Convenient Preparation, Thermal Properties and X-ray Structure Determination of 2,3-Dihydro-5,6,7,8-tetranitro-1,4-benzodioxine (TNBD): A Promising High-Energy-Density Material
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure and Properties Investigation
2.1.1. Physicochemical Properties
2.1.2. Chemical/Hydrolytic Stability—Preliminary Findings
2.1.3. Spectral Properties
2.1.4. Thermal Properties
2.1.5. Crystal Properties and Structure Factors Leading to High Density
Empirical formula | C8H4N4O10 |
Formula weight | 316.138 |
Temperature | 173(2) K (−100 °C) |
Wavelength | 0.71073 Å |
Crystal system | Monoclinic |
Space group | C 2/c |
Unit cell dimensions | a = 10.9946(4), A alpha = 90.0 deg. b = 10.1532(4), A beta = 94.415(2) deg. c = 10.1814(3), A gamma = 90.0 deg. |
Volume | 1133.18(7) Å3 |
Z | 4 |
Density (calculated) | 1.853 g/cm3 |
Density (measured, pycnom.) | 1.84 g/cm3 |
Absorption coefficient | 0.176 mm−1 |
F(000) | 640 |
Crystal size | 0.31 × 0.22 × 0.21 mm |
Two theta max. for data | 58.0 deg. |
Reflections collected | 2368 |
Independent reflections | 1464 [R(int) = 0.020] |
Refinement method | Full-matrix least-squares on F2 |
Data/restraints/parameters | 1292/0/108 |
Final R indices [I > 3sigma(I)] | R1 = 0.032, wR2 = 0.077 |
R indices (all data) | R1 = 0.041, wR2 = 0.116 |
Largest diff. peak and hole | 0.41 and −0.37 e.Å−3 |
2.1.6. Electrostatic Potential Map (MEP) for TNBD Molecule
2.1.7. Main Calculated Detonation Performance Parameters of TNBD in Comparison with Known Energetic Materials Possessing Close Structural Patterns
Detonation Parameters | TNBD | DNAN, 2,4-dinitro- anisole [2] | TNAN, 2,4,6-Trinitro- anisole [2] | TNT [1] | Tetryl [1] |
---|---|---|---|---|---|
Oxygen balance, % | −40.48 | −96.90 | −62.50 | −73.97 | −47.40 |
Detonation temperature (K) | 3874 | 2743 | 2366 | 3744 | 3370 |
Detonation pressure (kbar) | 277.84 | 159 | 205 | 202 | 260 |
Detonation velocity (m/s) | 7726.9 at d = 1.85 g/cm3 | 5706 at d = 1.341 g/cm3 | 6800 at d = 1.57 g/cm3 | 6950 at d = 1.64 g/cm3 | 7570 at d = 1.71 g/cm3 |
Volume of detonation products (L/kg) | 555.8 | 626 | 760 | 730 | 800 |
3. Materials and Methods
3.1. General Methods
3.2. Optimized Synthesis of TNBD by Nitration of 6,7-dinitro-1,4-benzodioxane (6,7-dinitro-2,3-dihydro-1,4-benzodioxine)
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Klapötke, T.M. Chemistry of High-Energy Materials, 6th ed.; Walter de Gruyter: Berlin, Germany; Boston, MA, USA, 2022; pp. 1–937. ISBN 978-3110739497. [Google Scholar]
- Meyer, R.; Köhler, J.; Homburg, A. Explosives, 6th ed.; Wiley-WCH Verlag Gmbh & Co.: Hoboken, NJ, USA, 2007; pp. 1–433. ISBN 978-3-527-61703-6. [Google Scholar]
- Agrawal, J.P.; Hodgson, R. Organic Chemistry of Explosives; Wiley Interscience: New York, NY, USA, 2007; pp. 1–416. ISBN 978-0-470-02967-1. [Google Scholar]
- Urbanski, T. Chemistry and Technology of Explosives; Khimiya: Warszawa, Poland, 1964; Volume 1, pp. 1–635. [Google Scholar]
- Orlova, Y.Y. Chemistry and Technology of High Explosives; Khimiya: Leningrad, Russia, 1973; pp. 1–686. (In Russian) [Google Scholar]
