, J.R.; Billings, S.D.; Fritchie, K.J.; Folpe, A.L. TGFBR3 and MGEA5 rearrangements in pleomorphic hyalinizing angiectatic tumors and the spectrum of related neoplasms. Am. J. Surg. Pathol. 2014, 38, 1182–1192. [Google Scholar] [CrossRef] [PubMed]
- Zreik, R.T.; Carter, J.M.; Sukov, W.R.; Ahrens, W.A.; Fritchie, K.J.; Montgomery, E.A.; Weiss, S.W.; Folpe, A.L. TGFBR3 and MGEA5 rearrangements are much more common in “hybrid” hemosiderotic fibrolipomatous tumor-myxoinflammatory fibroblastic sarcomas than in classical myxoinflammatory fibroblastic sarcomas: A morphological and fluorescence in situ hybridization study. Hum. Pathol. 2016, 53, 14–24. [Google Scholar]
- Perret, R.; Tallegas, M.; Velasco, V.; Soubeyran, I.; Coindre, J.M.; Azmani, R.; Baud, J.; Bacle, G.; De Pinieux, G.; Le Loarer, F. Recurrent YAP1::MAML2 fusions in “nodular necrotizing” variants of myxoinflammatory fibroblastic sarcoma: A comprehensive study of 7 cases. Mod. Pathol. 2022, 35, 1398–1404. [Google Scholar] [CrossRef]
- Sekine, S.; Kiyono, T.; Ryo, E.; Ogawa, R.; Wakai, S.; Ichikawa, H.; Suzuki, K.; Arai, S.; Tsuta, K.; Ishida, M.; et al. Recurrent YAP1-MAML2 and YAP1-NUTM1 fusions in poroma and porocarcinoma. J. Clin. Investig. 2019, 129, 3827–3832. [Google Scholar] [CrossRef]
- Vivero, M.; Davineni, P.; Nardi, V.; Chan, J.K.C.; Sholl, L.M. Metaplastic thymoma: A distinctive thymic neoplasm characterized by YAP1-MML2 gene fusions. Mod. Pathol. 2020, 33, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Antonescu, C.R.; Dickson, B.C.; Sung, Y.S.; Zhang, L.; Suurmeijer, A.J.H.; Stenzinger, A.; Mechtersheimer, G.; Fletcher, C.D.M. Recurrent YAP1 and MAML2 gene rearrangements in retiform and composite hemangioendothelioma. Am. J. Surg. Pathol. 2020, 44, 1677–1684. [Google Scholar] [CrossRef]
- Vougiouklakis, T.; Shen, G.; Feng, X.; Hoda, S.T.; Jour, G. Molecular profiling of atypical tenosynovial giant cell tumors reveals novel non-CSF1 fusions. Cancers 2019, 12, 100. [Google Scholar] [CrossRef] [PubMed]
- Cordier, F.; Ameloot, E.; Dhooge, C.; Lapeire, L.; Sys, G.; Van Dorpe, J.; Creytens, D. Spindle cell/sclerosing rhabdomyosarcoma with a novel YAP1-MAML2 fusion in a 1-year-old: Not all strongly TRK-expressing spindle cell sarcomas in infants are infantile fibrosarcomas! Pathology 2021, 53, 936–939. [Google Scholar] [CrossRef]
- Dermawan, J.K.; DiNapoli, S.E.; Sukhadia, P.; Mullaney, K.A.; Gladdy, R.; Healey, J.H.; Agaimy, A.; Cleven, A.H.; Suurmeijer, A.J.H.; Dickson, B.C.; et al. Malignant undifferentiated epithelioid neoplasms with MAML2 rearrangements: A clinicopathologic study of seven cases demonstrating a heterogenous entity. Genes Chromosomes Cancer 2023, 62, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Moroishi, T.; Guan, K.L. Mechanisms of Hippo pathway regulation. Genes Dev. 2016, 30, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Mosquera, J.M.; Sboner, A.; Zhang, L.; Kitabayashi, N.; Chen, C.L.; Sung, Y.S.; Wexler, L.H.; LaQuaglia, M.P.; Edelman, M.; Sreekantaiah, C.; et al. Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer 2013, 52, 538–550. [Google Scholar] [CrossRef]
- Huang, D.; Sumegi, J.; Dal Cin, P.; Reith, J.D.; Yasuda, T.; Nelson, M.; Muirhead, D.; Bridge, J.A. C11orf95-MKL2 is the resulting fusion oncogene of t(11;16)(q13;p13) in chondroid lipoma. Genes Chromosomes Cancer 2010, 49, 810–818. [Google Scholar] [CrossRef]
- Dickson, B.C.; Antonescu, C.R.; Argyris, P.P.; Bilodeau, E.A.; Bullock, M.J.; Freedman, P.D.; Gnepp, D.R.; Jordan, R.C.; Koutlas, I.G.; Lee, C.H.; et al. Ectomesenchymal chondromyxoid tumor: A neoplasm characterized by recurrent RREB1-MKL2 fusions. Am. J. Surg. Pathol. 2018, 42, 1297–1305. [Google Scholar] [CrossRef]
