Nanoparticle-Mediated Hyperthermia and Cytotoxicity Mechanisms in Cancer
Abstract
:1. Introduction
2. Methods and Results
3. Hyperthermia: Properties and Mechanism of Action
4. Nanoparticles: Definition & Remarks
5. Nanoparticle-Associated HTT in Cancer: Current Evidence
5.1. Adenocarcinoma
5.2. Bone
5.3. Brain
5.4. Breast
5.5. Cervix
5.6. Colon
5.7. Liver
5.8. Lungs
5.9. Prostate
5.10. Pancreas
5.11. Sarcoma
5.12. Skin
Tumor Model | Method | Core Material | Coating | Cargo | Cell Line | References |
---|---|---|---|---|---|---|
Adenocarcinoma | UIH 1 | Fe3O4 | - | - | Swiss albino mice injected with EACs | [57] |
Brain | PIH 2 | MnGdO | PDA-PEG | - | Nude mice injected with U-87 MG cells | [59] |
Breast | MIH 3 | Fe3O4 | Dextran-folic acid | - | BALB/c mice | [62] |
MIH | Fe3O4 | PAMAM dendrimer | - | Bagg albino strain C (BALB/c) mice | [64,69] | |
MIH | MoS2/CoFe2O4 | - | - | BALB/c mice tumor | [68] | |
PIH | Melanin | - | - | BALB/c nude mice injected with MDA-MB-231 cells | [70] | |
PIH | SPNs | PEG | - | BALB/c mice injected with 4T1 cells | [86] | |
DR 4 PIH | Gold | Liposome | Doxorubicin | BALB/c mice bearing MCF-7 tumors | [78] | |
DR PIH | Fluorinated aza-boron-dipyrromethen | - | Doxorubicin | Mice bearing 4T1 tumors | [80] | |
DR PIH | Citosan@carbon nanotubes | NIPAM | Doxorubicin | Mice with Luc-4T1 orthotopic tumors | [72] | |
DR PIH | Mesoporous silica | Polydopamine | Doxorubicin | BALB/c mice injected with 4T1 cells | [81] | |
DR PIH | Mesoporous silica@ICG | Polyadenine | Doxorubicin | Mice bearing 4T1 tumors | [71] | |
UIH | nrGO@MSN-ION-PEG | - | - | BALB/c injected with SKBr3 | [75] | |
DR UIH | Liposome | - | Doxorubicin | BALB/c athymic nude mice injected with MDA-MB-231 | [83] | |
DR UIH | Liposome | - | Doxorubicin | Mouse 4T1 breast tumor model | [82] | |
Colon | UIH | Gold | - | - | BALB/c mice-bearing CT26 colorectal tumor model | [89] |
UIH | Gold, iron oxide and graphene oxide | - | - | BALB/c mice injected with CT26 | [90] | |
DR UIH | Fe2O3 | Liposome | Combretastatin A4 phosphate | BALB/c | [91] | |
Colorectal | DR UIH | Gold | Alginate | Cisplatin | BALB/c mice injected with CT26 | [93] |
Glioblastoma | DR MIH | Fe3O4 | Liposome | Camptosar | BALB/c nude mice injected with U-87 cells | [60] |
Glioma | DR MIH | Fe3O4 | PEG-PBA-PEG | Temozolomide | C6 glioma in rats | [61] |
Liver | PIH | UCNPs | CS@Ag2Se | - | Kunming mice injected with H22 cells | [94] |
Lung | MIH | MnZnFe3O4 | HA-PEG-PCL | - | A549 subcutaneous tumor xenografts model | [99] |
RIH 5 | Iron-dextran | - | BALB/c injected with NCI-H460 | [102] | ||
DR RIH | Silica | NIPAM copolymer | Doxorubicin | CBA line mice with lung carcinoma (3LL) tumors | [103] | |
Melanoma | DR UIH | Yb3+/Er3+ Zeolite | FA-PEG | Doxorubicin | B16-F0 tumor model mice | [111] |
Prostate | MIH | MnZnFe3O4 | PEG-PCL | - | Nude mice bearing subcutaneous DU145 xenografts | [104] |
Sarcoma | DR RIH | C60@Au-HBA | PEG | Doxorubicin | BALB/c S180 tumor models | [109] |
Sarcoma | PIH | MnFe2O4 | Red Blood Cell Membrane | - | Swiss albino mice injected with S180 cells | [108] |
