Cold Acclimation and Deacclimation of Winter Oilseed Rape, with Special Attention Being Paid to the Role of Brassinosteroids
Abstract
:1. Introduction
- To examine a few brassinosteroids (24-epibrassinolide (EBR) and 28-homocastasterone (HCS)) and brassinosteroid analogues (triolon (TR) and MK-266 (MK)) as potential agents that exhibit a protective activity against frost in NA plants (EBR), CA plants (EBR), and DA plants (EBR, HCS, MK, TR).
- To describe the impact of steroids on the physicochemical properties of membranes, including describing the interaction of two BR analogues with the defined model lipid monolayers (mimicking cell membranes) in order to assess their influence on the fluidity of the lipid monolayers, which are important from the point of view of frost tolerance.
- To describe the activity of the abovementioned steroids in regulating photosynthesis and the leaf spectral properties during the cold acclimation and deacclimation of oilseed rape.
- To characterise any cold-acclimation-induced and deacclimation-induced changes in (a) the accumulation of the protein BRI1 (brassinosteroid membrane receptor), (b) the expression of the genes encoding the proteins that participate in BR signalling (SERK1 and SERK2), and (c) the expression of the BR-dependent genes (COR).
- To verify the possibility of using non-invasive measurement techniques (i.e., leaf reflectance) for the detection of deacclimation in plants.
2. Results
2.1. The Influence of BR and BR Analogues on Frost Tolerance
2.2. The Effects of BRs and BR Analogues on Membrane Permeability
2.3. Interaction of BR Analogues (MK, TR) with the Model Membranes
2.4. Accumulation of the Brassinosteroid Receptor Protein (BRI1)
2.5. Expression of the Genes Encoding the Proteins That Participate in BR Signalling (SERK1 and SERK2) and the BR-Dependent Gene (COR14)
2.6. The Effects of BRs and BR Analogues on PSII Efficiency
2.7. The Effects of BRs and BR Analogues on Leaf Gas Exchange
2.8. The Effects of BRs and BR Analogues on the Leaf Spectral Properties
3. Discussion
3.1. The Frost Tolerance of Plants and the Modulation of the Properties of Their Membranes by BRs and BR Analogues
3.2. Model of the Changes in the Accumulation of the Putative Brassinosteroid Receptor (BRI1) and the Accumulation of the Transcripts of the COR and SERK Genes
3.3. The Effects of BRs and BR Analogues on Photosynthesis
3.4. Leaf Spectral Properties and Their Usefulness for Detecting Deacclimation
4. Materials and Methods
4.1. Plant Material
4.2. Experimental Design
4.2.1. Experiment 1
4.2.2. Experiment 2
4.2.3. Experiment 3
4.3. Measurements
4.3.1. Estimation of the Freezing Tolerance of Whole Plants in Pods
4.3.2. Measurements of Conductivity (Electrolyte Leakage) of the Detached Leaves
4.3.3. Langmuir trough Studies
4.3.4. Analysis of the BRI1 Protein Accumulation
Measurements of the Protein Concentration in the Leaf Extracts
Analysis of the Accumulation of the BRI1 Protein in the Leaf Samples Using Immunoblotting
4.3.5. Analysis of SERK1, SERK2, and COR14 Gene Expression
4.3.6. Chlorophyll A Fluorescence Measurements
4.3.7. Leaf Gas Exchange Measurements
4.3.8. Leaf Spectral Properties (Leaf Reflectance Measurements)
4.4. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thomashow, M.F. Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Annu. Rev. Plant Biol. 1999, 50, 571–599. [Google Scholar] [CrossRef] [PubMed]
