Polymorphisms of DNA Repair Genes in Thyroid Cancer
Abstract
1. Introduction
2. Thyroid Cancer, DNA Damage, and Repair
3. Polymorphism of Genes Encoding DNA Repair Proteins in Thyroid Cancer
3.1. X-ray Repair Cross-Complementing Group 1 (XRCC1)
3.2. X-ray Repair Cross-Complementing Group 2 (XRCC2)
3.3. X-ray Repair Cross-Complementing Group 3 (XRCC3)
3.4. X-ray Repair Cross-Complementing Group 4 (XRCC4)
3.5. X-ray Repair Cross-Complementing Group 5 (XRCC5)/Ku80
3.6. X-ray Repair Cross-Complementing Group 7 (XRCC7)/DNA-Dependent Protein Kinase (DNA-PK)
3.7. TP53 Gene
3.8. RAD51 Recombinase (RAD51)
3.9. RAD52 Homolog (RAD52)
3.10. Breast Cancer Type 1 Susceptibility Protein (BRCA1)
3.11. Breast Cancer Type 2 Susceptibility Protein (BRCA2)
3.12. Apurinic/Apyrimidinic Endonuclease (APE1)
3.13. Poly(ADP-Ribose) Polymerase-1 (PARP1)/ADP-Ribosyltransferase (ADPRT)
3.14. 8-Oxoguanine-DNA Glycosylase 1 (OGG1)
3.15. MutY DNA Glycosylase (MUTYH)
3.16. Ataxia Telangiectasia Mutated (ATM)
3.17. Checkpoint Kinase 2 (CHK2)
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AP sites | apurinic/apyrimidinic sites |
APE1 | apurinic/apyrimidinic endonuclease 1 |
ATM | ataxia telangiectasia mutated |
BER | base excision repair |
BRCA1 | breast cancer type 1 susceptibility protein |
BRCA2 | breast cancer type 2 susceptibility protein |
CHK1 | checkpoint kinase 1 |
CHK2 | checkpoint kinase 2 |
CI | confidence interval |
CtIP | ctBP-interacting protein |
DDR | DNA damage response |
DNA-PK | DNA-dependent protein kinase |
DNA-PKcs | DNA-dependent protein kinase catalytic subunits |
DSBs | double-strand breaks |
DSBR | double-strand DNA break repair |
DTC | differentiated thyroid cancer |
EXO1 | exonuclease 1 |
FTC | follicular thyroid cancer |
γH2AX | phosphorylated H2AX |
HR | homologous recombination |
LIG3 | ligase III |
LIG4 | ligase 4 |
MDC1 | mediator of DNA damage checkpoint protein 1 |
MMR | DNA mismatch repair |
Mre11 | meiotic recombination 11 |
MUTYH | adenine DNA glycosylase |
NER | nucleotide excision repair |
NHEJ | non-homologous end joining |
NPC | nasopharyngeal cancer |
NBS1 | nibrin |
OGG1 | 8-oxoguanine-DNA Glycosylase 1 |
OR | odds ratios |
PARP-1 | poly(ADP-ribose) polymerase-1 |
PIKK | phosphoinositide 3-kinase-related kinase |
POLβ | polymerase beta |
P53 | cellular tumor antigen p53 |
PTMC | papillary thyroid microcarcinoma |
PTC | papillary thyroid cancer |
RAD50 | radiation sensitive50 |
RAD51 | DNA repair protein RAD51 homolog 1 |
RAD52 | DNA repair protein RAD52 homolog |
RPA | replication protein A |
SNP | single nucleotide polymorphism |
SSBs | single-strand breaks |
SSBR | single-strand break repair |
STR | short tandem repeat |
UTC | undifferentiated thyroid carcinoma |
VNTR | variable number tandem repeat |
XLF | non-homologous end-joining factor 1 |
XRCC1 | x-ray repair cross-complementing protein 1 |
8-oxo-dG | 8-oxo-7,8-dihydro-2′-deoxyguanosine |
8-oxoG | 8-oxoguanine |
References
- Kyrodimos, E.; Chrysovergis, A.; Mastronikolis, N.; Papanastasiou, G.; Tsiambas, E.; Spyropoulou, D.; Katsinis, S.; Manoli, A.; Papouliakos, S.; Pantos, P.; et al. The Landscape of Single Nucleotide Polymorphisms in Papillary Thyroid Carcinoma. Cancer Diagn. Progn. 2023, 3, 26–30. [Google Scholar] [CrossRef] [PubMed]
- Sheng, X.; Bao, Y.; Zhang, J.S.; Li, M.; Li, Y.N.; Xu, Q.N.; Zhang, S.H.; Li, C.T. Research Progress on InDel Genetic Marker in Forensic Science. Fa Yi Xue Za Zhi 2018, 34, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Stevanovski, I.; Chintalaphani, S.R.; Gamaarachchi, H.; Ferguson, J.M.; Pineda, S.S.; Scriba, C.K.; Tchan, M.; Fung, V.; Ng, K.; Cortese, A.; et al. Comprehensive Genetic Diagnosis of Tandem Repeat Expansion Disorders with Programmable Targeted Nanopore Sequencing. Sci. Adv. 2022, 8, eabm5386. [Google Scholar] [CrossRef] [PubMed]
- Bukowski, K.; Woźniak, K. Polymorphism of genes encoding proteins of DNA repair vs. occupational and environmental exposure to lead, arsenic and pesticides. Med. Pract. 2018, 69, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Ranjan, D.; Trivedi, R.; Vasulu, T.S.; Kashyap, V.K. Geographic Contiguity and Genetic Affinity among Five Ethnic Populations of Manipur, India: Further Molecular Studies Based on VNTR and STR Loci. Ann. Hum. Biol. 2003, 30, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Panneerchelvam, S.; Norazmi, M.N. Forensic DNA Profiling and Database. Malays. J. Med. Sci. 2003, 10, 20–26. [Google Scholar] [PubMed]
- Synowiec, E.; Stefanska, J.; Morawiec, Z.; Blasiak, J.; Wozniak, K. Association between DNA Damage, DNA Repair Genes Variability and Clinical Characteristics in Breast Cancer Patients. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2008, 648, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Krupa, R.; Sobczuk, A.; Popławski, T.; Wozniak, K.; Blasiak, J. DNA Damage and Repair in Endometrial Cancer in Correlation with the hOGG1 and RAD51 Genes Polymorphism. Mol. Biol. Rep. 2011, 38, 1163–1170. [Google Scholar] [CrossRef] [PubMed]
- Nickoloff, J.A.; Jones, D.; Lee, S.-H.; Williamson, E.A.; Hromas, R. Drugging the Cancers Addicted to DNA Repair. J. Natl. Cancer Inst. 2017, 109, djx059. [Google Scholar] [CrossRef]
- Chen, D.W.; Lang, B.H.H.; McLeod, D.S.A.; Newbold, K.; Haymart, M.R. Thyroid Cancer. Lancet 2023, 401, 1531–1544. [Google Scholar] [CrossRef]
- Razvi, S.; Jabbar, A.; Pingitore, A.; Danzi, S.; Biondi, B.; Klein, I.; Peeters, R.; Zaman, A.; Iervasi, G. Thyroid Hormones and Cardiovascular Function and Diseases. J. Am. Coll. Cardiol. 2018, 71, 1781–1796. [Google Scholar] [CrossRef] [PubMed]
- Bassett, J.H.D.; Williams, G.R. Role of Thyroid Hormones in Skeletal Development and Bone Maintenance. Endocr. Rev. 2016, 37, 135–187. [Google Scholar] [CrossRef] [PubMed]
- Brent, G.A. Mechanisms of Thyroid Hormone Action. J. Clin. Investig. 2012, 122, 3035–3043. [Google Scholar] [CrossRef] [PubMed]
- Dralle, H.; Machens, A.; Basa, J.; Fatourechi, V.; Franceschi, S.; Hay, I.D.; Nikiforov, Y.E.; Pacini, F.; Pasieka, J.L.; Sherman, S.I. Follicular Cell-Derived Thyroid Cancer. Nat. Rev. Dis. Primers 2015, 1, 15077. [Google Scholar] [CrossRef] [PubMed]
- Coca-Pelaz, A.; Shah, J.P.; Hernandez-Prera, J.C.; Ghossein, R.A.; Rodrigo, J.P.; Hartl, D.M.; Olsen, K.D.; Shaha, A.R.; Zafereo, M.; Suarez, C.; et al. Papillary Thyroid Cancer—Aggressive Variants and Impact on Management: A Narrative Review. Adv. Ther. 2020, 37, 3112–3128. [Google Scholar] [CrossRef] [PubMed]
