Recent Advances in the Diagnosis, Pathogenesis, and Management of Myxoinflammatory Fibroblastic Sarcoma
Abstract
:1. Introduction
2. Clinical Characteristics
3. Imaging Features
4. Pathogenesis
5. Histopathology
6. Management
6.1. Localized Disease
6.2. Advanced/Metastatic Disease
7. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montgomery, E.A.; Devaney, K.O.; Giordano, T.J.; Weiss, S.W. Inflammatory myxohyaline tumor of distal extremities with virocyte or Reed-Sternberg-like cells: A distinctive lesion with features simulating inflammatory conditions, Hodgkin’s disease, and various sarcomas. Mod. Pathol. 1998, 11, 384–391. [Google Scholar] [PubMed]
- Meis-Kindblom, J.M.; Kindblom, L.G. Acral myxoinflammatory fibroblastic sarcoma: A low-grade tumor of the hands and feet. Am. J. Surg. Pathol. 1998, 22, 911–924. [Google Scholar] [CrossRef]
- Michal, M. Inflammatory myxoid tumor of the soft parts with bizarre giant cells. Pathol. Res. Pract. 1998, 194, 529–533. [Google Scholar] [CrossRef] [PubMed]
- Montgomery, E.A.; Antonescu, C.R.; Folpe, A.L. Myxoinflammatory fibroblastic sarcoma. In World Health Organization (WHO) Classification of Soft Tissue and Bone Tumours, 5th ed.; International Agency for Research on Cancer (IARC): Lyon, France, 2020; pp. 116–118. [Google Scholar]
- Stacchiotti, S.; Frezza, A.M.; Blay, J.Y.; Baldini, E.H.; Bonvalot, S.; Bovée, J.V.M.G.; Callegaro, D.; Casali, P.G.; Chiang, R.C.; Demetri, G.D.; et al. Ultra-rare sarcomas: A consensus paper from the Connective Tissue Oncology Society community of experts on the incidence threshold and the list of entities. Cancer 2021, 127, 2934–2942. [Google Scholar] [CrossRef] [PubMed]
- Nishio, J. Updates on the cytogenetics and molecular cytogenetics of benign and intermediate soft tissue tumors. Oncol. Lett. 2013, 5, 12–18. [Google Scholar] [CrossRef]
- Michal, M.; Kazakov, D.V.; Hadravský, L.; Kinkor, Z.; Kuroda, N.; Michal, M. High-grade myxoinflammatory fibroblastic sarcoma: A report of 23 cases. Ann. Diagn. Pathol. 2015, 19, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Pulvers, J.N.; Roberts, S.T.; Wignall, A.; Chan, R.C.F.; Muljono, A.; Toon, C.W. A rare case of high grade myxoinflammatory fibroblastic sarcoma of the neck with PRAME immuno-expression: A potential pitfall. Pathology 2022, 54, 486–488. [Google Scholar] [CrossRef]
- Laskin, W.B.; Fetsch, J.F.; Miettinen, M. Myxoinflammatory fibroblastic sarcoma: A clinicopathologic analysis if 104 cases, with emphasis on predictors of outcome. Am. J. Surg. Pathol. 2014, 38, 1–12. [Google Scholar] [CrossRef]
- Weiss, V.L.; Antonescu, C.R.; Alaggio, R.; Cates, J.M.; Gaskin, D.; Stefanovici, C.; Coffin, C.M. Myxoinflammatory fibroblastic sarcoma in children and adolescents: Clinicopathologic aspects of a rare neoplasm. Pediatr. Dev. Pathol. 2013, 16, 425–431. [Google Scholar] [CrossRef]
- Lombardi, R.; Jovine, E.; Zanini, N.; Salone, M.C.; Gambarotti, M.; Righi, A.; Balladelli, A.; Colangeli, M.; Rocca, M. A case of lung metastasis in myxoinflammatory fibroblastic sarcoma: Analytical review of one hundred and thirty eight cases. Int. Orthop. 2013, 37, 2429–2436. [Google Scholar] [CrossRef]
