Potency Evaluations of Recombinant Botulinum Neurotoxin A1 Mutants Designed to Reduce Toxicity
Abstract
:1. Introduction
2. Results
2.1. Catalytically Inactive Mutated rBoNT/A1 Produced in C. botulinum Cleaves SNAP-25 and Causes In Vivo Toxicity at 280 ng
2.2. Mutations of K759 in the BoNT/A1 Translocations Domain Does Not Reduce Toxicity
2.3. Mutations of Key Amino Acids in the BoNT/A1 Ganglioside Binding Domain and SV2 Receptor Binding Domain Reduced Toxicity by ~25-Fold to ~90-Fold
2.4. Mutations Preventing Zinc Coordination in the BoNT/A1 Light Chain Reduced Toxin Potency ~12,500-Fold and Mutation of Key Residues in the Synaptic Cleft Reduced Potency ~2000-Fold
3. Discussion
4. Material and Methods
4.1. Biosafety, Biosecurity, and Ethics
4.2. Reagents
4.3. Bacterial Strains and Media
4.4. Botulinum Neurotoxins
4.5. Primary Rat Spinal Cord (RSC) Cells
4.6. Cell-Based BoNT Assay
4.7. Specific Toxin Activity Determination
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rossetto, O.; Pirazzini, M.; Montecucco, C. Botulinum neurotoxins: Genetic, structural and mechanistic insights. Nat. Rev. Microbiol. 2014, 12, 535–549. [Google Scholar] [CrossRef] [PubMed]
- Peck, M.W.; Smith, T.J.; Anniballi, F.; Austin, J.W.; Bano, L.; Bradshaw, M.; Cuervo, P.; Cheng, L.W.; Derman, Y.; Dorner, B.G.; et al. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins 2017, 9, 38. [Google Scholar] [CrossRef]
- Smith, T.J.; Schill, K.M.; Williamson, C.H.D. Navigating the Complexities Involving the Identification of Botulinum Neurotoxins (BoNTs) and the Taxonomy of BoNT-Producing Clostridia. Toxins 2023, 15, 545. [Google Scholar] [CrossRef] [PubMed]
- Montal, M. Botulinum neurotoxin: A marvel of protein design. Annu. Rev. Biochem. 2010, 79, 591–617. [Google Scholar] [CrossRef]
- Fischer, A.; Montal, M. Molecular dissection of botulinum neurotoxin reveals interdomain chaperone function. Toxicon 2013, 75, 101–107. [Google Scholar] [CrossRef] [PubMed]
- Pirazzini, M.; Rossetto, O.; Bolognese, P.; Shone, C.C.; Montecucco, C. Double anchorage to the membrane and intact inter-chain disulfide bond are required for the low pH induced entry of tetanus and botulinum neurotoxins into neurons. Cell. Microbiol. 2011, 13, 1731–1743. [Google Scholar] [CrossRef]
- Krieglstein, K.G.; DasGupta, B.R.; Henschen, A.H. Covalent structure of botulinum neurotoxin type A: Location of sulfhydryl groups, and disulfide bridges and identification of C-termini of light and heavy chains. J. Protein Chem. 1994, 13, 49–57. [Google Scholar] [CrossRef] [PubMed]
- DasGupta, B.R.; Sugiyama, H. A common subunit structure in Clostridium botulinum type A, B and E toxins. Biochem. Biophys. Res. Commun. 1972, 48, 108–112. [Google Scholar] [CrossRef]
- Schiavo, G.; Matteoli, M.; Montecucco, C. Neurotoxins affecting neuroexocytosis. Physiol. Rev. 2000, 80, 717–766. [Google Scholar] [CrossRef]