- Haddad, R.I.; Bischoff, L.; Ball, D.; Bernet, V.; Blomain, E.; Busaidy, N.L.; Campbell, M.; Dickson, P.; Duh, Q.-Y.; Ehya, H.; et al. Thyroid Carcinoma, Version 2.2022, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2022, 20, 925–951. [Google Scholar] [CrossRef] [PubMed]
- Nabhan, F.; Dedhia, P.H.; Ringel, M.D. Thyroid Cancer, Recent Advances in Diagnosis and Therapy. Int. J. Cancer 2021, 149, 984–992. [Google Scholar] [CrossRef]
- Vladimirova, U.; Rumiantsev, P.; Zolotovskaia, M.; Albert, E.; Abrosimov, A.; Slashchuk, K.; Nikiforovich, P.; Chukhacheva, O.; Gaifullin, N.; Suntsova, M.; et al. DNA Repair Pathway Activation Features in Follicular and Papillary Thyroid Tumors, Interrogated Using 95 Experimental RNA Sequencing Profiles. Heliyon 2021, 7, e06408. [Google Scholar] [CrossRef]
- Qin, J.; Fan, J.; Li, G.; Liu, S.; Liu, Z.; Wu, Y. DNA Double-Strand Break Repair Gene Mutation and the Risk of Papillary Thyroid Microcarcinoma: A Case–Control Study. Cancer Cell Int. 2021, 21, 334. [Google Scholar] [CrossRef]
- Paulsson, J.O.; Backman, S.; Wang, N.; Stenman, A.; Crona, J.; Thutkawkorapin, J.; Ghaderi, M.; Tham, E.; Stålberg, P.; Zedenius, J.; et al. Whole-Genome Sequencing of Synchronous Thyroid Carcinomas Identifies Aberrant DNA Repair in Thyroid Cancer Dedifferentiation. J. Pathol. 2020, 250, 183–194. [Google Scholar] [CrossRef]
- Kciuk, M.; Gielecińska, A.; Kołat, D.; Kałuzińska, Ż.; Kontek, R. Cancer-Associated Transcription Factors in DNA Damage Response. Biochim. Biophys. Acta Rev. Cancer 2022, 1877, 188757. [Google Scholar] [CrossRef] [PubMed]
- Kciuk, M.; Gielecińska, A.; Mujwar, S.; Mojzych, M.; Kontek, R. Cyclin-Dependent Kinases in DNA Damage Response. Biochim. Biophys. Acta Rev. Cancer 2022, 1877, 188716. [Google Scholar] [CrossRef] [PubMed]
- Zhou, C.; Tang, H.; Yu, J.; Zhuang, D.; Zhang, H. Blood-Based DNA Methylation of DNA Repair Genes in the Non-Homologous End-Joining (NEHJ) Pathway in Patient with Glioma. Int. J. Clin. Exp. Pathol. 2015, 8, 9463–9467. [Google Scholar] [PubMed]
- Pennisi, R.; Ascenzi, P.; di Masi, A. Hsp90: A New Player in DNA Repair? Biomolecules 2015, 5, 2589–2618. [Google Scholar] [CrossRef] [PubMed]
- Kciuk, M.; Bukowski, K.; Marciniak, B.; Kontek, R. Advances in DNA Repair—Emerging Players in the Arena of Eukaryotic DNA Repair. Int. J. Mol. Sci. 2020, 21, 3934. [Google Scholar] [CrossRef] [PubMed]
- Tebbs, R.S.; Thompson, L.H.; Cleaver, J.E. Rescue of Xrcc1 Knockout Mouse Embryo Lethality by Transgene-Complementation. DNA Repair. 2003, 2, 1405–1417. [Google Scholar] [CrossRef] [PubMed]
- Bashir, K.; Sarwar, R.; Fatima, S.; Saeed, S.; Mahjabeen, I.; Akhtar Kayani, M. Haplotype Analysis of XRCC1 Gene Polymorphisms and the Risk of Thyroid Carcinoma. J. BUON 2018, 23, 234–243. [Google Scholar] [PubMed]
- Fard-Esfahani, P.; Fard-Esfahani, A.; Fayaz, S.; Ghanbarzadeh, B.; Saidi, P.; Mohabati, R.; Bidoki, S.K.; Majdi, M. Association of Arg194Trp, Arg280His and Arg399Gln Polymorphisms in X-Ray Repair Cross-Complementing Group 1 Gene and Risk of Differentiated Thyroid Carcinoma in Iran. Iran. Biomed. J. 2011, 15, 73–78. [Google Scholar] [PubMed]
- Siraj, A.K.; Al-Rasheed, M.; Ibrahim, M.; Siddiqui, K.; Al-Dayel, F.; Al-Sanea, O.; Uddin, S.; Al-Kuraya, K. RAD52 Polymorphisms Contribute to the Development of Papillary Thyroid Cancer Susceptibility in Middle Eastern Population. J. Endocrinol. Investig. 2008, 31, 893–899. [Google Scholar] [CrossRef]
- Chiang, F.-Y.; Wu, C.-W.; Hsiao, P.-J.; Kuo, W.-R.; Lee, K.-W.; Lin, J.-C.; Liao, Y.-C.; Juo, S.-H.H. Association between Polymorphisms in DNA Base Excision Repair Genes XRCC1, APE1, and ADPRT and Differentiated Thyroid Carcinoma. Clin. Cancer Res. 2008, 14, 5919–5924. [Google Scholar] [CrossRef]
- Yan, L.; Li, Q.; Li, X.; Ji, H.; Zhang, L. Association Studies Between XRCC1, XRCC2, XRCC3 Polymorphisms and Differentiated Thyroid Carcinoma. Cell. Physiol. Biochem. 2016, 38, 1075–1084. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhang, K.; Liu, X.; Liu, B.; Wang, Z. Association between XRCC1 and XRCC3 Gene Polymorphisms and Risk of Thyroid Cancer. Int. J. Clin. Exp. Pathol. 2015, 8, 3160–3167. [Google Scholar] [PubMed]
- Ryu, R.A.; Tae, K.; Min, H.J.; Jeong, J.H.; Cho, S.H.; Lee, S.H.; Ahn, Y.H. XRCC1 Polymorphisms and Risk of Papillary Thyroid Carcinoma in a Korean Sample. J. Korean Med. Sci. 2011, 26, 991–995. [Google Scholar] [CrossRef] [PubMed]
- Halkova, T.; Dvorakova, S.; Sykorova, V.; Vaclavikova, E.; Vcelak, J.; Vlcek, P.; Sykorova, P.; Kodetova, D.; Betka, J.; Lastuvka, P.; et al. Polymorphisms in Selected DNA Repair Genes and Cell Cycle Regulating Genes Involved in the Risk of Papillary Thyroid Carcinoma. Cancer Biomark. 2016, 17, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Santos, L.S.; Branco, S.C.; Silva, S.N.; Azevedo, A.P.; Gil, O.M.; Manita, I.; Ferreira, T.C.; Limbert, E.; Rueff, J.; Gaspar, J.F. Polymorphisms in Base Excision Repair Genes and Thyroid Cancer Risk. Oncol. Rep. 2012, 28, 1859–1868. [Google Scholar] [CrossRef] [PubMed]
- García-Quispes, W.-A.; Pérez-Machado, G.; Akdi, A.; Pastor, S.; Galofré, P.; Biarnés, F.; Castell, J.; Velázquez, A.; Marcos, R. Association Studies of OGG1, XRCC1, XRCC2 and XRCC3 Polymorphisms with Differentiated Thyroid Cancer. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2011, 709–710, 67–72. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.; Li, G.; Lu, J.; Zhao, C.; Wei, Q.; Sturgis, E.M. Association of XRCC1 Polymorphisms and Risk of Differentiated Thyroid Carcinoma: A Case-Control Analysis. Thyroid 2009, 19, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Mandegari, M.; Dastgheib, S.A.; Asadian, F.; Shaker, S.H.; Tabatabaie, S.M.; Kargar, S.; Sadeghizadeh-Yazdi, J.; Neamatzadeh, H. A Meta-Analysis for Association of XRCC1, XRCC2 and XRCC3 Polymorphisms with Susceptibility to Thyroid Cancer. Asian Pac. J. Cancer Prev. 2021, 22, 2221–2236. [Google Scholar] [CrossRef]
- Liu, S.-Y.; Xue, W. XRCC1 Arg194Trp Polymorphism and Thyroid Cancer. J. Endocrinol. Investig. 2020, 43, 749–753. [Google Scholar] [CrossRef]
- Zhao, J.Z.; Tan, X.R.; Zhao, M.; Mao, X.C.; Jiang, L. Association between the X-Ray Repair Cross-Complementing Group 1 Arg194Trp Polymorphism and Thyroid Carcinoma Susceptibility: A Meta-Analysis. Genet. Mol. Res. 2016, 15. [Google Scholar] [CrossRef]
- Wang, C.; Ai, Z. Association of XRCC1 Polymorphisms with Thyroid Cancer Risk. Tumour Biol. 2014, 35, 4791–4797. [Google Scholar] [CrossRef]
- Yang, W.; Liu, W.; Zhu, L.; Lin, Y.; Meng, Z.; Wang, Y. Association Between the XRCC1, GSTM1, and GSTT1 Polymorphisms in Model of Thyroid Cancer: A Meta-Analysis. Horm. Metab. Res. 2023, 55, 625–633. [Google Scholar] [CrossRef]