- Suster, D.; Michal, M.; Huang, H.; Ronen, S.; Springborn, S.; Debiec-Rychter, M.; Billings, S.D.; Goldblum, J.R.; Rubin, B.P.; Michal, M.; et al. Myxoinflammatory fibroblastic sarcoma: An immunohistochemical and molecular genetic study of 73 cases. Mod. Pathol. 2020, 33, 2520–2533. [Google Scholar] [CrossRef] [PubMed]
- Tejwani, A.; Kobayashi, W.; Chen, Y.L.; Rosenberg, A.E.; Yoon, S.; Raskin, K.A.; Rosenthal, D.I.; Nielsen, G.P.; Hornicek, F.J.; Delaney, T.F. Management of acral myxoinflammatory fibroblastic sarcoma. Cancer 2010, 116, 5733–5739. [Google Scholar] [CrossRef] [PubMed]
- Togral, G.; Arikan, M.; Aktas, E.; Gungor, S. Giant myxoinflammatory fibroblastic sarcoma with bone invasion: A very rare clinical entity and literature review. Chin. J. Cancer 2014, 33, 406–410. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.E.; Dodd, L.; Martinez, S.; Brigman, B.E. Case reports: Acral myxoinflammatory fibroblastic sarcoma: A report of five cases and literature review. Clin. Orthop. Relat. Res. 2006, 445, 254–260. [Google Scholar] [CrossRef]
- Narváez, J.A.; Martinez, S.; Dodd, L.G.; Brigman, B.E. Acral myxoinflammatory fibroblastic sarcoma: MRI findings in four cases. Am. J. Roentgenol. 2007, 188, 1302–1305. [Google Scholar] [CrossRef] [PubMed]
- Gaetke-Udager, K.; Yablon, C.M.; Lucas, D.R.; Morag, Y. Myxoinflammatory fibroblastic sarcoma: Spectrum of disease and imaging presentation. Skeletal Radiol. 2016, 45, 347–356. [Google Scholar] [CrossRef]
- Tateishi, U.; Hasegawa, T.; Onaya, H.; Satake, M.; Arai, Y.; Moriyama, N. Myxoinflammatory fibroblastic sarcoma: MR appearance and pathologic correlation. Am. J. Roentgenol. 2005, 184, 1749–1753. [Google Scholar] [CrossRef]
- Kumar, R.; Lefkowitz, R.A.; Neto, A.D. Myxoinflammatory fibroblastic sarcoma: Clinical, imaging, management and outcome in 29 patients. J. Comput. Assist. Tomogr. 2017, 41, 104–115. [Google Scholar] [CrossRef]
- Lambert, I.; Debiec-Rychter, M.; Guelinckx, P.; Hagemeijer, A.; Sciot, R. Acral myxoinflammatory fibroblastic sarcoma with unique clonal chromosomal changes. Virchows Arch. 2001, 438, 509–512. [Google Scholar] [CrossRef]
- Hallor, K.H.; Sciot, R.; Staaf, J.; Heidenblad, M.; Rydholm, A.; Bauer, H.C.; Aström, K.; Domanski, H.A.; Meis, J.M.; Kindblom, L.G.; et al. Two genetic pathways, t(1;10) and amplification of 3p11-12, in myxoinflammatory fibroblastic sarcoma, haemosiderotic fibrolipomatous tumour, and morphologically similar lesions. J. Pathol. 2009, 217, 716–727. [Google Scholar] [CrossRef]
- Wettach, G.R.; Boyd, L.J.; Lawce, H.J.; Magenis, R.E.; Mansoor, A. Cytogenetic analysis of a hemosiderotic fibrolipomatous tumor. Cancer Genet. Cytogenet. 2008, 182, 140–143. [Google Scholar] [CrossRef] [PubMed]
- Antonescu, C.R.; Zhang, L.; Nielsen, G.P.; Rosenberg, A.E.; Dal Cin, P.; Fletcher, C.D.M. Consistent t(1;10) with rearrangements of TGFBR3 and MGEA5 in both myxoinflammatory fibroblastic sarcoma and hemosiderotic fibrolipomatous tumor. Genes Chromosomes Cancer 2011, 50, 757–764. [Google Scholar] [CrossRef]