- Fürtauer, L.; Weiszmann, J.; Weckwerth, W.; Nägele, T. Dynamics of plant metabolism during cold acclimation. Int. J. Mol. Sci. 2019, 20, 5411. [Google Scholar] [CrossRef] [PubMed]
- Uemura, M.; Joseph, R.A.; Steponkus, P.L. Cold acclimation of Arabidopsis thaliana: Effect on plasma membrane lipid composition and freeze-induced lesions. Plant Physiol. 1995, 109, 15–30. [Google Scholar] [CrossRef] [PubMed]
- Filek, M.; Rudolphi-Skórska, E.; Sieprawska, A.; Kvasnica, M.; Janeczko, A. Regulation of the membrane structure by brassinosteroids and progesterone in winter wheat seedlings exposed to low temperature. Steroids 2017, 128, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, H.; Ichimura, K.; Oda, M. Changes in sugar content during cold acclimation and deacclimation of cabbage seedlings. Ann. Bot. 1996, 78, 365–369. [Google Scholar] [CrossRef]
- Kosová, K.; Prášil, I.T.; Vítámvás, P.; Dobrev, P.; Motyka, V.; Floková, K.; Novák, O.; Turečková, V.; Rolčik, J.; Pešek, B.; et al. Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J. Plant Physiol. 2012, 169, 567–576. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.H.; Wang, L.J.; Pan, Q.H.; Wang, Y.Z.; Zhan, J.C.; Huang, W.D. Accumulation and subcellular localization of heat shock proteins in young grape leaves during cross-adaptation to temperature stresses. Sci. Hortic. 2008, 117, 231–240. [Google Scholar] [CrossRef]
- Neilson, K.A.; Mariani, M.; Haynes, P.A. Quantitative proteomic analysis of cold-responsive proteins in rice. Proteomics 2011, 11, 1696–1706. [Google Scholar] [CrossRef]
- Fan, X.; Miao, C.; Duan, Q.; Shen, C.; Wu, Y. Future Climate Change Hotspots Under Different 21st Century Warming Scenarios. Earth’s Future 2021, 9, e2021EF002027. [Google Scholar] [CrossRef]
- Nauka o Klimacie. Available online: https://naukaoklimacie.pl/aktualnosci/zmiana-klimatu-w-polsce-na-mapkach-468 (accessed on 1 February 2024).
- Stachurska, J.; Rys, M.; Pociecha, E.; Kalaji, H.M.; Dąbrowski, P.; Oklestkova, J.; Jurczyk, B.; Janeczko, A. Deacclimation-Induced Changes of Photosynthetic Efficiency, Brassinosteroid Homeostasis and BRI1 Expression in Winter Oilseed Rape (Brassica napus L.)—Relation to Frost Tolerance. Int. J. Mol. Sci. 2022, 23, 5224. [Google Scholar] [CrossRef]
- Rapacz, M. Cold-deacclimation of oilseed rape (Brassica napus var. oleifera) in response to fluctuating temperatures and photoperiod. Ann. Bot. 2002, 89, 543–549. [Google Scholar] [CrossRef]
- Byun, Y.J.; Koo, M.Y.; Joo, H.J.; Ha-Lee, Y.M.; Lee, D.H. Comparative analysis of gene expression under cold acclimation, deacclimation and reacclimation in Arabidopsis. Physiol. Plant. 2014, 152, 256–274. [Google Scholar] [CrossRef]
- Pagter, M.; Alpers, J.; Erban, A.; Kopka, J.; Zuther, E.; Hincha, D.K. Rapid transcriptional and metabolic regulation of the deacclimation process in cold acclimated Arabidopsis thaliana. BMC Genom. 2017, 18, 731. [Google Scholar] [CrossRef]
- Rys, M.; Pociecha, E.; Oliwa, J.; Ostrowska, A.; Jurczyk, B.; Saja, D.; Janeczko, A. Deacclimation of winter oilseed rape-insight into physiological changes. Agronomy 2020, 10, 1565. [Google Scholar] [CrossRef]