- Pantano, S.; Montecucco, C. The blockade of the neurotransmitter release apparatus by botulinum neurotoxins. Cell. Mol. Life Sci. 2014, 71, 793–811. [Google Scholar] [CrossRef]
- Joensuu, M.; Syed, P.; Saber, S.H.; Lanoue, V.; Wallis, T.P.; Rae, J.; Blum, A.; Gormal, R.S.; Small, C.; Sanders, S.; et al. Presynaptic targeting of botulinum neurotoxin type A requires a tripartite PSG-Syt1-SV2 plasma membrane nanocluster for synaptic vesicle entry. EMBO J. 2023, 42, e112095. [Google Scholar] [CrossRef] [PubMed]
- Rossetto, O.; Pirazzini, M.; Montecucco, C. Three players in the ‘toxic affair’ between botulinum neurotoxin type A and neurons. Trends Neurosci. 2023, 46, 695–697. [Google Scholar] [CrossRef] [PubMed]
- Schiavo, G.; Rossetto, O.; Catsicas, S.; Polverino de Laureto, P.; DasGupta, B.R.; Benfenati, F.; Montecucco, C. Identification of the nerve terminal targets of botulinum neurotoxin serotypes A, D, and E. J. Biol. Chem. 1993, 268, 23784–23787. [Google Scholar] [CrossRef]
- Schiavo, G.; Santucci, A.; Dasgupta, B.R.; Mehta, P.P.; Jontes, J.; Benfenati, F.; Wilson, M.C.; Montecucco, C. Botulinum neurotoxins serotypes A and E cleave SNAP-25 at distinct COOH-terminal peptide bonds. FEBS Lett. 1993, 335, 99–103. [Google Scholar] [CrossRef]
- Fischer, A.; Montal, M. Single molecule detection of intermediates during botulinum neurotoxin translocation across membranes. Proc. Natl. Acad. Sci. USA 2007, 104, 10447–10452. [Google Scholar] [CrossRef]
- Fischer, A.; Montal, M. Crucial Role of the Disulfide Bridge between Botulinum Neurotoxin Light and Heavy Chains in Protease Translocation across Membranes. J. Biol. Chem. 2007, 282, 29604–29611. [Google Scholar] [CrossRef]
- Johnson, E.A.; Montecucco, C. Chapter 11 Botulism. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2008; Volume 91, pp. 333–368. [Google Scholar]
- Rathjen, N.A.; Shahbodaghi, S.D. Bioterrorism. Am. Fam. Physician 2021, 104, 376–385. [Google Scholar]
- Federal Select Agent Program. Select Agents and Toxins Exclusions: Nontoxic HHS Toxins (Section 73.3 (d)(2)). Content Source: Division of Regulatory Science and Compliance. 2020. Available online: https://www.selectagents.gov/sat/exclusions/nontoxic.htm (accessed on 24 April 2024).
- Rawson, A.M.; Dempster, A.W.; Humphreys, C.M.; Minton, N.P. Pathogenicity and virulence of Clostridium botulinum. Virulence 2023, 14, 2205251. [Google Scholar] [CrossRef] [PubMed]
- Pellett, S.; Tepp, W.H.; Whitemarsh, R.C.; Bradshaw, M.; Johnson, E.A. In vivo onset and duration of action varies for botulinum neurotoxin A subtypes 1-5. Toxicon 2015, 107 Pt A, 37–42. [Google Scholar] [CrossRef]
- Rusnak, J.M.; Smith, L.A. Botulinum Neurotoxin Vaccines: Past history and recent developments. Hum. Vaccines 2009, 5, 794–805. [Google Scholar] [CrossRef]
- Smith, L.A. Botulism and vaccines for its prevention. Vaccine 2009, 27, D33–D39. [Google Scholar] [CrossRef]