- Fayaz, S.; Karimmirza, M.; Tanhaei, S.; Fathi, M.; Torbati, P.M.; Fard-Esfahani, P. Increased Risk of Differentiated Thyroid Carcinoma with Combined Effects of Homologous Recombination Repair Gene Polymorphisms in an Iranian Population. Asian Pac. J. Cancer Prev. 2014, 14, 6727–6731. [Google Scholar] [CrossRef]
- Bastos, H.N.; Antão, M.R.; Silva, S.N.; Azevedo, A.P.; Manita, I.; Teixeira, V.; Pina, J.E.; Gil, O.M.; Ferreira, T.C.; Limbert, E.; et al. Association of Polymorphisms in Genes of the Homologous Recombination DNA Repair Pathway and Thyroid Cancer Risk. Thyroid 2009, 19, 1067–1075. [Google Scholar] [CrossRef]
- Jamshidi, M.; Farnoosh, G.; Mohammadi Pour, S.; Rafiee, F.; Saeedi Boroujeni, A.; Mahmoudian-Sani, M.-R. Genetic Variants and Risk of Thyroid Cancer among Iranian Patients. Horm. Mol. Biol. Clin. Investig. 2021, 42, 223–234. [Google Scholar] [CrossRef]
- Kurumizaka, H.; Enomoto, R.; Nakada, M.; Eda, K.; Yokoyama, S.; Shibata, T. Region and Amino Acid Residues Required for Rad51C Binding in the Human Xrcc3 Protein. Nucleic Acids Res. 2003, 31, 4041–4050. [Google Scholar] [CrossRef]
- Sturgis, E.M.; Zhao, C.; Zheng, R.; Wei, Q. Radiation Response Genotype and Risk of Differentiated Thyroid Cancer: A Case-Control Analysis. Laryngoscope 2005, 115, 938–945. [Google Scholar] [CrossRef]
- Lu, W.; Wu, G.; Zhang, B. Association Between X-Ray Cross-Complementing Group 3 (XRCC3) Thr241Met Polymorphism and Risk of Thyroid Cancer: A Meta-Analysis. Med. Sci. Monit. 2015, 21, 3978–3985. [Google Scholar] [CrossRef]
- Yu, X.-L.; Liu, H.; Wang, B.; Fu, Z.-J.; Yuan, Y.; Yan, S.-L.; Zhao, W.-J.; Wang, Y.-G.; Cai, J. Significant Associations between X-Ray Repair Cross-Complementing Group 3 Genetic Polymorphisms and Thyroid Cancer Risk. Tumour Biol. 2014, 35, 2009–2015. [Google Scholar] [CrossRef]
- Pehlivan, S.; Uysal, M.A.; Aydin, P.C.; Pehlivan, M.; Nursal, A.F.; Yavuzlar, H.; Kurnaz, S.; Sever, U.; Yavuz, F.K.; Uysal, S.; et al. eNOS and XRCC4 VNTR Variants Contribute to Formation of Nicotine Dependence and/or Schizophrenia. Bratisl. Lek. Listy 2017, 118, 467–471. [Google Scholar] [CrossRef]
- Dasdemir, S.; Guven, M.; Pekkoc, K.C.; Ulucan, H.; Dogangun, B.; Kirtas, E.; Kadak, M.T.; Kucur, M.; Seven, M. DNA Repair Gene XPD Asp312Asn and XRCC4 G-1394T Polymorphisms and the Risk of Autism Spectrum Disorder. Cell. Mol. Biol. 2016, 62, 46–50. [Google Scholar]
- He, F.; Chang, S.-C.; Wallar, G.M.; Zhang, Z.-F.; Cai, L. Association of XRCC3 and XRCC4 Gene Polymorphisms, Family History of Cancer and Tobacco Smoking with Non-Small-Cell Lung Cancer in a Chinese Population: A Case-Control Study. J. Hum. Genet. 2013, 58, 679–685. [Google Scholar] [CrossRef]
- Gomes, B.C.; Silva, S.N.; Azevedo, A.P.; Manita, I.; Gil, O.M.; Ferreira, T.C.; Limbert, E.; Rueff, J.; Gaspar, J.F. The Role of Common Variants of Non-Homologous End-Joining Repair Genes XRCC4, LIG4 and Ku80 in Thyroid Cancer Risk. Oncol. Rep. 2010, 24, 1079–1085. [Google Scholar]
- Guo, N.; Qu, P.; Li, H.; Liu, L.; Jin, H.; Liu, R.; Zhang, Z.; Zhang, X.; Li, Y.; Lu, X.; et al. BRCA2 3’-UTR Polymorphism Rs15869 Alters Susceptibility to Papillary Thyroid Carcinoma via Binding Hsa-Mir-1178-3p. Pharmgenom. Pers. Med. 2021, 14, 533–544. [Google Scholar] [CrossRef]
- Figueroa, J.D.; Malats, N.; Rothman, N.; Real, F.X.; Silverman, D.; Kogevinas, M.; Chanock, S.; Yeager, M.; Welch, R.; Dosemeci, M.; et al. Evaluation of Genetic Variation in the Double-Strand Break Repair Pathway and Bladder Cancer Risk. Carcinogenesis 2007, 28, 1788–1793. [Google Scholar] [CrossRef]
- Tseng, R.-C.; Hsieh, F.-J.; Shih, C.-M.; Hsu, H.-S.; Chen, C.-Y.; Wang, Y.-C. Lung Cancer Susceptibility and Prognosis Associated with Polymorphisms in the Nonhomologous End-Joining Pathway Genes: A Multiple Genotype-Phenotype Study. Cancer 2009, 115, 2939–2948. [Google Scholar] [CrossRef]
- Kragelund, B.B.; Weterings, E.; Hartmann-Petersen, R.; Keijzers, G. The Ku70/80 Ring in Non-Homologous End-Joining: Easy to Slip on, Hard to Remove. FBL 2016, 21, 514–527. [Google Scholar] [CrossRef]
- Yu, L.; Liu, L.; Xiang, Y.; Wang, F.; Zhou, F.; Huang, S.; Zheng, C.; Ye, C.; Zhou, W.; Yin, G.; et al. XRCC5/6 Polymorphisms and Their Interactions with Smoking, Alcohol Consumption, and Sleep Satisfaction in Breast Cancer Risk: A Chinese Multi-center Study. Cancer Med. 2021, 10, 2752–2762. [Google Scholar] [CrossRef]
- Li, R.; Yang, Y.; An, Y.; Zhou, Y.; Liu, Y.; Yu, Q.; Lu, D.; Wang, H.; Jin, L.; Zhou, W.; et al. Genetic Polymorphisms in DNA Double-Strand Break Repair Genes XRCC5, XRCC6 and Susceptibility to Hepatocellular Carcinoma. Carcinogenesis 2011, 32, 530–536. [Google Scholar] [CrossRef]
- Willems, P.; Claes, K.; Baeyens, A.; Vandersickel, V.; Werbrouck, J.; De Ruyck, K.; Poppe, B.; Van den Broecke, R.; Makar, A.; Marras, E.; et al. Polymorphisms in Nonhomologous End-Joining Genes Associated with Breast Cancer Risk and Chromosomal Radiosensitivity. Genes Chromosomes Cancer 2008, 47, 137–148. [Google Scholar] [CrossRef]
- Pawelczak, K.S.; Turchi, J.J. A Mechanism for DNA-PK Activation Requiring Unique Contributions from Each Strand of a DNA Terminus and Implications for Microhomology-Mediated Nonhomologous DNA End Joining. Nucleic Acids Res. 2008, 36, 4022–4031. [Google Scholar] [CrossRef]
- Rahimi, M.; Fayaz, S.; Fard-Esfahani, A.; Hossein Modarressi, M.; Akrami, S.M.; Fard-Esfahani, P. The Role of Ile3434Thr XRCC7 Gene Polymorphism in Differentiated Thyroid Cancer Risk in an Iranian Population. Iran. Biomed. J. 2012, 16, 218–222. [Google Scholar] [CrossRef]
- Olsen, B.B.; Fischer, U.; Rasmussen, T.L.; Montenarh, M.; Meese, E.; Fritz, G.; Issinger, O.-G. Lack of the Catalytic Subunit of DNA-Dependent Protein Kinase (DNA-PKcs) Is Accompanied by Increased CK2α’ Levels. Mol. Cell. Biochem. 2011, 356, 139–147. [Google Scholar] [CrossRef]
- Ihara, M.; Ashizawa, K.; Shichijo, K.; Kudo, T. Expression of the DNA-Dependent Protein Kinase Catalytic Subunit Is Associated with the Radiosensitivity of Human Thyroid Cancer Cell Lines. J. Radiat. Res. 2019, 60, 171–177. [Google Scholar] [CrossRef]
- Aubrey, B.J.; Strasser, A.; Kelly, G.L. Tumor-Suppressor Functions of the TP53 Pathway. Cold Spring Harb. Perspect. Med. 2016, 6, a026062. [Google Scholar] [CrossRef]
- Boltze, C.; Roessner, A.; Landt, O.; Szibor, R.; Peters, B.; Schneider-Stock, R. Homozygous Proline at Codon 72 of P53 as a Potential Risk Factor Favoring the Development of Undifferentiated Thyroid Carcinoma. Int. J. Oncol. 2002, 21, 1151–1154. [Google Scholar] [CrossRef]