- Pociecha, E.; Janeczko, A.; Dziurka, M.; Gruszka, D. Disturbances in the Biosynthesis or Signalling of Brassinosteroids That Are Caused by Mutations in the HvDWARF, HvCPD and HvBRI1 Genes Increase the Tolerance of Barley to the Deacclimation Process. J. Plant Growth Regul. 2020, 39, 1625–1637. [Google Scholar] [CrossRef]
- Vaitkevičiūtė, G.; Aleliūnas, A.; Gibon, Y.; Armonienė, R. The effect of cold acclimation, deacclimation and reacclimation on metabolite profiles and freezing tolerance in winter wheat. Front. Plant Sci. 2022, 13, 959118. [Google Scholar] [CrossRef]
- Stachurska, J.; Sadura, I.; Rys, M.; Dziurka, M.; Janeczko, A. Insight into Hormonal Homeostasis and the Accumulation of Selected Heat Shock Proteins in Cold Acclimated and Deacclimated Winter Oilseed Rape. Agriculture 2023, 13, 641. [Google Scholar] [CrossRef]
- Grove, M.D.; Spencer, G.F.; Rohwedder, W.K.; Mandava, N.; Worley, J.F.; Warthen, J.D.; Steffens, G.L.; Flippen-Anderson, J.L.; Cook, J.C. Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 1979, 281, 216–217. [Google Scholar] [CrossRef]
- Sadura, I.; Janeczko, A. Brassinosteroids and the Tolerance of Cereals to Low and High Temperature Stress: Photosynthesis and the Physicochemical Properties of Cell Membranes. Int. J. Mol. Sci. 2022, 23, 342. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, D.; Sun, X.; Ding, T.; Lei, B.; Zhang, C. Structure-activity relationship of brassinosteroids and their agricultural practical usages. Steroids 2017, 124, 1–17. [Google Scholar] [CrossRef]
- Diachkov, M.V.; Ferrer, K.; Oklestkova, J.; Rarova, L.; Bazgier, V.; Kvasnica, M. Synthesis and biological activity of brassinosteroid analogues with a nitrogen-containing side chain. Int. J. Mol. Sci. 2021, 22, 155. [Google Scholar] [CrossRef]
- Kagale, S.; Divi, U.K.; Krochko, J.E.; Keller, W.A.; Krishna, P. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta 2007, 225, 353–364. [Google Scholar] [CrossRef]
- Özdemir, F.; Bor, M.; Demiral, T.; Türkan, I. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul. 2004, 42, 203–211. [Google Scholar] [CrossRef]
- Janeczko, A.; Koscielniak, J.; Pilipowicz, M.; Szarek-Lukaszewska, G.; Skoczowski, A. Protection of winter rape photosystem 2 by 24-epibrassinolide under cadmium stress. Photosynthetica 2005, 43, 293–298. [Google Scholar] [CrossRef]
- Rajewska, I.; Talarek, M.; Bajguz, A. Brassinosteroids and Response of Plants to Heavy Metals Action. Front. Plant Sci. 2016, 7, 629. [Google Scholar] [CrossRef]
- Janeczko, A.; Gullner, G.; Skoczowski, A.; Dubert, F.; Barna, B. Effects of brassinosteroid infiltration prior to cold treatment on ion leakage and pigment contents in rape leaves. Biol. Plant. 2007, 51, 355–358. [Google Scholar] [CrossRef]
- Janeczko, A.; Pociecha, E.; Dziurka, M.; Jurczyk, B.; Libik-Konieczny, M.; Oklestkova, J.; Novák, O.; Pilarska, M.; Filek, M.; Rudolphi-Skórska, E.; et al. Changes in content of steroid regulators during cold hardening of winter wheat—Steroid physiological/biochemical activity and impact on frost tolerance. Plant Physiol. Biochem. 2019, 139, 215–228. [Google Scholar] [CrossRef]
- Pociecha, E.; Dziurka, M.; Oklestkova, J.; Janeczko, A. Brassinosteroids increase winter survival of winter rye (Secale cereale L.) by affecting photosynthetic capacity and carbohydrate metabolism during the cold acclimation process. Plant Growth Regul. 2016, 80, 127–135. [Google Scholar] [CrossRef]