- Zeman, S. Influence of the energy content and its outputs on sensitivity of polynitroarenes. J. Energ. Mater. 2019, 37, 445–458. [Google Scholar] [CrossRef]
- Matyáš, R.; Pachman, J. Primary Explosives; Springer: Berlin/Heidelberg, Germany, 2013; pp. 1–338. ISBN 978-3-642-28436-6. [Google Scholar] [CrossRef]
- Östmark, H.; Bemm, U.; Bergman, H.; Langlet, A. N-Guanylurea-Dinitramide: A New Energetic Material with Low Sensitivity for Propellants and Explosives Applications. Termochim. Acta 2002, 384, 253–259. [Google Scholar] [CrossRef]
- Coburn, M.D.; Harris, B.W.; Lee, K.-Y.; Stinecipher, M.M.; Heyden, H.H. Explosives synthesis at Los Alamos. Ind. Eng. Chem. Prod. Res. Dev. 1986, 25, 68–72. [Google Scholar] [CrossRef]
- Tselinskii, I.V. Applications of energetic materials in engineering, technology and national economy. Soros Educ. J. 1997, 11, 46–52. [Google Scholar]
- Zeman, S. Sensitivities of high energy compounds. In High Energy Density Compounds; Structure and Bonding; Klapoetke, T., Ed.; Springer: Berlin/Heidelberg, Germany, 2007; Volume 125, pp. 195–271. [Google Scholar] [CrossRef]
- Akhavan, J. The Chemistry of Explosives, 4th ed.; RSC: London, UK, 2022; pp. 1–359. ISBN 978-1-83916-446-0. [Google Scholar]
- Agrawal, J.P. Past, Present and Future of Thermally Stable Explosives. Cent. Eur. J. Energ. Mater. 2012, 9, 273–290. [Google Scholar]
- Bellamy, A.; Ward, S.J.; Golding, P. A New Synthetic Route to 1,3,5-Triamino-2,4,6-Trinitrobenzene (TATB). Propellants Explos. Pyrotech. 2002, 27, 49–58. [Google Scholar] [CrossRef]
- Pagoria, P.F.; Lee, G.S.; Mitchell, A.R.; Schmidt, R.D. A review of energetic materials synthesis. Thermochim. Acta 2002, 84, 187–204. [Google Scholar] [CrossRef]
- Cao, W.L.; Li, Z.M.; Yang, J.Q.; Zhang, J.G. Recent advances on the nitrogen-rich 1,2,4-oxadiazole-azoles-based energetic materials. Def. Technol. 2022, 18, 344–367. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Jabeen, F.; Gopinathan-Pillai, G.; Arami, J.A.; Killian, B.J.; Stiegler, K.D.; Yudewitz, D.S.; Thiemann, P.L.; Turk, J.D.; et al. Synthesis and Properties of Energetic 1,2,4-Oxadiazoles. Eur. J. Org. Chem. 2015, 34, 7468–7474. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, H.; Killian, B.J.; Jabeen, F.; Pillai, G.G.; Berman, H.M.; Mathelier, M.; Sibble, A.J.; Yeung, J.; Zhou, W.; et al. Synthesis, Characterization and Energetic Properties of 1,3,4-Oxadiazoles. Eur. J. Org. Chem. 2015, 23, 5183–5188. [Google Scholar] [CrossRef]
- Xiong, H.; Yang, H.; Lei, C.; Yang, P.; Hu, W.; Cheng, G. Combinations of furoxan and 1,2,4-oxadiazole for the generation of high performance energetic materials. Dalton Trans. 2019, 48, 14705–14711. [Google Scholar] [CrossRef]
- Fershtat, L.L.; Makhova, N.N. 1,2,5-Oxadiazole-Based High-Energy-Density Materials: Synthesis and Performance. ChemPlusChem 2020, 85, 13–42. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, M.; Zhang, J.; Zhai, L.; Cao, Y.; Wang, X.; Qiu, L.; Wang, B.; Meng, Z. Thermal chemistry and decomposition behaviors of energetic materials with trimerizing furoxan skeleton. Propellants Explos. Pyrotech. 2024, 49, e202300267. [Google Scholar] [CrossRef]