- Granja, F.; Morari, J.; Morari, E.C.; Correa, L.A.C.; Assumpção, L.V.M.; Ward, L.S. Proline Homozygosity in Codon 72 of P53 Is a Factor of Susceptibility for Thyroid Cancer. Cancer Lett. 2004, 210, 151–157. [Google Scholar] [CrossRef]
- Bufalo, N.E.; Leite, J.L.; Guilhen, A.C.T.; Morari, E.C.; Granja, F.; Assumpcao, L.V.M.; Ward, L.S. Smoking and Susceptibility to Thyroid Cancer: An Inverse Association with CYP1A1 Allelic Variants. Endocr. Relat. Cancer 2006, 13, 1185–1193. [Google Scholar] [CrossRef]
- Reis, A.a.S.; Silva, D.M.; Curado, M.P.; da Cruz, A.D. Involvement of CYP1A1, GST, 72TP53 Polymorphisms in the Pathogenesis of Thyroid Nodules. Genet. Mol. Res. 2010, 9, 2222–2229. [Google Scholar] [CrossRef]
- Barbieri, R.B.; Bufalo, N.E.; Cunha, L.L.; Assumpção, L.V.M.; Maciel, R.M.B.; Cerutti, J.M.; Ward, L.S. Genes of Detoxification Are Important Modulators of Hereditary Medullary Thyroid Carcinoma Risk. Clin. Endocrinol. 2013, 79, 288–293. [Google Scholar] [CrossRef]
- Akulevich, N.M.; Saenko, V.A.; Rogounovitch, T.I.; Drozd, V.M.; Lushnikov, E.F.; Ivanov, V.K.; Mitsutake, N.; Kominami, R.; Yamashita, S. Polymorphisms of DNA Damage Response Genes in Radiation-Related and Sporadic Papillary Thyroid Carcinoma. Endocr. -Relat. Cancer 2009, 16, 491–503. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, R.; Hosseinpour Feizi, M.A.; Pouladi, N.; Adampourezare, M.; Farajzadeh, D. The TP53 Intron 6 G13964C Polymorphism and Risk of Thyroid and Breast Cancer Development in the Iranian Azeri Population. Asian Pac. J. Cancer Prev. 2015, 16, 3073–3077. [Google Scholar] [CrossRef]
- Wu, R.; Patel, A.; Tokumaru, Y.; Asaoka, M.; Oshi, M.; Yan, L.; Ishikawa, T.; Takabe, K. High RAD51 Gene Expression Is Associated with Aggressive Biology and with Poor Survival in Breast Cancer. Breast Cancer Res. Treat. 2022, 193, 49–63. [Google Scholar] [CrossRef]
- Nogueira, A.; Fernandes, M.; Catarino, R.; Medeiros, R. RAD52 Functions in Homologous Recombination and Its Importance on Genomic Integrity Maintenance and Cancer Therapy. Cancers 2019, 11, 1622. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Paul, S. The Breast Cancer Susceptibility Genes (BRCA) in Breast and Ovarian Cancers. Front. Biosci. 2014, 19, 605–618. [Google Scholar] [CrossRef]
- Fu, X.; Tan, W.; Song, Q.; Pei, H.; Li, J. BRCA1 and Breast Cancer: Molecular Mechanisms and Therapeutic Strategies. Front. Cell Dev. Biol. 2022, 10, 813457. [Google Scholar] [CrossRef]
- Cieszyńska, M.; Kluźniak, W.; Wokołorczyk, D.; Cybulski, C.; Huzarski, T.; Gronwald, J.; Falco, M.; Dębniak, T.; Jakubowska, A.; Derkacz, R.; et al. Risk of Second Primary Thyroid Cancer in Women with Breast Cancer. Cancers 2022, 14, 957. [Google Scholar] [CrossRef]
- Xu, L.; Doan, P.C.; Wei, Q.; Liu, Y.; Li, G.; Sturgis, E.M. Association of BRCA1 Functional Single Nucleotide Polymorphisms with Risk of Differentiated Thyroid Carcinoma. Thyroid 2012, 22, 35–43. [Google Scholar] [CrossRef]
- Zhang, J.; Powell, S.N. The Role of the BRCA1 Tumor Suppressor in DNA Double-Strand Break Repair. Mol. Cancer Res. 2005, 3, 531–539. [Google Scholar] [CrossRef]
- Wójcicka, A.; Czetwertyńska, M.; Œwierniak, M.; Długosińska, J.; Maciąg, M.; Czajka, A.; Dymecka, K.; Kubiak, A.; Kot, A.; Płoski, R.; et al. Variants in the ATM-CHEK2-BRCA1 Axis Determine Genetic Predisposition and Clinical Presentation of Papillary Thyroid Carcinoma. Genes Chromosomes Cancer 2014, 53, 516–523. [Google Scholar] [CrossRef] [PubMed]
- Lax, S.F. Hereditary breast and ovarian cancer. Pathologe 2017, 38, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Wu, C.; Yu, D.; Wang, C.; Che, X.; Miao, X.; Zhai, K.; Chang, J.; Jiang, G.; Yang, X.; et al. Identification of Common Variants in BRCA2 and MAP2K4 for Susceptibility to Sporadic Pancreatic Cancer. Carcinogenesis 2013, 34, 1001–1005. [Google Scholar] [CrossRef] [PubMed]
- Sigurdson, A.J.; Land, C.E.; Bhatti, P.; Pineda, M.; Brenner, A.; Carr, Z.; Gusev, B.I.; Zhumadilov, Z.; Simon, S.L.; Bouville, A.; et al. Thyroid Nodules, Polymorphic Variants in DNA Repair and RET-Related Genes, and Interaction with Ionizing Radiation Exposure from Nuclear Tests in Kazakhstan. Rare 2009, 171, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.J.; Smith, T.R.; Miller, M.S.; Mohrenweiser, H.W.; Golden, A.; Case, L.D. Amino Acid Substitution Variants of APE1 and XRCC1 Genes Associated with Ionizing Radiation Sensitivity. Carcinogenesis 2001, 22, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Lockett, K.L.; Hall, M.C.; Xu, J.; Zheng, S.L.; Berwick, M.; Chuang, S.-C.; Clark, P.E.; Cramer, S.D.; Lohman, K.; Hu, J.J. The ADPRT V762A Genetic Variant Contributes to Prostate Cancer Susceptibility and Deficient Enzyme Function. Cancer Res. 2004, 64, 6344–6348. [Google Scholar] [CrossRef] [PubMed]
- Miao, X.; Zhang, X.; Zhang, L.; Guo, Y.; Hao, B.; Tan, W.; He, F.; Lin, D. Adenosine Diphosphate Ribosyl Transferase and X-Ray Repair Cross-Complementing 1 Polymorphisms in Gastric Cardia Cancer. Gastroenterology 2006, 131, 420–427. [Google Scholar] [CrossRef] [PubMed]
- Bashir, K.; Sarwar, R.; Saeed, S.; Mahjabeen, I.; Kayani, M.A. Interaction among Susceptibility Genotypes of PARP1 SNPs in Thyroid Carcinoma. PLoS ONE 2018, 13, e0199007. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zha, Y.; Du, F.; Liu, J.; Li, X.; Zhao, X. Contributions of PARP-1 Rs1136410 C>T Polymorphism to the Development of Cancer. J. Cell Mol. Med. 2020, 24, 14639–14644. [Google Scholar] [CrossRef] [PubMed]
- D’Augustin, O.; Gaudon, V.; Siberchicot, C.; Smith, R.; Chapuis, C.; Depagne, J.; Veaute, X.; Busso, D.; Di Guilmi, A.-M.; Castaing, B.; et al. Identification of Key Residues of the DNA Glycosylase OGG1 Controlling Efficient DNA Sampling and Recruitment to Oxidized Bases in Living Cells. Nucleic Acids Res. 2023, 51, 4942–4958. [Google Scholar] [CrossRef]
- Guan, H.; Ji, M.; Hou, P.; Liu, Z.; Wang, C.; Shan, Z.; Teng, W.; Xing, M. Hypermethylation of the DNA Mismatch Repair Gene hMLH1 and Its Association with Lymph Node Metastasis and T1799A BRAF Mutation in Patients with Papillary Thyroid Cancer. Cancer 2008, 113, 247–255. [Google Scholar] [CrossRef]
- García-Quispes, W.A.; Pastor, S.; Galofré, P.; Biarnés, F.; Castell, J.; Velázquez, A.; Marcos, R. Influence of DNA-Repair Gene Variants on the Micronucleus Frequency in Thyroid Cancer Patients. Mutat. Res./Genet. Toxicol. Environ. Mutagen. 2013, 750, 34–39. [Google Scholar] [CrossRef]
- David, S.S.; O’Shea, V.L.; Kundu, S. Base-Excision Repair of Oxidative DNA Damage. Nature 2007, 447, 941–950. [Google Scholar] [CrossRef] [PubMed]