- Eremina, M.; Unterholzner, S.J.; Rathnayake, A.I.; Castellanos, M.; Khan, M.; Kugler, K.G.; May, S.T.; Mayer, K.F.X.; Rozhon, W.; Poppenberger, B. Brassinosteroids participate in the control of basal and acquired freezing tolerance of plants. Proc. Natl. Acad. Sci. USA 2016, 113, E5982–E5991. [Google Scholar] [CrossRef]
- Strasser, R.J.; Tsimilli-Michael, M.; Srivastava, A. Analysis of the Chlorophyll a Fluorescence Transient. In Chlorophyll a Fluorescence; Papageorgiou, G.C., Govindjee, Eds.; Advances in Photosynthesis and Respiration; Springer: Dordrecht, The Netherlands, 2004; Volume 19, pp. 321–362. [Google Scholar] [CrossRef]
- Pociecha, E.; Dziurka, M.; Waligórski, P.; Krępski, T.; Janeczko, A. 24-Epibrassinolide Pre-Treatment Modifies Cold-Induced Photosynthetic Acclimation Mechanisms and Phytohormone Response of Perennial Ryegrass in Cultivar-Dependent Manner. J. Plant Growth Regul. 2017, 36, 618–628. [Google Scholar] [CrossRef]
- Janeczko, A.; Swaczynová, J. Endogenous brassinosteroids in wheat treated with 24-epibrassinolide. Biol. Plant. 2010, 54, 477–482. [Google Scholar] [CrossRef]
- Janeczko, A. The significance of ethanol as a hormone solvent in experiments on the physiological activity of brassinosteroids. In Brassinosteroids: A Class of Plant Hormone; Hayat, S., Ahmad, A., Eds.; Springer: Dordrecht, The Netherlands, 2011; pp. 361–374. [Google Scholar]
- Kutsuno, T.; Chowhan, S.; Kotake, T.; Takahashi, D. Temporal cell wall changes during cold acclimation and deacclimation and their potential involvement in freezing tolerance and growth. Physiol. Plant. 2023, 175, e13837. [Google Scholar] [CrossRef]
- Falcone, D.L.; Ogas, J.P.; Somerville, C.R. Regulation of membrane fatty acid composition by temperature in mutants of Arabidopsis with alterations in membrane lipid composition. BMC Plant Biol. 2004, 4, 17. [Google Scholar] [CrossRef]
- Narayanan, S.; Tamura, P.J.; Roth, M.R.; Prasad, P.V.V.; Welti, R. Wheat leaf lipids during heat stress: I. High day and night temperatures result in major lipid alterations. Plant Cell Environ. 2016, 39, 787–803. [Google Scholar] [CrossRef]
- Pearcy, R.W. Effect of Growth Temperature on the Fatty Acid Composition of the Leaf Lipids in Atriplex lentiformis (Torr.) Wats. Plant Physiol. 1978, 61, 484–486. [Google Scholar] [CrossRef]
- Skoczowski, A.; Filek, M. Changes in fatty acids composition of subcellular fractions from hypocotyls of winter rape growing at 2 °C or 20 °C. Plant Sci. 1994, 98, 127–133. [Google Scholar] [CrossRef]
- Iba, K. Acclimative response to temperature stress in higher plants: Approaches of gene engineering for temperature tolerance. Annu. Rev. Plant Biol. 2002, 53, 225–245. [Google Scholar] [CrossRef]
- Harwood, J. Strategies for coping with low environmental temperatures. Trends Biochem. Sci. 1991, 14, 126–127. [Google Scholar] [CrossRef]
- Rudolphi-Szydło, E.; Dyba, B.; Janeczko, A.; Latowski, D.; Sadura, I.; Filek, M. Brassinosteroid-lipid membrane interaction under low and high temperature stress in model systems. BMC Plant Biol. 2022, 22, 246. [Google Scholar] [CrossRef]
- Dufourc, E.J. Sterols and membrane dynamics. J. Chem. Biol. 2008, 1, 63–77. [Google Scholar] [CrossRef]