Tumor Model | Method | Core Material | Coating | Cargo | Cell Line | References |
---|---|---|---|---|---|---|
Adenocarcinoma | UIH | Fe3O4 | - | - | Ehrlich ascites carcinoma cells (EACs) | [57] |
Bone | MIH | Fe3O4-Bioactive Glass | - | - | Normal human fibroblast (NHFB) and cancer cells (MG-63) | [58] |
Brain | PIH | MnGdO | PDA-PEG | U-87 MG cells | [59] | |
Breast | MIH | Fe3O4 | Dextran-Folic acid | - | MC4-L2 | [62] |
Breast | MIH | Fe3O4 | PAMAM dendrimer | - | Human breast cancer cell line (MCF7) and human fibroblast cell line (HDF1) | [64,69] |
DR MIH | Fe3O4 | NIPAM-co-DMAEMA | Methotrexate | MCF-7 breast cancer cell line | [77] | |
PIH | Melanin | - | - | NIH3T3 cells (ATCC), Hela cells, and MDA-MB-231 cells (ATCC) | [70] | |
PIH | Gold | Gold PEG | - | MCF7 and 4T1 cells | [74] | |
PIH | SPNs | PEG | - | 4T1 and RAW264.7 cells | [84] | |
DR PIH | Gold | Liposome | Doxorubicin | MCF-7 breast cancer cell line | [78] | |
DR PIH | Gold | NIPAM | Doxorubicin | Hela and MDA-MB-231 cells | [79] | |
DR PIH | Fluorinated aza-boron-dipyrromethen | - | Doxorubicin | 4T1 cells | [80] | |
DR PIH | Citosan@carbon nanotubes | NIPAM | Doxorubicin | 4T1 cells | [72] | |
DR PIH | Mesoporous silica | Polydopamine | Doxorubicin | 4T1 cells | [80] | |
DR PIH | Mesoporous silica@ICG | Polyadenine | Doxorubicin | A549 cells | [71] | |
RIH | Au@IONPs | - | MCF-7 breast cancer cells | [65] | ||
RIH | Gold, Iron oxide, Gold@iron oxide | - | Fibroblast (L-929) and breast cancer (MCF-7) cell lines | [66] | ||
DR RIH | La0.7Sr0.3MnO3 | Chitosan | Doxorubicin | MCF-7 and MDA-MB-231 | [67] | |
UIH | nrGO@MSN-ION-PEG | - | - | SKBr3 cell line | [75] | |
DR UIH | Liposome | - | Doxorubicin | 4T1 mammary carcinoma cells, MCF-7 human breast adenocarcinoma cells, and human umbilical vein endothelial cells (HUVECs) | [82] | |
Manual Temperature Swift | Gold | Liposome | Doxorubicin | MDA-MB-231 | [76] | |
Cervical | DR MIH | MnZnFe3O4 | Chitosan-g-NIPAM | Doxorubicin | Human cervical cancer cells (HeLa cells) | [87] |
DR MIH | Gadolinium Ferrite | PAMAM | Doxorubicin | HeLa cells | [88] | |
PIH | MoO3 | Cysteine | - | HeLa cells | [85] | |
RIH | Silicon NW | - | Hep2 cells | [86] | ||
Colon | DR UIH | Fe2O3 | Liposome | Combretastatin A4 phosphate | EA.hy926 cell line | [91] |
Glioblastoma | DR MIH | Fe3O4 | Liposome | Camptosar | U-87 human primary glioblastoma cell line | [60] |
Liver | MIH | Fe3O4 | PCL | - | Human liver cancer cells (HepG2) | [96] |
DR MIH | Fe3O4 | PLGA | Curcumin and nifedipine | HepG2 cancer cells | [97] | |
PIH | UCNPs | CS@Ag2Se | - | A549 cells | [94] | |
DR PIH | Chitosan @ ICG | NIPAM | Doxorubicin | HepG2 cancer cells | [98] | |
RIH | Gold | - | HepG2 human hepatocellular carcinoma cell line | [95] | ||
Lung | MIH | MnZnFe3O4 | HA-PEG-PCL | - | A549 (human lung adenocarcinoma cell line) | [99] |
DR MIH | Fe3O4 | PEG1500 | Doxorubicin | Human lung adenocarcinoma (A549) | [100] | |
RIH | Iron-Dextran | - | Human lung cancer NCI-H460 cells | [102] | ||