- Rothblum-Oviatt, C.; Wright, J.; Lefton-Greif, M.A.; McGrath-Morrow, S.A.; Crawford, T.O.; Lederman, H.M. Ataxia Telangiectasia: A Review. Orphanet. J. Rare Dis. 2016, 11, 159. [Google Scholar] [CrossRef] [PubMed]
- Shibata, A.; Jeggo, P.A. ATM’s Role in the Repair of DNA Double-Strand Breaks. Genes 2021, 12, 1370. [Google Scholar] [CrossRef]
- Gu, Y.; Yu, Y.; Ai, L.; Shi, J.; Liu, X.; Sun, H.; Liu, Y. Association of the ATM Gene Polymorphisms with Papillary Thyroid Cancer. Endocrine 2014, 45, 454–461. [Google Scholar] [CrossRef] [PubMed]
- Gu, Y.; Liu, X.; Yu, Y.; Shi, J.; Ai, L.; Sun, H.; Kanu, J.S.; Wang, C.; Liu, Y. Association of ATM Gene Polymorphism with PTC Metastasis in Female Patients. Int. J. Endocrinol. 2014, 2014, 370825. [Google Scholar] [CrossRef]
- Xu, L.; Morari, E.C.; Wei, Q.; Sturgis, E.M.; Ward, L.S. Functional Variations in the ATM Gene and Susceptibility to Differentiated Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2012, 97, 1913–1921. [Google Scholar] [CrossRef]
- Maillard, S.; Damiola, F.; Clero, E.; Pertesi, M.; Robinot, N.; Rachédi, F.; Boissin, J.-L.; Sebbag, J.; Shan, L.; Bost-Bezeaud, F.; et al. Common Variants at 9q22.33, 14q13.3, and ATM Loci, and Risk of Differentiated Thyroid Cancer in the French Polynesian Population. PLoS ONE 2015, 10, e0123700. [Google Scholar] [CrossRef] [PubMed]
- Pereda, C.M.; Lesueur, F.; Pertesi, M.; Robinot, N.; Lence-Anta, J.J.; Turcios, S.; Velasco, M.; Chappe, M.; Infante, I.; Bustillo, M.; et al. Common Variants at the 9q22.33, 14q13.3 and ATM Loci, and Risk of Differentiated Thyroid Cancer in the Cuban Population. BMC Genet. 2015, 16, 22. [Google Scholar] [CrossRef]
- Damiola, F.; Byrnes, G.; Moissonnier, M.; Pertesi, M.; Deltour, I.; Fillon, A.; Le Calvez-Kelm, F.; Tenet, V.; McKay-Chopin, S.; McKay, J.D.; et al. Contribution of ATM and FOXE1 (TTF2) to Risk of Papillary Thyroid Carcinoma in Belarusian Children Exposed to Radiation. Int. J. Cancer 2014, 134, 1659–1668. [Google Scholar] [CrossRef]
- Kang, J.; Deng, X.-Z.; Fan, Y.-B.; Wu, B. Relationships of FOXE1 and ATM Genetic Polymorphisms with Papillary Thyroid Carcinoma Risk: A Meta-Analysis. Tumor Biol. 2014, 35, 7085–7096. [Google Scholar] [CrossRef] [PubMed]
- Ingvarsson, S.; Sigbjornsdottir, B.I.; Huiping, C.; Hafsteinsdottir, S.H.; Ragnarsson, G.; Barkardottir, R.B.; Arason, A.; Egilsson, V.; Bergthorsson, J.T. Mutation Analysis of the CHK2 Gene in Breast Carcinoma and Other Cancers. Breast Cancer Res. 2002, 4, R4. [Google Scholar] [CrossRef] [PubMed]
- Baloch, Z.W.; Asa, S.L.; Barletta, J.A.; Ghossein, R.A.; Juhlin, C.C.; Jung, C.K.; LiVolsi, V.A.; Papotti, M.G.; Sobrinho-Simões, M.; Tallini, G.; et al. Overview of the 2022 WHO Classification of Thyroid Neoplasms. Endocr. Pathol. 2022, 33, 27–63. [Google Scholar] [CrossRef] [PubMed]
- Polednik, K.M.; Simpson, M.C.; Adjei Boakye, E.; Mohammed, K.A.; J Dombrowski, J.; Varvares, M.A.; Osazuwa-Peters, N. Radiation and Second Primary Thyroid Cancer Following Index Head and Neck Cancer. Laryngoscope 2019, 129, 1014–1020. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.; Saenko, V.A.; Rogounovitch, T.I.; Kawaguchi, T.; Drozd, V.M.; Takigawa-Imamura, H.; Akulevich, N.M.; Ratanajaraya, C.; Mitsutake, N.; Takamura, N.; et al. The FOXE1 Locus Is a Major Genetic Determinant for Radiation-Related Thyroid Carcinoma in Chernobyl. Hum. Mol. Genet. 2010, 19, 2516–2523. [Google Scholar] [CrossRef] [PubMed]
- Mitro, S.D.; Rozek, L.S.; Vatanasapt, P.; Suwanrungruang, K.; Chitapanarux, I.; Srisukho, S.; Sriplung, H.; Meza, R. Iodine Deficiency and Thyroid Cancer Trends in Three Regions of Thailand, 1990–2009. Cancer Epidemiol. 2016, 43, 92–99. [Google Scholar] [CrossRef]
- Siraj, A.K.; Parvathareddy, S.K.; Annaiyappanaidu, P.; Siraj, N.; Al-Sobhi, S.S.; Al-Dayel, F.; Al-Kuraya, K.S. Male Sex Is an Independent Predictor of Recurrence-Free Survival in Middle Eastern Papillary Thyroid Carcinoma. Front. Endocrinol. 2022, 13, 777345. [Google Scholar] [CrossRef] [PubMed]
- Nachalon, Y.; Katz, O.; Alkan, U.; Shvero, J.; Popovtzer, A. Radiation-Induced Thyroid Cancer: Gender-Related Disease Characteristics and Survival. Ann. Otol. Rhinol. Laryngol. 2016, 125, 242–246. [Google Scholar] [CrossRef] [PubMed]
- Gao, Y.; Hayes, R.B.; Huang, W.-Y.; Caporaso, N.E.; Burdette, L.; Yeager, M.; Chanock, S.J.; Berndt, S.I. DNA Repair Gene Polymorphisms and Tobacco Smoking in the Risk for Colorectal Adenomas. Carcinogenesis 2011, 32, 882–887. [Google Scholar] [CrossRef]
- Dylawerska, A.; Barczak, W.; Wegner, A.; Golusinski, W.; Suchorska, W.M. Association of DNA Repair Genes Polymorphisms and Mutations with Increased Risk of Head and Neck Cancer: A Review. Med. Oncol. 2017, 34, 197. [Google Scholar] [CrossRef]
- Neven, K.Y.; Saenen, N.D.; Tarantini, L.; Janssen, B.G.; Lefebvre, W.; Vanpoucke, C.; Bollati, V.; Nawrot, T.S. Placental Promoter Methylation of DNA Repair Genes and Prenatal Exposure to Particulate Air Pollution: An Environage Cohort Study. Lancet Planet Health 2018, 2, e174–e183. [Google Scholar] [CrossRef] [PubMed]
- Costa, M.B.; Farias, I.R.; da Silva Monte, C.; Filho, L.I.P.F.; de Paula Borges, D.; de Oliveira, R.T.G.; Ribeiro-Junior, H.L.; Magalhães, S.M.M.; Pinheiro, R.F. Chromosomal Abnormalities and Dysregulated DNA Repair Gene Expression in Farmers Exposed to Pesticides. Env. Toxicol. Pharmacol. 2021, 82, 103564. [Google Scholar] [CrossRef] [PubMed]
- Pezdirc, M.; Žegura, B.; Filipič, M. Genotoxicity and Induction of DNA Damage Responsive Genes by Food-Borne Heterocyclic Aromatic Amines in Human Hepatoma HepG2 Cells. Food Chem. Toxicol. 2013, 59, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Weng, M.-W.; Lee, H.-W.; Choi, B.; Wang, H.-T.; Hu, Y.; Mehta, M.; Desai, D.; Amin, S.; Zheng, Y.; Tang, M.-S. AFB1 Hepatocarcinogenesis Is via Lipid Peroxidation That Inhibits DNA Repair, Sensitizes Mutation Susceptibility and Induces Aldehyde-DNA Adducts at P53 Mutational Hotspot Codon 249. Oncotarget 2017, 8, 18213–18226. [Google Scholar] [CrossRef] [PubMed]
- Bajpai, D.; Banerjee, A.; Pathak, S.; Thakur, B.; Jain, S.K.; Singh, N. Single Nucleotide Polymorphisms in the DNA Repair Genes in HPV-Positive Cervical Cancer. Eur. J. Cancer Prev. 2016, 25, 224–231. [Google Scholar] [CrossRef]
- Hartwig, A.; Arand, M.; Epe, B.; Guth, S.; Jahnke, G.; Lampen, A.; Martus, H.-J.; Monien, B.; Rietjens, I.M.C.M.; Schmitz-Spanke, S.; et al. Mode of Action-Based Risk Assessment of Genotoxic Carcinogens. Arch. Toxicol. 2020, 94, 1787–1877. [Google Scholar] [CrossRef] [PubMed]