- Rudolphi-Szydło, E.; Sadura, I.; Filek, M.; Gruszka, D.; Janeczko, A. The Impact of Mutations in the HvCPD and HvBRI1 Genes on the Physicochemical Properties of the Membranes from Barley Acclimated to Low/High Temperatures. Cells 2020, 9, 1125. [Google Scholar] [CrossRef]
- Nagao, M.; Arakawa, K.; Takezawa, D.; Fujikawa, S. Long- and short-term freezing induce different types of injury in Arabidopsis thaliana leaf cells. Planta 2008, 227, 477–489. [Google Scholar] [CrossRef]
- Miki, Y.; Takahashi, D.; Kawamura, Y.; Uemura, M. Temporal proteomics of Arabidopsis plasma membrane during cold- and de-acclimation. J. Proteom. 2019, 197, 71–81. [Google Scholar] [CrossRef]
- Xia, X.J.; Zhou, Y.H.; Shi, K.; Zhou, J.; Foyer, C.H.; Yu, J.Q. Interplay between reactive oxygen species and hormones in the control of plant development and stress tolerance. J. Exp. Bot. 2015, 66, 2839–2856. [Google Scholar] [CrossRef]
- Li, Y.; Liu, C.; Guo, G.; He, T.; Chen, Z.; Gao, R.; Xu, H.; Faheem, M.; Lu, R.; Huang, J. Expression analysis of three SERK-like genes in barley under abiotic and biotic stresses. J. Plant Interact. 2017, 12, 279–285. [Google Scholar] [CrossRef]
- Ma, J.; He, Y.; Hu, Z.; Xu, W.; Xia, J.; Guo, C.; Lin, S.; Cao, L.; Chen, C.; Wu, C.; et al. Characterization and expression analysis of AcSERK2, a somatic embryogenesis and stress resistance related gene in pineapple. Gene 2012, 500, 115–123. [Google Scholar] [CrossRef]
- Zhou, R.; Wang, Y.; Zhang, X.; Jia, F.; Liu, Y. Cloning and expression analysis of SERK1 gene in Diospyros lotus. Open Life Sci. 2022, 17, 1296–1308. [Google Scholar] [CrossRef]
- Karlova, R.; Boeren, S.; Russinova, E.; Aker, J.; Vervoort, J.; de Vries, S. The Arabidopsis Somatic Embryogenesis Receptor-like Kinase1 Protein Complex Includes Brassinosteroid-Insensitive1. Plant Cell 2006, 18, 626–638. [Google Scholar] [CrossRef]
- Sadura, I.; Pociecha, E.; Dziurka, M.; Oklestkova, J.; Novak, O.; Gruszka, D.; Janeczko, A. Mutations in the HvDWARF, HvCPD and HvBRI1 Genes-Involved in Brassinosteroid Biosynthesis/Signalling: Altered Photosynthetic Efficiency, Hormonal Homeostasis and Tolerance to High/Low Temperatures in Barley. J. Plant Growth Regul. 2019, 38, 1062–1081. [Google Scholar] [CrossRef]
- Rizza, F.; Pagani, D.; Stanca, A.M.; Cattivelli, L. Use of chlorophyll fluorescence to evaluate the cold acclimation and freezing tolerance of winter and spring oats. Plant Breed. 2001, 120, 389–396. [Google Scholar] [CrossRef]
- Singh, I.; Kumar, U.; Singh, S.K.; Gupta, C.; Singh, M.; Kushwaha, S.R. Physiological and biochemical effect of 24-epibrassinoslide on cold tolerance in maize seedlings. Physiol. Mol. Biol. Plants 2012, 18, 229–236. [Google Scholar] [CrossRef]
- Rapacz, M.; Hura, K. The pattern of changes in photosynthetic apparatus in response to cold acclimation and de-acclimation in two contrasting cultivars of oilseed rape. Photosynthetica 2002, 40, 63–69. [Google Scholar] [CrossRef]
- Hatfield, J.L.; Dold, C. Water-use efficiency: Advances and challenges in a changing climate. Front. Plant Sci. 2019, 10, 103. [Google Scholar] [CrossRef]
- Carter, G.A. Responses of Leaf Spectral Reflectance to Plant Stress. Am. J. Bot. 1993, 80, 239–243. [Google Scholar] [CrossRef]
- The Importance of the Red-Edge in Agriculture Satellite Imagery. Available online: https://agrio.app/Red-Edge-reflectance-monitoring-for-early-plant-stress-detection/ (accessed on 4 April 2024).