DR RIH | Iron oxide | Liposome@gold | Doxorubicin | A549 | [101] | |
DR RIH | Silica | NIPAM copolymer | Doxorubicin | HeLa and HEP2 cells | [103] | |
Melanoma | DR UIH | Yb3+/Er3+ Zeolite | FA-PEG | Doxorubicin | B16-F0, 4T1, HBE, and U937 cell lines | [111] |
Ovaries | Manual Temperature Swift | Gold | Liposome | Doxorubicin | SK-OV-3 | [76] |
Prostate | MIH | MnZnFe3O4 | PEG-PCL | - | DU145 human prostate carcinoma cell line and HEK-293 human embryonic kidney cell line | [104] |
Pancreas | MIH | γ-Fe2O3 | Dextran | Gemcitabine | PANC-1, BxPC-3, and MIA Paca-2 | [105] |
Sarcoma | DR RIH | C60@Au-HBA | PEG | Doxorubicin | MCF-7 cells | [107] |
PIH | MnFe2O4 | Red Blood Cell Membrane | - | S180 | [106] | |
Skin | PIH | Gold | DNA & Cytochrome C | - | B16 F10 mouse melanoma cells | [108] |
6. Future Applications and Challenges
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, A. Cancer: An unknown territory; rethinking before going ahead. Genes Dis. 2021, 8, 655–661. [Google Scholar] [CrossRef] [PubMed]
- Behranvand, N.; Nasri, F.; Zolfaghari Emameh, R.; Khani, P.; Hosseini, A.; Garssen, J.; Falak, R. Chemotherapy: A double-edged sword in cancer treatment. Cancer Immunol. Immunother. 2022, 71, 507–526. [Google Scholar] [CrossRef]
- Antoni, D.; Claude, L.; Laprie, A.; Lévy, A.; Peignaux, K.; Rivera, S.; Schick, U. Les essais qui changent les pratiques: Le point en 2022. Cancer/Radiothérapie 2022, 26, 823–833. [Google Scholar] [CrossRef] [PubMed]
- Hauner, K.; Maisch, P.; Retz, M. Nebenwirkungen der Chemotherapie. Der Urol. 2017, 56, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Couchoud, C.; Fagnoni, P.; Aubin, F.; Westeel, V.; Maurina, T.; Thiery-Vuillemin, A.; Gerard, C.; Kroemer, M.; Borg, C.; Limat, S.; et al. Economic evaluations of cancer immunotherapy: A systematic review and quality evaluation. Cancer Immunol. Immunother. 2020, 69, 1947–1958. [Google Scholar] [CrossRef] [PubMed]
- Kantoff, P.W.; Higano, C.S.; Shore, N.D.; Berger, E.R.; Small, E.J.; Penson, D.F.; Redfern, C.H.; Ferrari, A.C.; Dreicer, R.; Sims, R.B.; et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N. Engl. J. Med. 2010, 363, 411–422. [Google Scholar] [CrossRef]
- Nagaraju, G.P.; Srivani, G.; Dariya, B.; Chalikonda, G.; Farran, B.; Behera, S.K.; Alam, A.; Kamal, M.A. Nanoparticles guided drug delivery and imaging in gastric cancer. Semin. Cancer Biol. 2021, 69, 69–76. [Google Scholar] [CrossRef]
- Castro, F.; Martins, C.; Silveira, M.J.; Moura, R.P.; Pereira, C.L.; Sarmento, B. Advances on erythrocyte-mimicking nanovehicles to overcome barriers in biological microenvironments. Adv. Drug Deliv. Rev. 2021, 170, 312–339. [Google Scholar] [CrossRef]
- Song, C.W.; Park, H.J.; Lee, C.K.; Griffin, R. Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int. J. Hyperth. 2005, 21, 761–767. [Google Scholar] [CrossRef]
- van der Zee, J. Heating the patient: A promising approach? Ann. Oncol. 2002, 13, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