- Qian, L.; Yang, H.; Xiong, H.; Gu, H.; Tang, J.; Xue, Y.; Cheng, G. Low sensitive energetic material based on the combination of furoxan and 1,3,4-oxadiazole structures. Energ. Mater. Front. 2020, 1, 74–82. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Z.; Ge, Z.; Wang, B.; Lai, W.; Luo, Y. Study of furoxan derivatives for energetic applications. Chin. J. Chem. 2013, 31, 520–524. [Google Scholar] [CrossRef]
- Larin, A.A.; Bystrov, D.M.; Fershtat, L.L.; Konnov, A.A.; Makhova, N.N.; Monogarov, K.A.; Meerov, D.B.; Melnikov, I.N.; Pivkina, A.N.; Kiselev, V.G.; et al. Nitro-, cyano-, and methylfuroxans, and their bis-derivatives: From green primary to melt-cast explosives. Molecules 2020, 25, 5836. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhang, X.; Pang, S.; He, C. Enhanced Energetic Performance via the Combination of Furoxan and Oxa-[5,5]bicyclic Structures. Int. J. Mol. Sci. 2023, 24, 8846. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Dou, H.; He, C.; Pang, S. Boosting the energetic performance of trinitromethyl-1,2,4-oxadiazole moiety by increasing nitrogen-oxygen in the bridge. Int. J. Mol. Sci. 2022, 23, 10002. [Google Scholar] [CrossRef] [PubMed]
- Zlotin, S.G.; Churakov, A.M.; Egorov, M.P.; Fershtat, L.L.; Klenov, M.S.; Kuchurov, I.V.; Makhova, N.N.; Smirnov, G.A.; Tomilov, Y.V.; Tartakovsky, V.A. Advanced energetic materials: Novel strategies and versatile applications. Mendeleev Commun. 2021, 31, 731–749. [Google Scholar] [CrossRef]
- Walker, R.W.; Morley, C. Basic chemistry of combustion. In Comprehensive Chemical Kinetics; Pilling, M.J., Ed.; Elsevier: Amsterdam, The Netherlands, 1997; Volume 35, pp. 1–124. ISBN 9780444824851. [Google Scholar] [CrossRef]
- Sainsbury, M. Compounds containing a Six-membered Ring having two Hetero-atoms from Group VIB of the Periodic Table: Dioxanes, Oxathianes and Dithianes. In Rodd’s Chemistry of Carbon Compounds; Elsevier: Amsterdam, The Netherlands, 1964; pp. 375–426. [Google Scholar] [CrossRef]
- Dao, L.H.; Hopkinson, A.C.; Lee-Ruff, E. Reactions of bishalomethylarenes with superoxide. Can. J. Chem. 1977, 55, 3791–3796. [Google Scholar] [CrossRef]
- Baran, A.; Aydin, G.; Savran, T.; Sahin, E.; Balci, M. Trisequential Photooxygenation Reaction: Application to the Synthesis of Carbasugars. Org. Lett. 2013, 15, 4350–4353. [Google Scholar] [CrossRef] [PubMed]
- Roth, W.R.; Scholz, B.P. Zur Energiedelle von Diradikalen, II. Das 2,3-Dimethylen-1,4-cyclohexadiyl. Chem. Ber. 1982, 115, 1197–1208. [Google Scholar] [CrossRef]
- Baker, W. CCXL.Cyclic esters of sulphuric acid. Part I. The reactions of methylene sulphate. J. Chem. Soc. 1931, 1765–1771. [Google Scholar] [CrossRef]
- Pilkington, L.I.; Barker, D. Synthesis and biology of 1,4-benzodioxane lignan natural products. Nat. Prod. Rep. 2015, 32, 1369–1388. [Google Scholar] [CrossRef] [PubMed]
- Vorländer, D. Ethylenic salts of bibasic acids and phenols. Justus Liebigs Ann. Chem. 1894, 280, 167–206. [Google Scholar] [CrossRef]
- Matos, M.A.R.; Sousa, C.C.; Morais, V.M. Experimental and computational thermochemistry of 1,4-benzodioxan and its 6-R derivatives. J. Phys. Chem. A 2008, 112, 7961–7968. [Google Scholar] [CrossRef] [PubMed]