- Elco, C.P.; Mariño-Enríquez, A.; Abraham, J.A.; Dal Cin, P.; Hornick, J.L. Hybrid myxoinflammatory fibroblastic sarcoma/ hemosiderotic fibrolipomatous tumor: Report of a case providing further evidence for a pathogenetic link. Am. J. Surg. Pathol. 2010, 34, 1723–1727. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Pan, Z.; Siegal, G.P.; Winokur, T.S.; Carroll, A.J.; Jhala, D. Complex analysis of a recurrent pleomorphic hyalinizing angiectatic tumor of soft parts. Hum. Pathol. 2012, 43, 121–126. [Google Scholar] [CrossRef]
- Mansoor, A.; Fidda, N.; Himoe, E.; Payne, M.; Lawce, H.; Magenis, R.E. Myxoinflammatory fibroblastic sarcoma with complex supernumerary ring chromosomes composed of chromosome 3 segments. Cancer Genet. Cytogenet. 2004, 152, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Ida, C.M.; Rolig, K.A.; Hulshizer, R.L.; Van Dyke, D.L.; Randolph, J.L.; Jenkins, R.B.; Nascimento, A.G.; Oliveira, A.M. Myxoinflammatory fibroblastic sarcoma showing t(2:6)(q31;p21.3) as a sole cytogenetic abnormality. Cancer Genet. Cytogenet. 2007, 177, 139–142. [Google Scholar] [CrossRef]
- Baumhoer, D.; Glatz, K.; Schulten, H.J.; Füzesi, L.; Fricker, R.; Kettelhack, C.; Hasenboehler, P.; Oberholzer, M.; Jundt, G. Myxoinflammatory fibroblastic sarcoma: Investigations by comparative genomic hybridization of two cases and review of the literature. Virchows Arch. 2007, 451, 923–928. [Google Scholar] [CrossRef] [PubMed]
- Fagerstedt, K.W.; Salonen, T.; Zhao, F.; Kytölä, S.; Böhling, T.; Andersson, L.C. Establishment of a spontaneously transformed cell line (JU-PI) from a myxoinflammatory fibroblastic sarcoma. Tumor Biol. 2018, 40, 1010428318777936. [Google Scholar] [CrossRef]
- Arbajian, E.; Hofvander, J.; Magnusson, L.; Mertens, F. Deep sequencing of myxoinflammatory fibroblastic sarcoma. Genes Chromosomes Cancer 2020, 59, 309–317. [Google Scholar] [CrossRef]
- Kao, Y.C.; Ranucci, V.; Zhang, L.; Sung, Y.S.; Athanasian, E.A.; Swanson, D.; Dickson, B.C.; Antonescu, C.R. Recurrent BRAF gene rearrangements in myxoinflammatory fibroblastic sarcomas, but not hemosiderotic fibrolipomatous tumors. Am. J. Surg. Pathol. 2017, 41, 1456–1465. [Google Scholar] [CrossRef]
- Klubíčková, N.; Agaimy, A.; Hájková, V.; Ptáková, N.; Grossmann, P.; Šteiner, P.; Michal, M.; Michal, M. RNA-sequencing of myxoinflammatory fibroblastic sarcomas reveals a novel SND1::BRAF fusion and 3 different molecular aberrations with the potential to upregulate theTEAD1 gene including SEC23IP::VGLL3 and TEAD1::MRTFB gene fusions. Virchows Arch. 2022, 481, 613–620. [Google Scholar] [CrossRef] [PubMed]
- Dickson, B.C.; Antonescu, C.R.; Demicco, E.G.; Leong, D.I.; Anderson, N.D.; Swanson, D.; Zhang, L.; Fletcher, C.D.M.; Hornick, J.L. Hybrid schwannoma-perineurioma frequently harbors VGLL3 rearrangement. Mod. Pathol. 2021, 34, 1116–1124. [Google Scholar] [CrossRef] [PubMed]