- CDC. Notice of CDC’s discontinuation of investigational pentavalent (ABCDE) botulinum toxoid vaccine for workers at risk for occupational exposure to botulinum toxins. MMWR Morb. Mortal. Wkly. Rep. 2011, 60, 1454–1455. [Google Scholar]
- Gupta, S.; Pellett, S. Recent Developments in Vaccine Design: From Live Vaccines to Recombinant Toxin Vaccines. Toxins 2023, 15, 563. [Google Scholar] [CrossRef]
- Pellett, S.; Tepp, W.H.; Stanker, L.H.; Band, P.A.; Johnson, E.A.; Ichtchenko, K. Neuronal targeting, internalization, and biological activity of a recombinant atoxic derivative of botulinum neurotoxin A. Biochem. Biophys. Res. Commun. 2011, 405, 673–677. [Google Scholar] [CrossRef]
- Band, P.A.; Blais, S.; Neubert, T.A.; Cardozo, T.J.; Ichtchenko, K. Recombinant derivatives of botulinum neurotoxin A engineered for trafficking studies and neuronal delivery. Protein Expr. Purif. 2010, 71, 62–73. [Google Scholar] [CrossRef]
- Pier, C.L.; Tepp, W.H.; Bradshaw, M.; Johnson, E.A.; Barbieri, J.T.; Baldwin, M.R. Recombinant holotoxoid vaccine against botulism. Infect. Immun. 2008, 76, 437–442. [Google Scholar] [CrossRef]
- Webb, R.P.; Smith, T.J.; Wright, P.; Brown, J.; Smith, L.A. Production of catalytically inactive BoNT/A1 holoprotein and comparison with BoNT/A1 subunit vaccines against toxin subtypes A1, A2, and A3. Vaccine 2009, 27, 4490–4497. [Google Scholar] [CrossRef]
- Przedpelski, A.; Tepp, W.H.; Zuverink, M.; Johnson, E.A.; Pellet, S.; Barbieri, J.T. Enhancing toxin-based vaccines against botulism. Vaccine 2018, 36, 827–832. [Google Scholar] [CrossRef]
- Baldwin, M.R.; Tepp, W.H.; Przedpelski, A.; Pier, C.L.; Bradshaw, M.; Johnson, E.A.; Barbieri, J.T. Subunit vaccine against the seven serotypes of botulism. Infect. Immun. 2008, 76, 1314–1318. [Google Scholar] [CrossRef]
- Webb, R.P. Engineering of Botulinum Neurotoxins for Biomedical Applications. Toxins 2018, 10, 231. [Google Scholar] [CrossRef] [PubMed]
- Ravichandran, E.; Janardhanan, P.; Patel, K.; Riding, S.; Cai, S.; Singh, B.R. In Vivo Toxicity and Immunological Characterization of Detoxified Recombinant Botulinum Neurotoxin Type A. Pharm. Res. 2016, 33, 639–652. [Google Scholar] [CrossRef]
- Baskaran, P.; Lehmann, T.E.; Topchiy, E.; Thirunavukkarasu, N.; Cai, S.; Singh, B.R.; Deshpande, S.; Thyagarajan, B. Effects of enzymatically inactive recombinant botulinum neurotoxin type A at the mouse neuromuscular junctions. Toxicon Off. J. Int. Soc. Toxinol. 2013, 72, 71–80. [Google Scholar] [CrossRef]
- Singh, B.R.; Thirunavukkarasu, N.; Ghosal, K.; Ravichandran, E.; Kukreja, R.; Cai, S.; Zhang, P.; Ray, R.; Ray, P. Clostridial neurotoxins as a drug delivery vehicle targeting nervous system. Biochimie 2010, 92, 1252–1259. [Google Scholar] [CrossRef]
- Yang, W.; Lindo, P.; Riding, S.; Chang, T.-W.; Cai, S.; Van, T.; Kukreja, R.; Zhou, Y.; Patel, K.; Singh, B. Expression, purification and comparative characterisation of enzymatically deactivated recombinant botulinum neurotoxin type A. Botulinum J. 2008, 1, 219. [Google Scholar] [CrossRef]