- Peñuelas, J.; Piñol, J.; Ogaya, R.; Filella, I. International Journal of Remote Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). Int. J. Remote 1997, 18, 2869–2875. [Google Scholar] [CrossRef]
- Penuelas, J.; Baret, F.; Filella, I. Semi-emphirical indices to assess carotenoids/chlorophyll a ratio from leaf spectral reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Kureel, N.; Sarup, J.; Matin, S.; Goswami, S.; Kureel, K. Modelling vegetation health and stress using hypersepctral remote sensing data. Model. Earth Syst. Environ. 2022, 8, 733–748. [Google Scholar] [CrossRef]
- Gitelson, A.; Merzlyak, M.N. Quantitative estimation of chlorophyll-a using reflectance spectra: Experiments with autumn chestnut and maple leaves. J. Photochem. Photobiol. B Biol. 1994, 22, 247–252. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; De Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Merzlyak, M.N.; Chivkunova, O.B. Optical Properties and Nondestructive Estimation of Anthocyanin Content in Plant Leaves. Photochem. Photobiol. 2001, 74, 38. [Google Scholar] [CrossRef]
- Schulz, E.; Tohge, T.; Zuther, E.; Fernie, A.R.; Hincha, D.K. Natural variation in flavonol and anthocyanin metabolism during cold acclimation in Arabidopsis thaliana accessions. Plant Cell Environ. 2015, 38, 1658–1672. [Google Scholar] [CrossRef] [PubMed]
- Ubi, B.E.; Honda, C.; Bessho, H.; Kondo, S.; Wada, M.; Kobayashi, S.; Moriguchi, T. Expression analysis of anthocyanin biosynthetic genes in apple skin: Effect of UV-B and temperature. Plant Sci. 2006, 170, 571–578. [Google Scholar] [CrossRef]
- Castro, S.; Sanchez-Azofeifa, A. Testing of automated photochemical reflectance index sensors as proxy measurements of light use efficiency in an aspen forest. Sensors 2018, 18, 3302. [Google Scholar] [CrossRef] [PubMed]
- Lednev, V.N.; Grishin, M.Y.; Sdvizhenskii, P.A.; Kurbanov, R.K.; Litvinov, M.A.; Gudkov, S.V.; Pershin, S.M. Fluorescence Mapping of Agricultural Fields Utilizing Drone-Based LIDAR. Photonics 2022, 9, 963. [Google Scholar] [CrossRef]
- Barna, B.; Ádám, A.L.; Király, Z. Juvenility and resistance of a superoxide tolerant plant to diseases and other stresses. Naturwissenschaften 1993, 80, 420–422. [Google Scholar] [CrossRef]
- Laemmli, U. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Jurczyk, B.; Pociecha, E.; Janowiak, F.; Dziurka, M.; Kościk, I.; Rapacz, M. Changes in ethylene, ABA and sugars regulate freezing tolerance under low-temperature waterlogging in Lolium perenne. Int. J. Mol. Sci. 2021, 22, 6700. [Google Scholar] [CrossRef] [PubMed]