- Agaimy, A.; Dermawan, J.K.; Leong, I.; Stoehr, R.; Swanson, D.; Weinreb, I.; Zhang, L.; Antonescu, C.R.; Dickson, B.C. Recurrent VGLL3 fusions define a distinctive subset of spindle cell rhabdomyosarcoma with an indolent clinical course and striking predilection for the head and neck. Genes Chromosomes Cancer 2022, 61, 701–709. [Google Scholar] [CrossRef] [PubMed]
- Hori, N.; Okada, K.; Takakura, Y.; Takano, H.; Yamaguchi, N.; Yamaguchi, N. Vestigial-like family member 3 (VGLL3), a cofactor for TEAD transcription factors, promotes cancer cell proliferation by activating the Hippo pathway. J. Biol. Chem. 2020, 295, 8798–8807. [Google Scholar] [CrossRef]
- Hélias-Rodzewicz, Z.; Pérot, G.; Chibon, F.; Ferreira, C.; Lagarde, P.; Terrier, P.; Coindre, J.M.; Aurias, A. YAP1 and VGLL3, encoding two cofactors of TEAD transcription factors, are amplified and overexpressed in a subset of soft tissue sarcomas. Genes Chromosomes Cancer 2010, 49, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Takakura, Y.; Hori, N.; Terada, N.; Machida, M.; Yamaguchi, N.; Takano, H.; Yamaguchi, N. VGLL3 activates inflammatory responses by inducing interleukin-1α secretion. FASEB J. 2021, 35, e21996. [Google Scholar] [CrossRef] [PubMed]
- Carter, J.M.; Sukov, W.R.; Montgomery, E.; Goldblum, J.R.; Billings, S.D.; Fritchie, K.J.; Folpe, A.L. TGFBR3 and MGEA5 rearrangements in pleomorphic hyalinizing angiectatic tumors and the spectrum of related neoplasms. Am. J. Surg. Pathol. 2014, 38, 1182–1192. [Google Scholar] [CrossRef] [PubMed]
- Zreik, R.T.; Carter, J.M.; Sukov, W.R.; Ahrens, W.A.; Fritchie, K.J.; Montgomery, E.A.; Weiss, S.W.; Folpe, A.L. TGFBR3 and MGEA5 rearrangements are much more common in “hybrid” hemosiderotic fibrolipomatous tumor-myxoinflammatory fibroblastic sarcomas than in classical myxoinflammatory fibroblastic sarcomas: A morphological and fluorescence in situ hybridization study. Hum. Pathol. 2016, 53, 14–24. [Google Scholar]
- Perret, R.; Tallegas, M.; Velasco, V.; Soubeyran, I.; Coindre, J.M.; Azmani, R.; Baud, J.; Bacle, G.; De Pinieux, G.; Le Loarer, F. Recurrent YAP1::MAML2 fusions in “nodular necrotizing” variants of myxoinflammatory fibroblastic sarcoma: A comprehensive study of 7 cases. Mod. Pathol. 2022, 35, 1398–1404. [Google Scholar] [CrossRef]
- Sekine, S.; Kiyono, T.; Ryo, E.; Ogawa, R.; Wakai, S.; Ichikawa, H.; Suzuki, K.; Arai, S.; Tsuta, K.; Ishida, M.; et al. Recurrent YAP1-MAML2 and YAP1-NUTM1 fusions in poroma and porocarcinoma. J. Clin. Investig. 2019, 129, 3827–3832. [Google Scholar] [CrossRef]
- Vivero, M.; Davineni, P.; Nardi, V.; Chan, J.K.C.; Sholl, L.M. Metaplastic thymoma: A distinctive thymic neoplasm characterized by YAP1-MML2 gene fusions. Mod. Pathol. 2020, 33, 560–565. [Google Scholar] [CrossRef] [PubMed]
- Antonescu, C.R.; Dickson, B.C.; Sung, Y.S.; Zhang, L.; Suurmeijer, A.J.H.; Stenzinger, A.; Mechtersheimer, G.; Fletcher, C.D.M. Recurrent YAP1 and MAML2 gene rearrangements in retiform and composite hemangioendothelioma. Am. J. Surg. Pathol. 2020, 44, 1677–1684. [Google Scholar] [CrossRef]