- Beik, J.; Abed, Z.; Ghoreishi, F.S.; Hosseini-Nami, S.; Mehrzadi, S.; Shakeri-Zadeh, A.; Kamrava, S.K. Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. J. Control. Release 2016, 235, 205–221. [Google Scholar] [CrossRef] [PubMed]
- Szelényi, Z.; Komoly, S. Thermoregulation: From basic neuroscience to clinical neurology, part 2. Temperature 2019, 6, 7–10. [Google Scholar] [CrossRef]
- Vertree, R.A.; Leeth, A.; Girouard, M.; Roach, J.D.; Zwischenberger, J.B. Whole-body hyperthermia: A review of theory, design and application. Perfusion 2002, 17, 279–290. [Google Scholar] [CrossRef]
- Chia, B.S.H.; Ho, S.Z.; Tan, H.Q.; Chua, M.L.K.; Tuan, J.K.L. A Review of the Current Clinical Evidence for Loco-Regional Moderate Hyperthermia in the Adjunct Management of Cancers. Cancers 2023, 15, 346. [Google Scholar] [CrossRef] [PubMed]
- Datta, N.R.; Jain, B.M.; Mathi, Z.; Datta, S.; Johari, S.; Singh, A.R.; Kalbande, P.; Kale, P.; Shivkumar, V.; Bodis, S. Hyperthermia: A Potential Game-Changer in the Management of Cancers in Low-Middle-Income Group Countries. Cancers 2022, 14, 315. [Google Scholar] [CrossRef] [PubMed]
- Luqmani, Y.A. Mechanisms of drug resistance in cancer chemotherapy. Med. Princ. Pract. 2005, 14 (Suppl. S1), 35–48. [Google Scholar] [CrossRef]
- van Oorschot, B.; Granata, G.; Di Franco, S.; Ten Cate, R.; Rodermond, H.M.; Todaro, M.; Medema, J.P.; Franken, N.A. Targeting DNA double strand break repair with hyperthermia and DNA-PKcs inhibition to enhance the effect of radiation treatment. Oncotarget 2016, 7, 65504–65513. [Google Scholar] [CrossRef]
- Oei, A.L.; Vriend, L.E.; Crezee, J.; Franken, N.A.; Krawczyk, P.M. Effects of hyperthermia on DNA repair pathways: One treatment to inhibit them all. Radiat. Oncol. 2015, 10, 165. [Google Scholar] [CrossRef]
- Gago, L.; Quiñonero, F.; Perazzoli, G.; Melguizo, C.; Prados, J.; Ortiz, R.; Cabeza, L. Nanomedicine and Hyperthermia for the Treatment of Gastrointestinal Cancer: A Systematic Review. Pharmaceutics 2023, 15, 1958. [Google Scholar] [CrossRef]
- Cividalli, A.; Cruciani, G.; Livdi, E.; Pasqualetti, P.; Tirindelli Danesi, D. Hyperthermia enhances the response of paclitaxel and radiation in a mouse adenocarcinoma. Int. J. Radiat. Oncol. Biol. Phys. 1999, 44, 407–412. [Google Scholar] [CrossRef] [PubMed]
- Yi, P.N.; Chang, C.S.; Tallen, M.; Bayer, W.; Ball, S. Hyperthermia-Induced Intracellular Ionic Level Changes in Tumor Cells. Radiat. Res. 1983, 93, 534–544. [Google Scholar] [CrossRef] [PubMed]
- Leunig, M.; Goetz, A.E.; Dellian, M.; Zetterer, G.; Gamarra, F.; Jain, R.K.; Messmer, K. Interstitial fluid pressure in solid tumors following hyperthermia: Possible correlation with therapeutic response. Cancer Res. 1992, 52, 487–490. [Google Scholar] [PubMed]
- Singh, M.; Ma, R.; Zhu, L. Theoretical evaluation of enhanced gold nanoparticle delivery to PC3 tumors due to increased hydraulic conductivity or recovered lymphatic function after mild whole body hyperthermia. Med. Biol. Eng. Comput. 2021, 59, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.H.; Yang, K.J.; Wu, J.C.; Chang, K.J.; Wang, S.M. Effects of hyperthermia on the cytoskeleton and focal adhesion proteins in a human thyroid carcinoma cell line. J. Cell. Biochem. 1999, 75, 327–337. [Google Scholar] [CrossRef]