- Libbrecht, S.; Van Dorpe, J.; Creytens, D. The rapidly expanding group of RB1-deleted soft tissue tumors: An updated review. Diagnostics 2012, 11, 430. [Google Scholar] [CrossRef]
- Ohshima, Y.; Nishio, J.; Nakayama, S.; Koga, K.; Aoki, M.; Yamamoto, T. Spindle cell lipoma and pleomorphic lipoma: An update and review. Cancer Diagn. Progn. 2023, 3, 282–290. [Google Scholar] [CrossRef]
- Boland, J.M.; Horvai, A.E.; Mertens, F. Haemosiderotic fibrolipomatous tumour. In World Health Organization (WHO) Classification of Soft Tissue and Bone Tumours, 5th ed.; International Agency for Research on Cancer (IARC): Lyon, France, 2020; pp. 282–283. [Google Scholar]
- Agaimy, A.; Dei Tos, A.P.; Folpe, A.L. Pleomorphic hyalinizing angiectatic tumour of soft parts. In World Health Organization (WHO) Classification of Soft Tissue and Bone Tumours, 5th ed.; International Agency for Research on Cancer (IARC): Lyon, France, 2020; pp. 280–281. [Google Scholar]
- Folpe, A.L.; Weiss, S.W. Pleomorphic hyalinizing angiectatic tumor: Analysis of 41 cases supporting evolution from a distinctive precursor lesion. Am. J. Surg. Pathol. 2004, 28, 1417–1425. [Google Scholar] [CrossRef]
- Michal, M.; Kazakov, D.V.; Hadravský, L.; Agaimy, A.; Švajdler, M.; Kuroda, N.; Michal, M. Pleomorphic hyalinizing angiectatic tumor revised: All tumors manifest typical morphologic features of myxoinflammatory fibroblastic sarcoma, further suggesting 2 morphologic variants of a single entity. Ann. Diagn. Pathol. 2016, 20, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Boland, J.M.; Folpe, A.L. Hemosiderotic fibrolipomatous tumor, pleomorphic hyalinizing angiectatic tumor, and myxoinflammatory fibroblastic sarcoma: Related or not? Adv. Anat. Pathol. 2017, 24, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Nishio, J.; Iwasaki, H.; Nabeshima, K.; Naito, M. Cytogenetics and molecular genetics of myxoid soft-tissue sarcomas. Genet. Res. Int. 2011, 2011, 497148. [Google Scholar] [CrossRef]
- Huang, H.Y.; Mentzel, T.D.W.; Shibata, T. Myxofibrosarcoma. In World Health Organization (WHO) Classification of Soft Tissue and Bone Tumours, 5th ed.; International Agency for Research on Cancer (IARC): Lyon, France, 2020; pp. 124–126. [Google Scholar]
- Fujiwara, T.; Kaneuchi, Y.; Tsuda, Y.; Stevenson, J.; Parry, M.; Jeys, L. Low-grade soft-tissue sarcomas: What is an adequate margin for local disease control? Surg. Oncol. 2020, 35, 303–308. [Google Scholar] [CrossRef]
- Sparkman, B.K.; Nguyen, T.V.V.; Smith, S.C.; Bear, H.D. Unexpected clinical outcome for myxoinflammatory fibroblastic sarcoma, when should they be considered high grade? J. Investig. Med. High Impact Case Rep. 2023, 11, 23247096231205344. [Google Scholar] [CrossRef] [PubMed]
- Hassanein, A.M.; Atkinson, S.P.; Al-Quran, S.Z.; Jain, S.M.; Reith, J.D. Acral myxoinflammatory fibroblastic sarcomas: Are they all low-grade neoplasms? J. Cutan. Pathol. 2008, 35, 186–191. [Google Scholar] [CrossRef]
- Srivastava, P.; Husain, N.; Neyaz, A.; Gupta, V. Aggressive myxoinflammatory fibroblastic sarcoma with multiple site metastases. BMJ Case Rep. 2018, 2018, bcr2018224259. [Google Scholar] [CrossRef]
- Botton, T.; Yeh, I.; Nelson, T.; Vemula, S.S.; Sparatta, A.; Garrido, M.C.; Allegra, M.; Rocchi, S.; Bahadoran, P.; McCalmont, T.H.; et al. Recurrent BRAF kinase fusions in melanocytic tumors offer an opportunity for targeted therapy. Pigment Cell Melanoma Res. 2013, 26, 845–851. [Google Scholar] [CrossRef]