- Vazquez-Cintron, E.; Tenezaca, L.; Angeles, C.; Syngkon, A.; Liublinska, V.; Ichtchenko, K.; Band, P. Pre-Clinical Study of a Novel Recombinant Botulinum Neurotoxin Derivative Engineered for Improved Safety. Sci. Rep. 2016, 6, 30429. [Google Scholar] [CrossRef]
- Rummel, A.; Mahrhold, S.; Bigalke, H.; Binz, T. The HCC-domain of botulinum neurotoxins A and B exhibits a singular ganglioside binding site displaying serotype specific carbohydrate interaction. Mol. Microbiol. 2004, 51, 631–643. [Google Scholar] [CrossRef]
- Przedpelski, A.; Tepp, W.H.; Kroken, A.R.; Fu, Z.; Kim, J.J.; Johnson, E.A.; Barbieri, J.T. Enhancing the protective immune response against botulism. Infect. Immun. 2013, 81, 2638–2644. [Google Scholar] [CrossRef]
- Chen, S.; Kim, J.-J.P.; Barbieri, J.T. Mechanism of Substrate Recognition by Botulinum Neurotoxin Serotype A. J. Biol. Chem. 2007, 282, 9621–9627. [Google Scholar] [CrossRef]
- The PyMOL Molecular Graphics System, Version 3.0. Schrödinger, LLC. Available online: https://pymol.org/ (accessed on 25 July 2024).
- Zuverink, M.; Bluma, M.; Barbieri, J.T. Tetanus Toxin cis-Loop Contributes to Light-Chain Translocation. mSphere 2020, 5, e00244-20. [Google Scholar] [CrossRef] [PubMed]
- Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 2015, 10, 845–858. [Google Scholar] [CrossRef]
- Bradshaw, M.; Tepp, W.H.; Whitemarsh, R.C.; Pellett, S.; Johnson, E.A. Holotoxin Activity of Botulinum Neurotoxin Subtype A4 Originating from a Nontoxigenic Clostridium botulinum Expression System. Appl. Environ. Microbiol. 2014, 80, 7415–7422. [Google Scholar] [CrossRef]
- Malizio, C.J.; Goodnough, M.C.; Johnson, E.A. Purification of Clostridium botulinum Type A Neurotoxin. In Bacterial Toxins: Methods and Protocols; Holst, O., Ed.; Humana Press: Totowa, NJ, USA, 2000; pp. 27–39. [Google Scholar]
- Strotmeier, J.; Mahrhold, S.; Krez, N.; Janzen, C.; Lou, J.; Marks, J.D.; Binz, T.; Rummel, A. Identification of the synaptic vesicle glycoprotein 2 receptor binding site in botulinum neurotoxin A. FEBS Lett. 2014, 588, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Simpson, L.L.; Coffield, J.A.; Bakry, N. Chelation of zinc antagonizes the neuromuscular blocking properties of the seven serotypes of botulinum neurotoxin as well as tetanus toxin. J. Pharmacol. Exp. Ther. 1993, 267, 720–727. [Google Scholar]
- Simpson, L.L.; Maksymowych, A.B.; Hao, S. The Role of Zinc Binding in the Biological Activity of Botulinum Toxin. J. Biol. Chem. 2001, 276, 27034–27041. [Google Scholar] [CrossRef]
- Dolly, J.O.; Wang, J.; Zurawski, T.H.; Meng, J. Novel therapeutics based on recombinant botulinum neurotoxins to normalize the release of transmitters and pain mediators. FEBS J. 2011, 278, 4454–4466. [Google Scholar] [CrossRef] [PubMed]