- Bolchi, C.; Bavo, F.; Appiani, R.; Roda, G.; Pallavicini, M. 1,4-Benzodioxane, an evergreen, versatile scaffold in medicinal chemistry: A review of its recent applications in drug design. Eur. J. Med. Chem. 2020, 200, 112419. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, B.; Habibullah, H.; Khan, S. Chemistry and pharmacology of benzodioxanes (Microreview). Org. Chem. Indian J. OCAIJ 2008, 4, 65–77. [Google Scholar]
- Liu, Z.; Zhang, Y.; Dong, J.; Fang, Y.; Jiang, Y.; Yang, X.; Cheng, F. Synthesis and antitumor activity of novel hybrid compounds between 1,4-benzodioxane and imidazolium salts. Arch. Pharm. 2022, 355, 2200109. [Google Scholar] [CrossRef] [PubMed]
- Daukshas, V.K.; Udrenaite, E.B. Advances in chemistry in the benzo-1,4-dioxane series. Chem. Heterocycl. Compd. 1975, 11, 1003–1017. [Google Scholar] [CrossRef]
- Daukshas, V.K.; Purvanetskas, G.V.; Balyavichyus, L.Z.; Udrenaite, E.B.; Gineitite, V.L. Electrophilic substitution of acetamido- and acetoxybenzo-1,4-dioxanes. Chem. Heterocycl. Compd. 1977, 13, 373. [Google Scholar] [CrossRef]
- Labanauskas, L.K.; Brukstus, A.B.; Gaidelis, P.G.; Buchinskaite, V.A.; Udrenaite, E.B.; Dauksas, V.K. Synthesis and anti-inflammatory activity of new derivatives of 6-benzoyl-1,4-benzodioxane. Pharm. Chem. J. 2000, 34, 353–355. [Google Scholar] [CrossRef]
- Labanauskas, L.; Udrėnaitė, E.; Gaidelis, P.; Brukštus, A. Synthesis of 5-(2-, 3- and 4-methoxyphenyl)-4H-1, 2,4-triazole-3-thiol derivatives exhibiting anti-inflammatory activity. Il Farm. 2004, 59, 255–259. [Google Scholar] [CrossRef] [PubMed]
- Labanauskas, L.; Brukstus, A.; Udrenaite, E.; Bucinskaite, V.; Susvilo, I.; Urbelis, G. Synthesis and anti-inflammatory activity of 1-acylaminoalkyl-3,4-dialkoxybenzene derivatives. Il Farm. 2005, 60, 203–207. [Google Scholar] [CrossRef] [PubMed]
- Labanauskas, L.; Bucinskaite, V.; Brukstus, A.; Urbelis, G.; Sharlauskas, I. Synthesis of a Novel Heterocyclic System: 3-Chloro-7,8-dihydro [1,4]dioxino[2″,3″:4′,5′]benzo[4,5]imidazo[1,2-c][1,2,3] thiadiazole. Chem. Het. Comp. 2005, 41, 802–803. [Google Scholar] [CrossRef]
- Šarlauskas, J.; Miliukienė, V.; Anusevičius, Ž.; Misevičienė, L.; Krikštopaitis, K.; Nemeikaitė-Čėnienė, A.; Vitėnienė, I.; Čėnas, N. Redox properties and prooxidant cytotoxicity of benzofuroxans: A comparison with nitrobenzenes. Chemija 2009, 20, 109–115. [Google Scholar]
- Jonušis, M.; Šteinys, L.; Bukšnaitienė, R.; Čikotienė, I. Synthesis of Alkoxymethyl Groups Containing Isoxazoles and Chromones. Synthesis 2017, 49, 1122–1130. [Google Scholar] [CrossRef]
- Šarlauskas, J. Polynitrobenzenes containing alkoxy and alkylenedioxy groups: Potential HEMs and precursors of new energetic materials. Cent. Eur. J. Energ. Mater. 2010, 7, 313–324. [Google Scholar]
- Vogelsanger, B. Chemical stability, compatibility and shelf life of explosives. Chimia 2004, 58, 401–408. [Google Scholar] [CrossRef]
- Dashevskii, V.G.; Struchkov, Y.T.; Akopyan, Z.A. Conformation of overloaded aromatic nitrocompounds. J. Struct. Chem. 1967, 7, 555–561. [Google Scholar] [CrossRef]
- D Akopyan, Z.A.; Struchkov, Y.T.; Dashevskii, V.G. Crystal and molecular structure of hexanitrobenzene. J. Struct. Chem. 1966, 7, 385–392. [Google Scholar] [CrossRef]