- Yonezawa, M.; Otsuka, T.; Matsui, N.; Tsuji, H.; Kato, K.H.; Moriyama, A.; Kato, T. Hyperthermia induces apoptosis in malignant fibrous histiocytoma cells in vitro. Int. J. Cancer 1996, 66, 347–351. [Google Scholar] [CrossRef]
- Terasaki, A.; Kurokawa, H.; Ito, H.; Komatsu, Y.; Matano, D.; Terasaki, M.; Bando, H.; Hara, H.; Matsui, H. Elevated Production of Mitochondrial Reactive Oxygen Species via Hyperthermia Enhanced Cytotoxic Effect of Doxorubicin in Human Breast Cancer Cell Lines MDA-MB-453 and MCF-7. Int. J. Mol. Sci. 2020, 21, 9522. [Google Scholar] [CrossRef]
- Piehler, S.; Wucherpfennig, L.; Tansi, F.L.; Berndt, A.; Quaas, R.; Teichgraeber, U.; Hilger, I. Hyperthermia affects collagen fiber architecture and induces apoptosis in pancreatic and fibroblast tumor hetero-spheroids in vitro. Nanomedicine 2020, 28, 102183. [Google Scholar] [CrossRef]
- Singh, M. Biological heat and mass transport mechanisms behind nanoparticles migration revealed under microCT image guidance. Int. J. Therm. Sci. 2023, 184, 107996. [Google Scholar] [CrossRef]
- Stein, U.; Jürchott, K.; Walther, W.; Bergmann, S.; Schlag, P.M.; Royer, H.D. Hyperthermia-induced nuclear translocation of transcription factor YB-1 leads to enhanced expression of multidrug resistance-related ABC transporters. J. Biol. Chem. 2001, 276, 28562–28569. [Google Scholar] [CrossRef]
- Tabuchi, Y.; Kondo, T. Targeting heat shock transcription factor 1 for novel hyperthermia therapy (review). Int. J. Mol. Med. 2013, 32, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Furusawa, Y.; Tabuchi, Y.; Takasaki, I.; Wada, S.; Ohtsuka, K.; Kondo, T. Gene networks involved in apoptosis induced by hyperthermia in human lymphoma U937 cells. Cell Biol. Int. 2009, 33, 1253–1262. [Google Scholar] [CrossRef] [PubMed]
- Borkamo, E.D.; Dahl, O.; Bruland, O.; Fluge, Ø. Global gene expression analyses reveal changes in biological processes after hyperthermia in a rat glioma model. Int. J. Hyperth. 2008, 24, 425–441. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Zhan, H.J.; Wang, B.G.; Pan, Y.; Hao, X.S. Change in expression of apoptosis genes after hyperthermia, chemotherapy and radiotherapy in human colon cancer transplanted into nude mice. World J. Gastroenterol. 2007, 13, 4365–4371. [Google Scholar] [CrossRef] [PubMed]
- Jiang, W.; Bian, L.; Wang, N.; He, Y. Proteomic analysis of protein expression profiles during hyperthermia-induced apoptosis in Tca8113 cells. Oncol. Lett. 2013, 6, 135–143. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, K.; Zaidi, S.F.; Mati Ur, R.; Rehman, R.; Kondo, T. Hyperthermia and protein homeostasis: Cytoprotection and cell death. J. Therm. Biol. 2020, 91, 102615. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Cao, T.; Connolly, J.E.; Monnet, L.; Bennett, L.; Chapel, S.; Bagnis, C.; Mannoni, P.; Davoust, J.; Palucka, A.K.; et al. Hyperthermia enhances CTL cross-priming. J. Immunol. 2006, 176, 2134–2141. [Google Scholar] [CrossRef]