- Temprine, K.; Campbell, N.R.; Huang, R.; Langdon, E.M.; Simon-Vermot, T.; Mehta, K.; Clapp, A.; Chipman, M.; White, R.M. Regulation of the Error-Prone DNA Polymerase Polκ by Oncogenic Signaling and Its Contribution to Drug Resistance. Sci. Signal. 2020, 13, eaau1453. [Google Scholar] [CrossRef] [PubMed]
- Noronha, A.; Belugali Nataraj, N.; Lee, J.S.; Zhitomirsky, B.; Oren, Y.; Oster, S.; Lindzen, M.; Mukherjee, S.; Will, R.; Ghosh, S.; et al. AXL and Error-Prone DNA Replication Confer Drug Resistance and Offer Strategies to Treat EGFR-Mutant Lung Cancer. Cancer Discov. 2022, 12, 2666–2683. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, X.A.; Zhang, N.; Wang, J. Evolving Insights: How DNA Repair Pathways Impact Cancer Evolution. Cancer Biol. Med. 2020, 17, 805. [Google Scholar] [CrossRef]
- Russo, M.; Crisafulli, G.; Sogari, A.; Reilly, N.M.; Arena, S.; Lamba, S.; Bartolini, A.; Amodio, V.; Magrì, A.; Novara, L.; et al. Adaptive Mutability of Colorectal Cancers in Response to Targeted Therapies. Science 2019, 366, 1473–1480. [Google Scholar] [CrossRef]
- Huang, R.; Zhou, P.-K. DNA Damage Repair: Historical Perspectives, Mechanistic Pathways and Clinical Translation for Targeted Cancer Therapy. Signal. Transduct. Target. Ther. 2021, 6, 254. [Google Scholar] [CrossRef] [PubMed]
- Zhu, N.; Zhao, Y.; Mi, M.; Lu, Y.; Tan, Y.; Fang, X.; Weng, S.; Yuan, Y. REV1: A Novel Biomarker and Potential Therapeutic Target for Various Cancers. Front. Genet. 2022, 13, 997970. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Wang, Y.; Zhao, Y.; Jin, Y.; An, L.; Xu, H.; Liu, Z.; Chen, X.; Zhou, H.; Wang, H.; et al. A Functional Variant in CHK1 Contributes to Increased Risk of Nasopharyngeal Carcinoma in a Han Chinese Population. J. Cell Biochem. 2020, 121, 3248–3255. [Google Scholar] [CrossRef]
- Guffanti, F.; Fruscio, R.; Rulli, E.; Damia, G. The Impact of DNA Damage Response Gene Polymorphisms on Therapeutic Outcomes in Late Stage Ovarian Cancer. Sci. Rep. 2016, 6, 38142. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Guo, Q.; Yin, X.; Zhu, X.; Zhao, L.; Zhang, Z.; Wei, R.; Wang, B.; Li, X. Association of XPA Polymorphism with Breast Cancer Risk: A Meta-Analysis. Medicine 2018, 97, e11276. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, Z.; Cao, X.-L.; Lei, D.-P.; Wang, Z.-Q.; Jin, T.; Pan, X.-L. XPA A23G Polymorphism and Susceptibility to Cancer: A Meta-Analysis. Mol. Biol. Rep. 2012, 39, 6791–6799. [Google Scholar] [CrossRef] [PubMed]
- Couto, P.G.; Bastos-Rodrigues, L.; Carneiro, J.G.; Guieiro, F.; Bicalho, M.A.; Leidenz, F.B.; Bicalho, A.J.; Friedman, E.; De Marco, L. DNA Base-Excision Repair Genes OGG1 and NTH1 in Brazilian Lung Cancer Patients. Mol. Diagn. Ther. 2015, 19, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Goto, M.; Shinmura, K.; Igarashi, H.; Kobayashi, M.; Konno, H.; Yamada, H.; Iwaizumi, M.; Kageyama, S.; Tsuneyoshi, T.; Tsugane, S.; et al. Altered Expression of the Human Base Excision Repair Gene NTH1 in Gastric Cancer. Carcinogenesis 2009, 30, 1345–1352. [Google Scholar] [CrossRef] [PubMed]
- Elingarami, S.; Liu, H.; Kalinjuma, A.V.; Hu, W.; Li, S.; He, N. Polymorphisms in NEIL-2, APE-1, CYP2E1 and MDM2 Genes Are Independent Predictors of Gastric Cancer Risk in a Northern Jiangsu Population (China). J. Nanosci. Nanotechnol. 2015, 15, 4815–4828. [Google Scholar] [CrossRef]
- Rezaei, M.; Hashemi, M.; Sanaei, S.; Mashhadi, M.A.; Hashemi, S.M.; Bahari, G.; Taheri, M. FEN1-69G>A and +4150G>T Polymorphisms and Breast Cancer Risk. Biomed. Rep. 2016, 5, 455–460. [Google Scholar] [CrossRef]
- Gao, X.; Zhang, S.; Yang, Y.; Han, G. FEN1-69G>A and 4150G>T Polymorphisms and Cancer Risk in Chinese Population. Sci. Rep. 2014, 4, 6183. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, L.; Shao, M.; Yuan, J.; Wang, Y.; Wang, F.; Yuan, W.; Qian, J.; Ma, H.; Wang, Y.; et al. Polymorphisms in the Two Helicases ERCC2/XPD and ERCC3/XPB of the Transcription Factor IIH Complex and Risk of Lung Cancer: A Case-Control Analysis in a Chinese Population. Cancer Epidemiol. Biomark. Prev. 2006, 15, 1336–1340. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Meng, C.; Long, W.; Liu, Y.; Liu, Y.; Yang, J.; Yan, Z.; Yu, D.; Xiao, S. XP gene polymorphisms and haplotypes with genetic susceptibility to lung cancer. Wei Sheng Yan Jiu 2019, 48, 919–924. [Google Scholar] [PubMed]
Population | SNP Reference (rs) | Genotype | OR (95% CI) | p-Value | References |
---|---|---|---|---|---|
Pakistani | rs25489 | GG | 1 | [27] | |
GA | 1.05 (0.74–1.47) | 0.77 (n.s.) | |||
AA | 0.17 (0.10–0.31) | 0.0001 | |||
GA + AA | 0.53 (0.39–0.72) | 0.0001 | |||
Chinese | rs25489 | GG | 1 | [32] | |
GA | 1.10 (0.89–1.53) | 0.55 (n.s.) | |||
AA | 1.20 (0.72–1.98) | 0.45 (n.s.) | |||
GA + AA | 1.13 (0.84.153) | 0.40 (n.s.) | |||
Saudi Arabian | rs25489 | GG | 1 | [29] | |
GA | 0.59 (0.29–1.22) | 0.173 (n.s.) | |||
AA | 0.93 (0.33–2.65) | 1.0 (n.s.) | |||
GA + AA | 0.67 (0.35–1.26) | 0.268 (n.s.) | |||
Spanish | rs25489 | GG | 1 | [36] | |
GA | 1.61 (1.05–2.46) | 0.087 (n.s.) | |||
AA | 1.22 (0.24–6.24) | ||||
GG vs. AA + GA | 1.58 (1.05–2.40) | 0.027 | |||
Chinese | rs25489 | GG | 1 | [31] | |
GA | 0.73 (0.50–1.07) | 0.13 (n.s.) | |||
AA | 1.02 (0.35–2.99) | 1.0 (n.s.) | |||
GA + AA | 0.75 (0.52–1.08) | 0.144 (n.s.) | |||
Chinese | rs25489 | GG | 1 | [30] | |
GA | 0.74 (0.51–1.07) | n.s. | |||
AA | 1.07 (0.33–3.41) | n.s. | |||
Chinese | rs25487 | GG | 1 | [32] | |
GA | 1.07 (0.77–1.48) | 0.66 (n.s.) | |||
AA | 1.20 (0.72–1.98) | 0.45 (n.s.) | |||
GA + AA | 1.10 (0.81–1.48) | 0.52 (n.s.) | |||
Saudi Arabian | rs25487 | GG | 1 | [29] | |
GA | 0.73 (0.37–1.47) | 0.495 (n.s.) | |||
AA | 0.54 (0.12–2.48) | 0.536 (n.s.) | |||
GA + AA | 0.70 (0.36–1.36) | 0.333 (n.s.) | |||
Non-Hispanic white | rs25487 | GG | 1 | [37] | |
GA | 0.8 (0.6–1.0) | n.s. | |||
AA | 0.5 (0.3–0.8) | 0.007 | |||
GA or AA | 0.7 (0.5–1.0) | 0.017 | |||
Korean | rs25487 | GG | 1 | [33] | |
GA | 0.74 (0.359–1.529) | 0.51 (n.s.) | |||
AA | 0.64 (0.228–1.814) | 0.405 (n.s.) | |||
Portuguese | rs25487 | GG | 1 | [35] | |
GA | 0.90 (0.55–1.47) | n.s. | |||
AA | 0.98 (0.46–2.14) | n.s. | |||
Chinese | rs25487 | GG | 1 | [31] | |
GA | 0.75 (0.54–1.04) | 0.0983 (n.s.) | |||
AA | 0.49 (0.28–0.84) | 0.0098 | |||
GA + AA | 0.69 (0.50–0.93) | 0.0191 | |||
Chinese | rs25487 | GG | 1 | [30] | |
GA | 1.25 (0.91–1.71) | n.s. | |||
AA | 1.58 (0.87–2.86) | n.s. | |||
Pakistani | rs1799782 | CC | 1 | [27] | |
CT | 0.88 (0.66–1.16) | 0.38 (n.s.) | |||
TT | 0.71 (0.50–1.01) | 0.05 | |||