- Wang, R.; Liu, J.; He, X.; Xie, W.; Zhang, C. Decoding hexanitrobenzene (HNB) and 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) as two distinctive energetic nitrobenzene compounds by machine learning. Phys. Chem. Chem. Phys. 2022, 24, 9875–9884. [Google Scholar] [CrossRef] [PubMed]
- O’Sullivan, O.T.; Zdilla, M.J. Properties and promise of catenated nitrogen systems as high-energy-density materials. Chem. Rev. 2020, 120, 5682–5744. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Hsu, C.K.; Chang, C.L. A study on the thermal decomposition behaviors of PETN, RDX, HNS and HMX. Thermochim. Acta 2002, 392, 173–176. [Google Scholar] [CrossRef]
- Kitaigorodsky, A.I. Molecular Crystals and Molecules; Academic Press: New York, NY, USA, 1973; pp. 1–553. ISBN 0124105505. [Google Scholar]
- Linghu, Y.; Zhang, C. Packing coeffcient determining the packing density difference of CHON-containing isomers. Energ. Mater. Front. 2024, in press, corrected proof. [Google Scholar] [CrossRef]
- Sućeska, M. Calculation of Detonation Properties of CHNO Explosives. Propellants Explos. Pyrotech. 1991, 16, 197–202. [Google Scholar] [CrossRef]
- Sućeska, M. Test Methods for Explosives; Springer: New York, NY, USA, 1995; pp. 188–200. [Google Scholar]
- Sućeska, M. Evaluation of Detonation Energy from EXPLO 5 Computer Results. Propellants Explos. Pyrotech. 1999, 24, 280–285. [Google Scholar] [CrossRef]
- Takakis, I.M.; Hadjimihalakis, P.M. Influence of the heterocyclic side ring on orientation during nitrations of 1,2-alkylenedioxy-annelated benzenes and their mononitro derivatives. J. Het. Chem. 1991, 28, 625–634. [Google Scholar] [CrossRef]
- Heertjes, P.M.; Dahmen, E.A.M.F.; Wierda, T.G. The nitroderivatives of 1:2 ethylenedioxybenzene (pyrocatecholethylene ether) obtained by direct nitration. Rec. Trav. Chim. 1941, 60, 569–576. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šarlauskas, J. Convenient Preparation, Thermal Properties and X-ray Structure Determination of 2,3-Dihydro-5,6,7,8-tetranitro-1,4-benzodioxine (TNBD): A Promising High-Energy-Density Material. Int. J. Mol. Sci. 2024, 25, 5099. https://doi.org/10.3390/ijms25105099
Šarlauskas J. Convenient Preparation, Thermal Properties and X-ray Structure Determination of 2,3-Dihydro-5,6,7,8-tetranitro-1,4-benzodioxine (TNBD): A Promising High-Energy-Density Material. International Journal of Molecular Sciences. 2024; 25(10):5099. https://doi.org/10.3390/ijms25105099
Chicago/Turabian StyleŠarlauskas, Jonas. 2024. "Convenient Preparation, Thermal Properties and X-ray Structure Determination of 2,3-Dihydro-5,6,7,8-tetranitro-1,4-benzodioxine (TNBD): A Promising High-Energy-Density Material" International Journal of Molecular Sciences 25, no. 10: 5099. https://doi.org/10.3390/ijms25105099
APA StyleŠarlauskas, J. (2024). Convenient Preparation, Thermal Properties and X-ray Structure Determination of 2,3-Dihydro-5,6,7,8-tetranitro-1,4-benzodioxine (TNBD): A Promising High-Energy-Density Material. International Journal of Molecular Sciences, 25(10), 5099. https://doi.org/10.3390/ijms25105099