- Vougiouklakis, T.; Shen, G.; Feng, X.; Hoda, S.T.; Jour, G. Molecular profiling of atypical tenosynovial giant cell tumors reveals novel non-CSF1 fusions. Cancers 2019, 12, 100. [Google Scholar] [CrossRef] [PubMed]
- Cordier, F.; Ameloot, E.; Dhooge, C.; Lapeire, L.; Sys, G.; Van Dorpe, J.; Creytens, D. Spindle cell/sclerosing rhabdomyosarcoma with a novel YAP1-MAML2 fusion in a 1-year-old: Not all strongly TRK-expressing spindle cell sarcomas in infants are infantile fibrosarcomas! Pathology 2021, 53, 936–939. [Google Scholar] [CrossRef]
- Dermawan, J.K.; DiNapoli, S.E.; Sukhadia, P.; Mullaney, K.A.; Gladdy, R.; Healey, J.H.; Agaimy, A.; Cleven, A.H.; Suurmeijer, A.J.H.; Dickson, B.C.; et al. Malignant undifferentiated epithelioid neoplasms with MAML2 rearrangements: A clinicopathologic study of seven cases demonstrating a heterogenous entity. Genes Chromosomes Cancer 2023, 62, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Meng, Z.; Moroishi, T.; Guan, K.L. Mechanisms of Hippo pathway regulation. Genes Dev. 2016, 30, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Mosquera, J.M.; Sboner, A.; Zhang, L.; Kitabayashi, N.; Chen, C.L.; Sung, Y.S.; Wexler, L.H.; LaQuaglia, M.P.; Edelman, M.; Sreekantaiah, C.; et al. Recurrent NCOA2 gene rearrangements in congenital/infantile spindle cell rhabdomyosarcoma. Genes Chromosomes Cancer 2013, 52, 538–550. [Google Scholar] [CrossRef]
- Huang, D.; Sumegi, J.; Dal Cin, P.; Reith, J.D.; Yasuda, T.; Nelson, M.; Muirhead, D.; Bridge, J.A. C11orf95-MKL2 is the resulting fusion oncogene of t(11;16)(q13;p13) in chondroid lipoma. Genes Chromosomes Cancer 2010, 49, 810–818. [Google Scholar] [CrossRef]
- Dickson, B.C.; Antonescu, C.R.; Argyris, P.P.; Bilodeau, E.A.; Bullock, M.J.; Freedman, P.D.; Gnepp, D.R.; Jordan, R.C.; Koutlas, I.G.; Lee, C.H.; et al. Ectomesenchymal chondromyxoid tumor: A neoplasm characterized by recurrent RREB1-MKL2 fusions. Am. J. Surg. Pathol. 2018, 42, 1297–1305. [Google Scholar] [CrossRef]
- Libbrecht, S.; Van Dorpe, J.; Creytens, D. The rapidly expanding group of RB1-deleted soft tissue tumors: An updated review. Diagnostics 2012, 11, 430. [Google Scholar] [CrossRef]
- Ohshima, Y.; Nishio, J.; Nakayama, S.; Koga, K.; Aoki, M.; Yamamoto, T. Spindle cell lipoma and pleomorphic lipoma: An update and review. Cancer Diagn. Progn. 2023, 3, 282–290. [Google Scholar] [CrossRef]
- Boland, J.M.; Horvai, A.E.; Mertens, F. Haemosiderotic fibrolipomatous tumour. In World Health Organization (WHO) Classification of Soft Tissue and Bone Tumours, 5th ed.; International Agency for Research on Cancer (IARC): Lyon, France, 2020; pp. 282–283. [Google Scholar]
- Agaimy, A.; Dei Tos, A.P.; Folpe, A.L. Pleomorphic hyalinizing angiectatic tumour of soft parts. In World Health Organization (WHO) Classification of Soft Tissue and Bone Tumours, 5th ed.; International Agency for Research on Cancer (IARC): Lyon, France, 2020; pp. 280–281. [Google Scholar]