- Périer, C.; Martin, V.; Cornet, S.; Favre-Guilmard, C.; Rocher, M.N.; Bindler, J.; Wagner, S.; Andriambeloson, E.; Rudkin, B.; Marty, R.; et al. Recombinant botulinum neurotoxin serotype A1 in vivo characterization. Pharmacol. Res. Perspect. 2021, 9, e00857. [Google Scholar] [CrossRef] [PubMed]
- Bonventre, P.F.; Kempe, L.L. Toxicity enhancement of Clostridium botulinum type A and B culture filtrates by proteolytic enzymes. J. Bacteriol. 1959, 78, 892–893. [Google Scholar] [CrossRef]
- Duff, J.T.; Wright, G.G.; Yarinsky, A. Activation of Clostridium botulinum type E toxin by trypsin. J. Bacteriol. 1956, 72, 455–460. [Google Scholar] [CrossRef]
- Webb, R.; Wright, P.M.; Brown, J.L.; Skerry, J.C.; Guernieri, R.L.; Smith, T.J.; Stawicki, C.; Smith, L.A. Potency and stability of a trivalent, catalytically inactive vaccine against botulinum neurotoxin serotypes C, E and F (triCEF). Toxicon 2020, 176, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Webb, R.P.; Smith, T.J.; Smith, L.A.; Wright, P.M.; Guernieri, R.L.; Brown, J.L.; Skerry, J.C. Recombinant Botulinum Neurotoxin Hc Subunit (BoNT Hc) and Catalytically Inactive Clostridium botulinum Holoproteins (ciBoNT HPs) as Vaccine Candidates for the Prevention of Botulism. Toxins 2017, 9, 269. [Google Scholar] [CrossRef] [PubMed]
- McNutt, P.M.; Vazquez-Cintron, E.J.; Tenezaca, L.; Ondeck, C.A.; Kelly, K.E.; Mangkhalakhili, M.; Machamer, J.B.; Angeles, C.A.; Glotfelty, E.J.; Cika, J.; et al. Neuronal delivery of antibodies has therapeutic effects in animal models of botulism. Sci. Transl. Med. 2021, 13, eabd7789. [Google Scholar] [CrossRef] [PubMed]
- Vazquez-Cintron, E.J.; Beske, P.H.; Tenezaca, L.; Tran, B.Q.; Oyler, J.M.; Glotfelty, E.J.; Angeles, C.A.; Syngkon, A.; Mukherjee, J.; Kalb, S.R.; et al. Engineering Botulinum Neurotoxin C1 as a Molecular Vehicle for Intra-Neuronal Drug Delivery. Sci. Rep. 2017, 7, 42923. [Google Scholar] [CrossRef] [PubMed]
- Miyashita, S.I.; Zhang, J.; Zhang, S.; Shoemaker, C.B.; Dong, M. Delivery of single-domain antibodies into neurons using a chimeric toxin-based platform is therapeutic in mouse models of botulism. Sci. Transl. Med. 2021, 13, eaaz4197. [Google Scholar] [CrossRef]
- Okonechnikov, K.; Golosova, O.; Fursov, M.; the UGENE team. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef] [PubMed]
- DasGupta, B.R.; Sathyamoorthy, V. Purification and amino acid composition of type A botulinum neurotoxin. Toxicon 1984, 22, 415–424. [Google Scholar] [CrossRef]
- Pellett, S.; Tepp, W.H.; Clancy, C.M.; Borodic, G.E.; Johnson, E.A. A neuronal cell-based botulinum neurotoxin assay for highly sensitive and specific detection of neutralizing serum antibodies. FEBS Lett. 2007, 581, 4803–4808. [Google Scholar] [CrossRef] [PubMed]
- Pellett, S.; Tepp, W.H.; Toth, S.I.; Johnson, E.A. Comparison of the primary rat spinal cord cell (RSC) assay and the mouse bioassay for botulinum neurotoxin type A potency determination. J. Pharmacol. Toxicol. Methods 2010, 61, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Whitemarsh, R.C.; Tepp, W.H.; Johnson, E.A.; Pellett, S. Persistence of botulinum neurotoxin a subtypes 1–5 in primary rat spinal cord cells. PLoS ONE 2014, 9, e90252. [Google Scholar] [CrossRef]