- Qamar, Z.; Qizilbash, F.F.; Iqubal, M.K.; Ali, A.; Narang, J.K.; Ali, J.; Baboota, S. Nano-Based Drug Delivery System: Recent Strategies for the Treatment of Ocular Disease and Future Perspective. Recent Pat. Drug Deliv. Formul. 2019, 13, 246–254. [Google Scholar] [CrossRef]
- Sultana, S.; Alzahrani, N.; Alzahrani, R.; Alshamrani, W.; Aloufi, W.; Ali, A.; Najib, S.; Siddiqui, N.A. Stability issues and approaches to stabilised nanoparticles based drug delivery system. J. Drug Target. 2020, 28, 468–486. [Google Scholar] [CrossRef]
- Kudr, J.; Haddad, Y.; Richtera, L.; Heger, Z.; Cernak, M.; Adam, V.; Zitka, O. Magnetic Nanoparticles: From Design and Synthesis to Real World Applications. Nanomaterials 2017, 7, 243. [Google Scholar] [CrossRef]
- Negrescu, A.M.; Killian, M.S.; Raghu, S.N.V.; Schmuki, P.; Mazare, A.; Cimpean, A. Metal Oxide Nanoparticles: Review of Synthesis, Characterization and Biological Effects. J. Funct. Biomater. 2022, 13, 274. [Google Scholar] [CrossRef] [PubMed]
- Joudeh, N.; Linke, D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnol. 2022, 20, 262. [Google Scholar] [CrossRef] [PubMed]
- Rhazouani, A.; Gamrani, H.; El Achaby, M.; Aziz, K.; Gebrati, L.; Uddin, M.S.; Aziz, F. Synthesis and Toxicity of Graphene Oxide Nanoparticles: A Literature Review of In Vitro and In Vivo Studies. BioMed Res. Int. 2021, 2021, 5518999. [Google Scholar] [CrossRef] [PubMed]
- Berillo, D.; Yeskendir, A.; Zharkinbekov, Z.; Raziyeva, K.; Saparov, A. Peptide-Based Drug Delivery Systems. Medicina 2021, 57, 1209. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Li, H.; Wang, L.; Gu, H.; Fan, C. DNA Nanotechnology-Enabled Drug Delivery Systems. Chem. Rev. 2019, 119, 6459–6506. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Chen, G.; Zhang, J. A Review of Liposomes as a Drug Delivery System: Current Status of Approved Products, Regulatory Environments, and Future Perspectives. Molecules 2022, 27, 1372. [Google Scholar] [CrossRef] [PubMed]
- Tanbour, R.; Martins, A.M.; Pitt, W.G.; Husseini, G.A. Drug Delivery Systems Based on Polymeric Micelles and Ultrasound: A Review. Curr. Pharm. Des. 2016, 22, 2796–2807. [Google Scholar] [CrossRef]
- Bulbake, U.; Doppalapudi, S.; Kommineni, N.; Khan, W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics 2017, 9, 12. [Google Scholar] [CrossRef]
- Dichello, G.A.; Fukuda, T.; Maekawa, T.; Whitby, R.L.D.; Mikhalovsky, S.V.; Alavijeh, M.; Pannala, A.S.; Sarker, D.K. Preparation of liposomes containing small gold nanoparticles using electrostatic interactions. Eur. J. Pharm. Sci. 2017, 105, 55–63. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, J.; Fu, S.; Wu, J. Gold Nanoparticles as Radiosensitizers in Cancer Radiotherapy. Int. J. Nanomed. 2020, 15, 9407–9430. [Google Scholar] [CrossRef]
- Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 193. [Google Scholar] [CrossRef] [PubMed]
- Crucho, C.I. Stimuli-responsive polymeric nanoparticles for nanomedicine. ChemMedChem 2015, 10, 24–38. [Google Scholar] [CrossRef] [PubMed]