CT + TT | 0.55 (0.38–0.81) | 0.002 | |||
Chinese | rs1799782 | CC | 1 | [30] | |
CT | 1.08 (0.79–1.48) | 0.614 (n.s.) | |||
TT | 1.85 (1.11–3.07) | 0.018 | |||
Chinese | rs1799782 | CC | 1 | [32] | |
CT | 1.24 (0.83–1.85) | 0.26 (n.s.) | |||
TT | 2.12 (1.32–3.41) | p < 0.05 | |||
CT + TT | 1.53 (1.10–2.12) | p < 0.05 | |||
Non-Hispanic whites (Teksas) | rs1799782 | CC | 1 | [37] | |
CT | 1.40 (0.90–2.10) | n.s. | |||
TT | 10.4 (1.0–105.5) | 0.048 | |||
CT or TT | 1.50 (1.00–2.30) | n.s. | |||
Korean | rs1799782 | CC | 1 | [33] | |
CT | 0.55 (0.308–0.983) | 0.044 | |||
TT | 0.403 (0.159–1.025) | 0.056 (n.s.) | |||
Portuguese | rs1799782 | CC | 1 | [35] | |
CT | 0.76 (0.44–1.78) | n.s. | |||
TT | n.d. | n.d. | |||
Chinese | rs1799782 | CC | 1 | [31] | |
CT | 1.118 (0.80–1.54) | 0.508 (n.s.) | |||
TT | 2.327 (1.36–3.96) | 0.002 | |||
CT + TT | 1.232 (0.90–1.67) | 0.185 (n.s.) |
Population | SNP Reference (rs) | Genotype | OR (95% CI) | p-Value | References |
---|---|---|---|---|---|
Spanish | rs3218536 | GG | 1 | [36] | |
GA | 1.12 (0.80–1.59) | n.s. | |||
AA | 1.36 (0.33–5.63) | n.s. | |||
Portuguese | rs3218536 | GG | 1 | [44] | |
GA | 0.8 (0.4–1.6) | n.s. | |||
Chinese | rs3218536 | GG | 1 | [31] | |
GA | 1.076 (0.73–1.58) | 0.766 (n.s.) | |||
AA | 1.486 (0.29–7.43) | 0.689 (n.s.) | |||
AA + GA | 1.91 (0.74–1.59) | 0.697 (n.s.) |
Population | SNP Reference (rs) | Genotype | OR (95% CI) | p-Value | References |
---|---|---|---|---|---|
Spanish | rs1799796 | AA | 1 | [36] | |
AG | 0.94 (0.71–1.25) | n.s. | |||
GG | 0.63 (0.34–1.18) | n.s. | |||
Chinese | rs1799796 | AA | 1 | [31] | |
AG | 1.113 (0.80–1.53) | 0.564 (n.s.) | |||
GG | 1.364 (0.77–2.38) | 0.312 (n.s.) | |||
AG + GG | 1.154 (0.84–1.56) | 0.390 (n.s.) | |||
Portuguese | rs861539 | TT | 1 | [44] | |
TM | 0.7 (0.4–1.2) | n.s. | |||
MM | 2.0 (1.1–3.6) | 0.026 | |||
Chinese | rs861539 | CC | 1 | [31] | |
TC | 1.373 (0.98–1.91) | 0.071 (n.s.) | |||
TT | 2.918 (1.65–5.15) | 0.0003 | |||
CT + TT | 1.602 (1.17–2.18) | 0.0033 | |||
non-Hispanic white | rs861539 | CC | 1 | [47] | |
TC | 2.1 (1.2–3.5) | 0.006 | |||
TT | 2.1 (1.0–4.4) | 0.055 (n.s.) | |||
CT or TT | 2.1 (1.3–3.4) | 0.002 | |||
Saudi Arabian | rs861539 | CC | 1 | [29] | |
CT | 0.62 (0.28–1.35) | 0.245 (n.s.) | |||
TT | 1.51 (0.57–4.01) | 0.429 (n.s.) | |||
CT + TT | 0.79 (0.39–1.58) | 0.592 (n.s.) | |||
Chinese | rs1799794 | AA | 1 | [31] | |
AG | 1.374 (0.99–1.90) | 0.057 (n.s.) | |||
GG | 1.437 (0.85–2.40) | 0.182 (n.s.) | |||
AG + GG | 1.386 (1.01–1.88) | 0.042 | |||
Chinese | rs56377012 | AA | 1 | [31] | |
AG | 0.940 (0.57–1.53) | 0.564 (n.s.) | |||
GG | 2.360 (0.76–7.30) | 0.156 (n.s.) | |||
AG + GG | 1.078 (0.68–1.69) | 0.818 (n.s.) |
Population | SNP Reference (rs) | Genotype | OR (95% CI) | p-Value | References |
---|---|---|---|---|---|
Portuguese | rs1805377 | GG | 1 | [53] | |
GA | 0.6 (0.31–1.14) | n.s. | |||
AA | 0.31 (0.04–2.53) | n.s. | |||
Saudi Arabian | rs1805377 | GG | 1 | [29] | |
GA | 0.57 (0.28–1.14) | 0.134 (n.s.) | |||
AA | 0.64 (0.14–3.01) | 0.738 (n.s.) | |||
GA + AA | 0.58 (0.30–1.12) | 0.11 (n.s.) | |||
Chinese | rs2035990 | CC | 1 | [35] | |
CT | 0.811 (0.511–1.285) | 0.371 (n.s.) | |||
TT | 0.854 (0.501–1.457) | 0.562 (n.s.) | |||
Portuguese | rs28360135 | GG | 1 | [53] | |
GA | 1.24 (0.59–2.59) | n.s. | |||
AA | n.d. | n.d. |
Population | SNP Reference (rs) | Genotype | OR (95% CI) | p-Value | References |
---|---|---|---|---|---|
Portuguese | rs2440 | GG | 1 | [53] | |
GA | 1.34 (0.78–2.28) | n.s. | |||
AA | 1.56 (0.77–3.17) | n.s. | |||
Chinese | rs2440 | AA | 1 | [35] | |
AG | 0.911 (0.605–1.373) | 0.657 (n.s.) | |||
GG | 0.797 (0.390–1.631) | 0.535 (n.s.) | |||
Portuguese | rs1051677 | TT | 1 | [53] | |
TC | 1.28 (0.29–4.36) | n.s. | |||
CC | 0.70 (0.07–6.98) | n.s. | |||
Portuguese | rs6941 | CC | 1 | [53] | |
CA | 1.19 (0.68–2.07) | n.s. | |||
AA | 0.70 (0.70–7.01) | n.s. | |||
Portuguese | rs1051685 | AA | 1 | [53] | |
AG | 1.19 (0.68–2.07) | n.s. | |||
GG | 0.70 (0.07–7.01) | n.s. |
Population | SNP Reference (rs) | Genotype | OR (95% CI) | p-Value | References |
---|---|---|---|---|---|
Iranian | rs7830743 | CC vs. TT | 1.16 (0.25–5.28) | 0.8490 (n.s.) | [62] |
TC vs. TT | 2.42 (1.55–3.81) | 0.0001 | |||
CC or TC vs. TT | 2.32 (1.49–3.61) | 0.0002 | |||
CC vs. TC or TT | 0.88 (0.19–4.00) | 0.8710 (n.s.) | |||
Saudi Arabian | rs7830743 | AA | 1 | [29] | |
AG | 1.30 (0.57–2.95) | 0.515 (n.s.) | |||
GG | 4.97 (1.06–23.4) | 0.060 (n.s.) | |||
AG + GG | 1.59 (0.75–3.36) | 0.223 (n.s.) | |||
Non-Hispanic white | rs7003908 | TT | 1 | [47] | |
TG | 1.2 (0.7–2.0) | n.s. | |||
GG | 1.0 (0.5–2.2) | n.s. | |||
TG or GG | 1.2 (0.7–1.9) | n.s. |
Population | SNP Reference (rs) | Genotype | OR (95% CI) | p-Value | References |
---|---|---|---|---|---|
Russian and Belarus | rs1042522 | GG | 1 | [71] | |
GC | 1.02 (0.70–1.47) | 0.89 (n.s.) | |||
CC | 1.16 (0.63–2.14) | 0.38 (n.s.) | |||
Brazilians | rs1042522 | GG | 0.15 (0.06–0.39) | p < 0.0001 | [69] |
GC | 3.65 (1.69–7.91) | 0.001 | |||
CC | 1.91 (0.75–4.85) | 0.26 (n.s.) | |||
Iranian-Azeri | rs17880604 | GG | 1 | [72] | |
GC | 0.583 (0.126–2.313) | 0.564 (n.s.) | |||
CC | n.d. | n.d. |
Population | SNP Reference (rs) | Genotype | OR (95% CI) | p-Value | References |
---|---|---|---|---|---|
Chinese | rs11852786 | CC | 1 | [54] | |
CG | 1.491 (0.971–2.288) | 0.068 (n.s.) | |||
GG | 2.567 (0.869–7.585) | 0.088 (n.s.) | |||
non-Hispanic white | rs1801320 | GG | 1 | [47] | |
GC or CC | 1.5 (0.7–3.0) | n.s. | |||
Iranian | rs1801320 | GG | 1 | [43] | |
GC | 0.95 (0.54–1.67) | 0.84 (n.s.) | |||
Chinese | rs963917 | AA | 1 | [54] | |
AG | 1.179 (0.748–1.859) | 0.479 (n.s.) | |||
GG | 0.933 (0.532–1.634) | 0.808 (n.s.) | |||
Portuguese | rs1801321 | GG | 1 | [44] | |
GT | 1.5 (0.8–2.5) | n.s. | |||
TT | 1.9 (1.0–3.5) | 0.057 (n.s.) | |||
Saudi Arabian | rs304267 | TT | 1 | [29] | |
TC | 0.89 (0.46–1.72) | 0.741 (n.s.) | |||
CC | 0.54 (0.19–1.54) | 0.337 (n.s.) | |||
TC + CC | 0.80 (0.43–1.50) | 0.519 (n.s.) | |||
Saudi Arabian | rs304270 | CC | 1 | [29] | |
CT | 1.63 (0.81–3.27) | 0.174 (n.s.) | |||
TT | 2.55 (0.94–6.91) | 0.084 (n.s.) | |||
CT + TT | 1.78 (0.91–3.46) | 0.107 (n.s.) |
Population | SNP Reference (rs) | Genotype | OR (95% CI) | p-Value | References |
---|---|---|---|---|---|
Saudi Arabian | rs11226 | CC | 1 | [29] | |
CT | 1.53 (1.03–2.28) | 0.036 | |||
CT | n.d. | n.d. | |||
CT + TT | 1.92 (1.31–2.82) | p < 0.001 | |||
Iranian | rs11226 | CC | 1 | [43] | |
CT + TT | 1.04 (0.69–1.59) | 0.83 (n.s.) | |||
Saudi Arabian | rs4987206 | CC | 1 | [29] | |