- Broge, N.H.; Leblanc, E. Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Peñuelas, J.; Gamon, J.A.; Fredeen, A.L.; Merino, J.; Field, C.B. Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens. Environ. 1994, 48, 135–146. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Zur, Y.; Chivkunova, O.B.; Merzlyak, M.N. Assessing Carotenoid Content in Plant Leaves with Reflectance Spectroscopy. Photochem. Photobiol. 2002, 75, 272. [Google Scholar] [CrossRef]
- Kvasnica, M.; Oklestkova, J.; Bazgier, V.; Rárová, L.; Korinkova, P.; Mikulík, J.; Budesinsky, M.; Béres, T.; Berka, K.; Lu, Q.; et al. Design, synthesis and biological activities of new brassinosteroid analogues with a phenyl group in the side chain. Org. Biomol. Chem. 2016, 14, 8691–8701. [Google Scholar] [CrossRef] [PubMed]
- Kohout, L.; Velgová, H.; Strnad, M.; Kamínek, M. Brassinosteroids with androstane and pregnane skeleton. Collect. Czechoslov. Chem. Commun. 1987, 52, 476–486. [Google Scholar] [CrossRef]
Cultivar | Treatment | NA Plants; Frost: −3 °C | CA Plants; Frost: −13 °C | DA Plants; Frost: −6 °C | DA Plants; Frost: −9 °C | DA Plants; Frost: −12 °C |
---|---|---|---|---|---|---|
Pantheon | Control abs | 6.86 ± 0.53 a | 3.75 ± 0.62 a | 3.14 ± 0.66 d | 2.20 ± 0.42 c | 2.00 ± 0.00 ab |
Control | 5.93 ± 1.10 b | 3.00 ± 0.00 b | 2.20 ± 0.42 e | 2.40 ± 0.55 c | 2.20 ± 0.42 ab | |
EBR | 5.80 ± 1.08 b | 3.91 ± 0.94 a | 5.13 ± 0.83 a | 2.29 ± 0.73 c | 2.22 ± 0.44 a | |
HCS | NT | NT | 3.53 ± 0.83 cd | 3.17 ± 0.58 b | 1.33 ± 0.78 cd | |
MK | NT | NT | 4.21 ± 1.37 bc | 3.92 ± 0.67 a | 0.90 ± 0.57 d | |
TR | NT | NT | 5.07 ± 1.27 a | 2.29 ± 0.91 c | 1.90 ± 0.32 ab | |
AS | NT | NT | 4.54 ± 1.05 ab | 3.14 ± 0.53 b | 1.75 ± 0.62 bc | |
President | Control abs | 6.53 ± 0.64 a | 3.92 ± 0.90 b | 3.81 ± 0.98 c | 2.82 ± 0.40 b | 2.20 ± 0.42 a |
Control | 4.87 ± 1.96 b | 3.21 ± 0.43 c | 4.53 ± 1.06 bc | 3.73 ± 0.80 a | 2.00 ± 0.71 ab | |
EBR | 7.00 ± 0.00 a | 4.69 ± 0.63 a | 5.60 ± 0.99 a | 3.91 ± 0.83 a | 2.00 ± 0.77 ab | |
HCS | NT | NT | 5.47 ± 1.36 a | 3.50 ± 1.02 a | 1.92 ± 0.28 ab | |
MK | NT | NT | 3.86 ± 0.95 c | 3.50 ± 0.52 a | 1.44 ± 0.73 b | |
TR | NT | NT | 5.33 ± 1.18 ab | 3.83 ± 0.72 a | 1.92 ± 0.29 ab | |
AS | NT | NT | 4.87 ± 1.06 ab | 3.33 ± 0.78 ab | 1.64 ± 0.67 b |
Growth Conditions and Freezing Time | Electrolyte Leakage after 3 h (µS) | Electrolyte Leakage after 24 h (µS) | |