- Folpe, A.L.; Weiss, S.W. Pleomorphic hyalinizing angiectatic tumor: Analysis of 41 cases supporting evolution from a distinctive precursor lesion. Am. J. Surg. Pathol. 2004, 28, 1417–1425. [Google Scholar] [CrossRef]
- Michal, M.; Kazakov, D.V.; Hadravský, L.; Agaimy, A.; Švajdler, M.; Kuroda, N.; Michal, M. Pleomorphic hyalinizing angiectatic tumor revised: All tumors manifest typical morphologic features of myxoinflammatory fibroblastic sarcoma, further suggesting 2 morphologic variants of a single entity. Ann. Diagn. Pathol. 2016, 20, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Boland, J.M.; Folpe, A.L. Hemosiderotic fibrolipomatous tumor, pleomorphic hyalinizing angiectatic tumor, and myxoinflammatory fibroblastic sarcoma: Related or not? Adv. Anat. Pathol. 2017, 24, 268–277. [Google Scholar] [CrossRef] [PubMed]
- Nishio, J.; Iwasaki, H.; Nabeshima, K.; Naito, M. Cytogenetics and molecular genetics of myxoid soft-tissue sarcomas. Genet. Res. Int. 2011, 2011, 497148. [Google Scholar] [CrossRef]
- Huang, H.Y.; Mentzel, T.D.W.; Shibata, T. Myxofibrosarcoma. In World Health Organization (WHO) Classification of Soft Tissue and Bone Tumours, 5th ed.; International Agency for Research on Cancer (IARC): Lyon, France, 2020; pp. 124–126. [Google Scholar]
- Fujiwara, T.; Kaneuchi, Y.; Tsuda, Y.; Stevenson, J.; Parry, M.; Jeys, L. Low-grade soft-tissue sarcomas: What is an adequate margin for local disease control? Surg. Oncol. 2020, 35, 303–308. [Google Scholar] [CrossRef]
- Sparkman, B.K.; Nguyen, T.V.V.; Smith, S.C.; Bear, H.D. Unexpected clinical outcome for myxoinflammatory fibroblastic sarcoma, when should they be considered high grade? J. Investig. Med. High Impact Case Rep. 2023, 11, 23247096231205344. [Google Scholar] [CrossRef] [PubMed]
- Hassanein, A.M.; Atkinson, S.P.; Al-Quran, S.Z.; Jain, S.M.; Reith, J.D. Acral myxoinflammatory fibroblastic sarcomas: Are they all low-grade neoplasms? J. Cutan. Pathol. 2008, 35, 186–191. [Google Scholar] [CrossRef]
- Srivastava, P.; Husain, N.; Neyaz, A.; Gupta, V. Aggressive myxoinflammatory fibroblastic sarcoma with multiple site metastases. BMJ Case Rep. 2018, 2018, bcr2018224259. [Google Scholar] [CrossRef]
- Botton, T.; Yeh, I.; Nelson, T.; Vemula, S.S.; Sparatta, A.; Garrido, M.C.; Allegra, M.; Rocchi, S.; Bahadoran, P.; McCalmont, T.H.; et al. Recurrent BRAF kinase fusions in melanocytic tumors offer an opportunity for targeted therapy. Pigment Cell Melanoma Res. 2013, 26, 845–851. [Google Scholar] [CrossRef]
- Hutchinson, K.E.; Lipson, D.; Stephens, P.J.; Otto, G.; Lehmann, B.D.; Lyle, P.L.; Vnencak-Jones, C.L.; Ross, J.S.; Pietenpol, J.A.; Sosman, J.A.; et al. BRAF fusions define a distinct molecular subset of melanomas with potential sensitivity to MEK inhibition. Clin. Cancer Res. 2013, 19, 6696–6702. [Google Scholar] [CrossRef] [PubMed]
- Menzies, A.M.; Yeh, I.; Botton, T.; Bastian, B.C.; Scolyer, R.A.; Long, G.V. Clinical activity of the MEK inhibitor trametinib in metastatic melanoma containing BRAF kinase fusion. Pigment Cell Melanoma Res. 2015, 28, 607–610. [Google Scholar] [CrossRef]