CG | 15.57 (6.56–36.98) | p < 0.001 | |||
GG | n.d. | n.d. | |||
CG + GG | 17.58 (7.44–41.58) | p < 0.001 |
Population | SNP Reference (rs) | Genotype | OR (95% CI) | p-Value | References |
---|---|---|---|---|---|
non-Hispanic white or other | A1988G | AA | 1 | [78] | |
AG | 0.63 (0.45–0.87) | 0.036 | |||
GG | 1.14 (0.70–1.87) | n.s. | |||
AG + GG | 0.72 (0.53–0.97) | 0.026 | |||
non-Hispanic white or other | rs1799950 | AA | 1 | 0.017 | [78] |
AG | 1.16 (0.72–1.85) | n.s. | |||
GG | n.d. | n.d. | |||
AG + GG | 1.29 (0.82–2.04) | 0.34 (n.s.) | |||
non-Hispanic white or other | rs799917 | CC | 1 | 0.22 (n.s.) | [78] |
CT | 0.73 (0.52–1.00) | n.s. | |||
TT | 0.70 (0.45–1.11) | n.s. | |||
CT + TT | 0.72 (0.53–0.98) | 0.09 | |||
non-Hispanic white or other | rs16941 | AA | 1 | 0.14 (n.s.) | [78] |
AG | 0.71 (0.52–0.98) | n.s. | |||
GG | 1.11 (0.68–1.82) | n.s. | |||
AG + GG | 0.78 (0.58–1.05) | 0.11 (n.s.) | |||
Polish | rs16941 | AA | 1 | [80] | |
AG + GG | 1.31 (1.04–1.67) | 0.021 | |||
non-Hispanic white or other | rs16842 | AA | 1 | [78] | |
AG | 0.68 (0.50–0.94) | n.s. | |||
GG | 0.94 (0.55–1.60) | n.s. | |||
AG + GG | 0.72 (0.54–0.98) | 0.051 | |||
non-Hispanic white or other | rs1060915 | CC | 1 | 0.18 (n.s.) | [78] |
CT | 0.74 (0.53–1.03) | n.s. | |||
TT | 1.11 (0.71–1.75) | n.s. | |||
CT + TT | 0.82 (0.60–1.11) | 0.15 (n.s.) | |||
non-Hispanic white or other | rs1799966 | AA | 1 | 0.32 (n.s.) | [78] |
AG | 0.75 (0.54–1.02) | n.s. | |||
GG | 1.09 (0.65–1.85) | n.s. | |||
AG + GG | 0.80 (0.59–1.08) | 0.17 (n.s.) | |||
Chinese | rs12516 | GG | 1 | [54] | |
AG | 0.935 (0.620–1.410) | 0.748 (n.s.) | |||
AA | 1.069 (0.562–2.033) | 0.839 (n.s.) | |||
Chinese | rs8176318 | CC | 1 | [54] | |
AC | 1.079 (0.715–1.629) | 0.717 (n.s.) | |||
AA | 1.087 (0.570–2.047) | 0.800 (n.s.) |
Population | SNP Reference (rs) | Genotype | OR (95% CI) | p-Value | References |
---|---|---|---|---|---|
Chinese | rs15869 | AA | 1 | [54] | |
AC | 1.079 (0.719–1.619) | 0.714 (n.s.) | |||
CC | 2.595 (1.091–6.171) | 0.031 |
Population | SNP Reference (rs) | Genotype | OR (95% CI) | p-Value | References |
---|---|---|---|---|---|
Chinese | rs3136820 | AA | 1 | [30] | |
AG | 1.08 (0.78–1.49) | n.s. | |||
GG | 1.17 (0.76–1.80) | n.s. | |||
Portuguese | rs3136820 | AA | 1 | [35] | |
AG | 0.91 (0.52–1.60) | n.s. | |||
GG | 0.80 (0.43–1.52) | n.s. | |||
Kazakh and Russian | rs1130409 | DD | 1 | [83] | |
DE | 1.0 (0.4–2.6) | n.s. | |||
EE | 1.4 (0.5–4.1) | n.s. |
Population | SNP Reference (rs) | Genotype | OR (95% CI) | p-Value | References |
---|---|---|---|---|---|
Chinese | rs1136410 | AA | 1 | [30] | |
AG | 1.21 (0.87–1.70) | n.s. | |||
GG | 1.39 (0.91–2.14) | n.s. | |||
Portuguese | rs1136410 | AA | 1 | [35] | |
AG | 0.79 (0.46–1.35) | n.s. | |||
Pakistani | rs1136410 | TT | 1 | [87] | |
TC | 1.17 (0.85–1.62) | 0.31 (n.s.) | |||
CC | 1.30 (0.99–1.71) | 0.05 | |||
CC + TC | 1.36 (0.97–1.89) | 0.06 (n.s.) | |||
Pakistani | rs1805414 | TT | 1 | [87] | |
TC | 0.80 (0.65–1.00) | 0.05 | |||
CC | 1.29 (0.94–1.77) | 0.1 (n.s.) | |||
CC + TC | 0.43 (0.27–0.67) | 0.003 | |||
Pakistani | rs1805404 | CC | 1 | [87] | |
CT | 0.93 (0.69–1.27) | 0.69 (n.s.) | |||
TT | 0.63 (0.40–1.00) | 0.05 | |||
TT + CT | 0.77 (0.57–1.02) | 0.07 (n.s.) |
Population | SNP Reference (rs) | Genotype | OR (95% CI) | p-Value | References |
---|---|---|---|---|---|
Spanish | rs1052133 | CC | 1 | [36] | |
CG | 0.97 (0.72–1.31) | n.s. | |||
GG | 1.28 (0.65–2.51) | n.s. | |||
Portuguese | rs1052133 | CC | 1 | [35] | |
CG | 0.72 (0.43–1.19) | n.s. |
Population | SNP Reference (rs) | Genotype | OR (95% CI) | p-Value | References |
---|---|---|---|---|---|
Portuguese | rs3219489 | CC | 1 | [35] | |
CG | 0.68 (0.42–1.10) | n.s. | |||
GG | 1.14 (0.35–3.73) | n.s. |
Population | SNP Reference (rs) | Genotype | OR (95% CI) | p-Value | References |
---|---|---|---|---|---|
Polish | rs1801516 | GG | 1 | [80] | |
GA + AA | 0.82 (0.46–1.46) | 0.499 (n.s.) | |||
French Polynesian | rs1801516 | GG | 1 | [98] | |
GA | 3.13 (1.17–8.31) | 0.02 | |||
Cuban | rs1801516 | GG | 1 | [99] | |
GA | 1.2 (0.7–2.0) | 0.8 (n.s.) | |||
AA | n.d. | n.d. | |||
non-Hispanic white | rs1801516 | GG | 1 | [97] | |
GA + AA | 0.9 (0.7–1.1) | n.s. | |||
Russian and Belarus | rs1801516 | GG | 1 | [71] | |
GA | 0.75 (0.49–1.15) | 0.31 (n.s.) | |||
AA | 0.61 (0.21–1.77) | 0.45 (n.s.) | |||
Chinese | rs664677 | CC + TT | 1 | [95] | |
CT | 1.15 (0.86–1.55) | 0.34 (n.s.) | |||
Russian and Belarus | rs664677 | TT | 1 | [71] | |
TC | 1.03 (0.70–1.50) | 0.74 (n.s.) | |||
CC | 1.19 (0.70–2.04) | 0.47 (n.s.) | |||
Chinese | rs373759 | GG + AA | 1 | [95] | |
AG | 1.38 (1.03–1.87) | 0.03 | |||
Chinese | rs4988099 | AA + GA | 1 | [95] | |
GG | 0.49 (0.04–5.47) | 0.55 (n.s.) | |||
Chinese | rs189037 | GG | 1 | [95] | |
GA + AA | 1.17 (0.84–1.64) | 0.34 (n.s.) | |||
non-Hispanic white | rs189037 | AA | 1 | [97] | |
AG + GG | 0.8 (0.6–1.0) | 0.04 | |||
Russian and Belarus | rs609429 | CC | 1 | [71] | |
CG | 1.10 (0.75–1.62) | 0.55 (n.s.) | |||
GG | 1.14 (0.69–1.89) | 0.84 (n.s.) | |||
non-Hispanic white | rs228589 | TT | 1 | [97] | |
TA + AA | 0.8 (0.6–1.0) | n.s. | |||
non-Hispanic white | rs1800054 | CC | 1 | [97] | |
CG | 1.6 (0.8–3.4) | n.s. | |||
non-Hispanic white | rs4986761 | TT | 1 | [97] | |
TC | 1.2 (0.6–2.4) | n.s. | |||
non-Hispanic white | rs1800057 | CC | 1 | [97] | |
CG + GG | 1.9 (1.1–3.1) | 0.02 |
Population | SNP Reference (rs) | Genotype | OR (95% CI) | p-Value | References |
---|---|---|---|---|---|
Polish | rs17879961 | CC | 1 | [80] | |
CT + CC | 2.21 (1.69–2.88) | 9.60 × 10−10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gielecińska, A.; Kciuk, M.; Kołat, D.; Kruczkowska, W.; Kontek, R. Polymorphisms of DNA Repair Genes in Thyroid Cancer. Int. J. Mol. Sci. 2024, 25, 5995. https://doi.org/10.3390/ijms25115995
Gielecińska A, Kciuk M, Kołat D, Kruczkowska W, Kontek R. Polymorphisms of DNA Repair Genes in Thyroid Cancer. International Journal of Molecular Sciences. 2024; 25(11):5995. https://doi.org/10.3390/ijms25115995
Chicago/Turabian StyleGielecińska, Adrianna, Mateusz Kciuk, Damian Kołat, Weronika Kruczkowska, and Renata Kontek. 2024. "Polymorphisms of DNA Repair Genes in Thyroid Cancer" International Journal of Molecular Sciences 25, no. 11: 5995. https://doi.org/10.3390/ijms25115995
APA StyleGielecińska, A., Kciuk, M., Kołat, D., Kruczkowska, W., & Kontek, R. (2024). Polymorphisms of DNA Repair Genes in Thyroid Cancer. International Journal of Molecular Sciences, 25(11), 5995. https://doi.org/10.3390/ijms25115995