- Schantz, E.J.; Kautter, D.A. Standardized Assay for Clostridium botulinum Toxins. J. Assoc. Off. Anal. Chem. 1978, 61, 96–99. [Google Scholar] [CrossRef]
- Solomon, H.M.; Lilly, T., Jr. Clostridium botulinum. In Bacteriological Analytical Manual (BAM), 8th ed.; U.S. Food and Drug Administration: White Oak, MD, USA, 2001; Volume 17. [Google Scholar]
- Reed, L.J.; Muench, H. A Simple Method of Estimating Fifty per Cent Endpoints. Am. J. Epidemiol. 1938, 27, 493–497. [Google Scholar] [CrossRef]
Mouse LD50 [pg/mouse] | ||
---|---|---|
BoNT/A1 Genotype | Produced in C. botulinum | Produced in Heterologous Host/Previously Reported Data |
Wild type | 4 | ~4 [49,50] |
K759A | 6 | n/a |
W1266A | 350 | 800 * [38,39] |
L175A, D370A | 7000 | n/a |
E224Q, R363A, Y366F | 50,000 | >10,000,000 [30] |
E224Q, R363A, Y366F, L175A, D370A, K759A, W1266A, (7M) | 280,000 | n/a |
H233A, E224A, H227A (Ci) | 50,000 | >50,000,000 [29] |
G1292R | 100 | 1200 * [46] |
Oligonucleotide Name | Sequence (5′-3′) | Utility |
---|---|---|
A1LC-F(Nde) | GCCATATGCCATTTGTTAATAAACAATTTAATTATAAAGATCC | Amplification of the entire BoNT/A1 gene from genomic DNA isolated from C. botulinum strain Hall A-hyper |
A1HC-R(Nhe) | GCGCTAGCTTACAGTGGCCTTTCTCCCCATCCATCATCTAC | |
A1M_505-542 | GGACATGAAGTTTTGAATGCTACGCGAAATGGTTATGG | Mutagenesis primer for substitution of L175A |
A1M_652-686 | GCAGTAACATTAGCACATCAACTTATACATGCTGG | Mutagenesis primer for substitution of E224Q |
A1M_1063-1125 | GTTAAGTTTTTTAAAGTACTTAACGCAAAAACATTTTTGAATTTTGCTAAAGCCGTATTTAAG | Mutagenesis primer for substitutions of R363A; Y366F; D370A |
A1M_2257-2302 | CAA TAT ACT GAG GAA GAG GCA AAT AAT ATT AAT TTT AAT ATTGATG | Mutagenesis primer for substitution of K759A |
A1M_3781-3821 | CTA GTA GCA AGT AAT GCT TAT AAT AGA CAA ATA GAA AGA TC | Mutagenesis primer for substitution of W1266A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Viravathana, P.; Tepp, W.H.; Bradshaw, M.; Przedpelski, A.; Barbieri, J.T.; Pellett, S. Potency Evaluations of Recombinant Botulinum Neurotoxin A1 Mutants Designed to Reduce Toxicity. Int. J. Mol. Sci. 2024, 25, 8955. https://doi.org/10.3390/ijms25168955
Viravathana P, Tepp WH, Bradshaw M, Przedpelski A, Barbieri JT, Pellett S. Potency Evaluations of Recombinant Botulinum Neurotoxin A1 Mutants Designed to Reduce Toxicity. International Journal of Molecular Sciences. 2024; 25(16):8955. https://doi.org/10.3390/ijms25168955
Chicago/Turabian StyleViravathana, Polrit, William H. Tepp, Marite Bradshaw, Amanda Przedpelski, Joseph T. Barbieri, and Sabine Pellett. 2024. "Potency Evaluations of Recombinant Botulinum Neurotoxin A1 Mutants Designed to Reduce Toxicity" International Journal of Molecular Sciences 25, no. 16: 8955. https://doi.org/10.3390/ijms25168955