---|---|---|---|
NA 1 min 50 s | H2O NFL Control abs Control EBR HCS MK TR | 1.4 ± 0.2 c 1.7 ± 0.3 c 53.8 ± 27.5 b 57.8 ± 35.7 b 49.9 ± 17.3 b 58.9 ± 24.9 b 108.4 ± 70.1 a 86.4 ± 28.8 ab | 1.5 ± 0.2 d 2.5 ± 0.7 d 128.2 ± 51.7 c 149.8 ± 77.8 bc 152.3 ± 33.8 bc 174.1 ± 61.1 abc 223.7 ± 96.3 a 210.7 ± 36.5 ab |
CA 4 min 30 s | H2O NFL Control abs Control EBR HCS MK TR | 1.3 ± 0.1 d 2.5 ± 1.2 d 2.8 ± 1.2 d 17.1 ± 15.8 d 230.6 ± 44.5 a 163.5 ± 39.4 b 77.6 ± 64.2 c 40.6 ± 35.6 cd | 1.5 ± 0.1 d 3.6 ± 2.5 d 5.5 ± 5.2 d 47.3 ± 48.2 cd 459.9 ± 56.0 a 417.5 ± 119.0 a 252.1 ± 155.0 b 136.6 ± 109.6 c |
DA 2 min 30 s | H2O NFL Control abs Control EBR HCS MK TR | 1.6 ± 0.2 c 2.3 ± 0.2 c 2.3 ± 1.0 c 1.8 ± 0.5 c 2.2 ± 0.5 c 1.9 ± 0.5 c 16.6 ± 10.2 b 59.8 ± 30.4 a | 1.8 ± 0.2 c 3.0 ± 0.2 c 4.1 ± 3.9 c 2.4 ± 0.6 c 2.7 ± 0.7 c 2.4 ± 0.7 c 80.5 ± 46.7 b 202.5 ± 93.6 a |
Gene Name | GenBank ID | Forward Primer | Reverse Primer |
---|---|---|---|
COR14 | AY456378.1 | GTCAGATTTGGCCGGAAAAC | CTCGGCGTAGATCAACGACTT |
SERK1 | KT281978.1 | CGACCACTGCGACCCTAAGAT | CCCTTTCACCCAGTCAAGCA |
SERK2 | KR869962.1 | GAGCCTCATCAGCTTGGATCT | GAAGTGTTCTTACAAGGTCACCCC |
actin | AF111812.1 | TCAGTGGTGGTTCGACCATGT | CCGTGATCTCTTTGCTCATACG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stachurska, J.; Sadura, I.; Jurczyk, B.; Rudolphi-Szydło, E.; Dyba, B.; Pociecha, E.; Ostrowska, A.; Rys, M.; Kvasnica, M.; Oklestkova, J.; et al. Cold Acclimation and Deacclimation of Winter Oilseed Rape, with Special Attention Being Paid to the Role of Brassinosteroids. Int. J. Mol. Sci. 2024, 25, 6010. https://doi.org/10.3390/ijms25116010
Stachurska J, Sadura I, Jurczyk B, Rudolphi-Szydło E, Dyba B, Pociecha E, Ostrowska A, Rys M, Kvasnica M, Oklestkova J, et al. Cold Acclimation and Deacclimation of Winter Oilseed Rape, with Special Attention Being Paid to the Role of Brassinosteroids. International Journal of Molecular Sciences. 2024; 25(11):6010. https://doi.org/10.3390/ijms25116010
Chicago/Turabian StyleStachurska, Julia, Iwona Sadura, Barbara Jurczyk, Elżbieta Rudolphi-Szydło, Barbara Dyba, Ewa Pociecha, Agnieszka Ostrowska, Magdalena Rys, Miroslav Kvasnica, Jana Oklestkova, and et al. 2024. "Cold Acclimation and Deacclimation of Winter Oilseed Rape, with Special Attention Being Paid to the Role of Brassinosteroids" International Journal of Molecular Sciences 25, no. 11: 6010. https://doi.org/10.3390/ijms25116010