- Ross, J.S.; Wang, K.; Chmielecki, J.; Gay, L.; Johnson, A.; Chudnovsky, J.; Yelensky, R.; Lipson, D.; Ali, S.M.; Elvin, J.A.; et al. The distribution of BRAF gene fusions in solid tumors and response to targeted therapy. Int. J. Cancer 2016, 138, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Li, D.; Zhu, X. Cancer immunotherapy: Pros, cons and beyond. Biomed. Pharmacother. 2020, 124, 109821. [Google Scholar] [CrossRef]
- Hashimoto, K.; Nishimura, S.; Shinyashiki, Y.; Ito, T.; Kakinoki, R.; Akagi, M. Clinicopathological assessment of PD-1/PD-L1 immune checkpoint expression in desmoid tumors. Eur. J. Histochem. 2023, 67, 3688. [Google Scholar] [CrossRef]
- Roszik, J.; Wang, W.L.; Livingston, J.A.; Roland, C.L.; Ravi, V.; Yee, C.; Hwu, P.; Futreal, A.; Lazar, A.J.; Patel, S.R.; et al. Overexpressed PRAME is a potential immunotherapy target in sarcoma subtypes. Clin. Sarcoma Res. 2017, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Wei, R.; Dean, D.C.; Thanindratarn, P.; Hornicek, F.J.; Guo, W.; Duan, Z. Cancer testis antigens in sarcoma: Expression, function and immunotherapeutic application. Cancer Lett. 2020, 479, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Albertsmeier, M.; Altendorf-Hofmann, A.; Lindner, L.H.; Issels, R.D.; Kampmann, E.; Dürr, H.R.; Schubert-Fritschle, G.; Angele, M.K.; Kirchner, T.; Jungbluth, A.A.; et al. Cancer testis antigens and immunotherapy: Expression of PRAME is associated with prognosis in soft tissue sarcoma. Cancers 2020, 12, 3612. [Google Scholar] [CrossRef]
- Al-Khadairi, G.; Decock, J. Cancer testis antigens and immunotherapy: Where do we stand in the targeting of PRAME? Cancers 2019, 11, 984. [Google Scholar] [CrossRef]
Histology | Cellularity | Nuclear Pleomorphism | Mitotic Activity | Necrosis |
---|---|---|---|---|
Nodular necrotizing | Low to moderate | Rare | Low | Central |
Conventional | Low to moderate | Rare | Low | Absent |
High-grade | High | Pronounced | High | Frequent |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nishio, J.; Nakayama, S.; Aoki, M. Recent Advances in the Diagnosis, Pathogenesis, and Management of Myxoinflammatory Fibroblastic Sarcoma. Int. J. Mol. Sci. 2024, 25, 1127. https://doi.org/10.3390/ijms25021127
Nishio J, Nakayama S, Aoki M. Recent Advances in the Diagnosis, Pathogenesis, and Management of Myxoinflammatory Fibroblastic Sarcoma. International Journal of Molecular Sciences. 2024; 25(2):1127. https://doi.org/10.3390/ijms25021127
Chicago/Turabian StyleNishio, Jun, Shizuhide Nakayama, and Mikiko Aoki. 2024. "Recent Advances in the Diagnosis, Pathogenesis, and Management of Myxoinflammatory Fibroblastic Sarcoma" International Journal of Molecular Sciences 25, no. 2: 1127. https://doi.org/10.3390/ijms25021127
APA StyleNishio, J., Nakayama, S., & Aoki, M. (2024). Recent Advances in the Diagnosis, Pathogenesis, and Management of Myxoinflammatory Fibroblastic Sarcoma. International Journal of Molecular Sciences, 25(2), 1127. https://doi.org/10.3390/ijms25021127