- Hutchinson, K.E.; Lipson, D.; Stephens, P.J.; Otto, G.; Lehmann, B.D.; Lyle, P.L.; Vnencak-Jones, C.L.; Ross, J.S.; Pietenpol, J.A.; Sosman, J.A.; et al. BRAF fusions define a distinct molecular subset of melanomas with potential sensitivity to MEK inhibition. Clin. Cancer Res. 2013, 19, 6696–6702. [Google Scholar] [CrossRef] [PubMed]
- Menzies, A.M.; Yeh, I.; Botton, T.; Bastian, B.C.; Scolyer, R.A.; Long, G.V. Clinical activity of the MEK inhibitor trametinib in metastatic melanoma containing BRAF kinase fusion. Pigment Cell Melanoma Res. 2015, 28, 607–610. [Google Scholar] [CrossRef]
- Ross, J.S.; Wang, K.; Chmielecki, J.; Gay, L.; Johnson, A.; Chudnovsky, J.; Yelensky, R.; Lipson, D.; Ali, S.M.; Elvin, J.A.; et al. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int. J. Cancer 2016, 138, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Li, D.; Zhu, X. Cancer immunotherapy: Pros, cons and beyond. Biomed. Pharmacother. 2020, 124, 109821. [Google Scholar] [CrossRef]
- Hashimoto, K.; Nishimura, S.; Shinyashiki, Y.; Ito, T.; Kakinoki, R.; Akagi, M. Clinicopathological assessment of PD-1/PD-L1 immune checkpoint expression in desmoid tumors. Eur. J. Histochem. 2023, 67, 3688. [Google Scholar] [CrossRef]
- Roszik, J.; Wang, W.L.; Livingston, J.A.; Roland, C.L.; Ravi, V.; Yee, C.; Hwu, P.; Futreal, A.; Lazar, A.J.; Patel, S.R.; et al. Overexpressed PRAME is a potential immunotherapy target in sarcoma subtypes. Clin. Sarcoma Res. 2017, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Dean, D.C.; Thanindratarn, P.; Hornicek, F.J.; Guo, W.; Duan, Z. Cancer testis antigens in sarcoma: Expression, function and immunotherapeutic application. Cancer Lett. 2020, 479, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Albertsmeier, M.; Altendorf-Hofmann, A.; Lindner, L.H.; Issels, R.D.; Kampmann, E.; Dürr, H.R.; Schubert-Fritschle, G.; Angele, M.K.; Kirchner, T.; Jungbluth, A.A.; et al. Cancer testis antigens and immunotherapy: Expression of PRAME is associated with prognosis in soft tissue sarcoma. Cancers 2020, 12, 3612. [Google Scholar] [CrossRef]
- Al-Khadairi, G.; Decock, J. Cancer testis antigens and immunotherapy: Where do we stand in the targeting of PRAME? Cancers 2019, 11, 984. [Google Scholar] [CrossRef]
Histology | Cellularity | Nuclear Pleomorphism | Mitotic Activity | Necrosis |
---|---|---|---|---|
Nodular necrotizing | Low to moderate | Rare | Low | Central |
Conventional | Low to moderate | Rare | Low | Absent |
High-grade | High | Pronounced | High | Frequent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishio, J.; Nakayama, S.; Aoki, M. Recent Advances in the Diagnosis, Pathogenesis, and Management of Myxoinflammatory Fibroblastic Sarcoma. Int. J. Mol. Sci. 2024, 25, 1127. https://doi.org/10.3390/ijms25021127
Nishio J, Nakayama S, Aoki M. Recent Advances in the Diagnosis, Pathogenesis, and Management of Myxoinflammatory Fibroblastic Sarcoma. International Journal of Molecular Sciences. 2024; 25(2):1127. https://doi.org/10.3390/ijms25021127
Chicago/Turabian StyleNishio, Jun, Shizuhide Nakayama, and Mikiko Aoki. 2024. "Recent Advances in the Diagnosis, Pathogenesis, and Management of Myxoinflammatory Fibroblastic Sarcoma" International Journal of Molecular Sciences 25, no. 2: 1127. https://doi.org/10.3390/ijms25021127
APA StyleNishio, J., Nakayama, S., & Aoki, M. (2024). Recent Advances in the Diagnosis, Pathogenesis, and Management of Myxoinflammatory Fibroblastic Sarcoma. International Journal of Molecular Sciences, 25(2), 1127. https://doi.org/10.3390/ijms25021127