- Youns, M.; Hoheisel, J.D.; Efferth, T. Therapeutic and diagnostic applications of nanoparticles. Curr. Drug Targets 2011, 12, 357–365. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.J.; Xu, Y.Y. Nanomaterials in controlled drug release. Cytotechnology 2011, 63, 319–323. [Google Scholar] [CrossRef] [PubMed]
- Jordan, A.; Wust, P.; Fähling, H.; John, W.; Hinz, A.; Felix, R. Inductive heating of ferrimagnetic particles and magnetic fluids: Physical evaluation of their potential for hyperthermia. Int. J. Hyperth. 1993, 9, 51–68. [Google Scholar] [CrossRef] [PubMed]
- Needham, D.; Dewhirst, M.W. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors. Adv. Drug Deliv. Rev. 2001, 53, 285–305. [Google Scholar] [CrossRef]
- Shalaby, T.; Gawish, A.; Hamad, H. A Promising Platform of Magnetic Nanofluid and Ultrasonic Treatment for Cancer Hyperthermia Therapy: In Vitro and in Vivo Study. Ultrasound Med. Biol. 2021, 47, 651–665. [Google Scholar] [CrossRef]
- Ur Rahman, M.S.; Tahir, M.A.; Noreen, S.; Yasir, M.; Ahmad, I.; Khan, M.B.; Ali, K.W.; Shoaib, M.; Bahadur, A.; Iqbal, S. Magnetic mesoporous bioactive glass for synergetic use in bone regeneration, hyperthermia treatment, and controlled drug delivery. RSC Adv. 2020, 10, 21413–21419. [Google Scholar] [CrossRef]
- Zhao, Z.; Xu, K.; Fu, C.; Liu, H.; Lei, M.; Bao, J.; Fu, A.; Yu, Y.; Zhang, W. Interfacial engineered gadolinium oxide nanoparticles for magnetic resonance imaging guided microenvironment-mediated synergetic chemodynamic/photothermal therapy. Biomaterials 2019, 219, 119379. [Google Scholar] [CrossRef]
- Lu, Y.-J.; Chuang, E.-Y.; Cheng, Y.-H.; Anilkumar, T.S.; Chen, H.-A.; Chen, J.-P. Thermosensitive magnetic liposomes for alternating magnetic field-inducible drug delivery in dual targeted brain tumor chemotherapy. Chem. Eng. J. 2019, 373, 720–733. [Google Scholar] [CrossRef]
- Afzalipour, R.; Khoei, S.; Khoee, S.; Shirvalilou, S.; Raoufi, N.J.; Motevalian, M.; Karimi, M.Y. Thermosensitive magnetic nanoparticles exposed to alternating magnetic field and heat-mediated chemotherapy for an effective dual therapy in rat glioma model. Nanomedicine 2021, 31, 102319. [Google Scholar] [CrossRef] [PubMed]
- Soleymani, M.; Khalighfard, S.; Khodayari, S.; Khodayari, H.; Kalhori, M.R.; Hadjighassem, M.R.; Shaterabadi, Z.; Alizadeh, A.M. Effects of multiple injections on the efficacy and cytotoxicity of folate-targeted magnetite nanoparticles as theranostic agents for MRI detection and magnetic hyperthermia therapy of tumor cells. Sci. Rep. 2020, 10, 1695. [Google Scholar] [CrossRef] [PubMed]
- Youssef, I.; Amin, N.P. Hyperthermia for Chest Wall Recurrence; StatPearls Publishing: St. Petersburg, FL, USA, 2023. [Google Scholar]
- Salimi, M.; Sarkar, S.; Saber, R.; Delavari, H.; Alizadeh, A.M.; Mulder, H.T. Magnetic hyperthermia of breast cancer cells and MRI relaxometry with dendrimer-coated iron-oxide nanoparticles. Cancer Nanotechnol. 2018, 9, 7. [Google Scholar] [CrossRef] [PubMed]
- Hadi, F.; Tavakkol, S.; Laurent, S.; Pirhajati, V.; Mahdavi, S.R.; Neshastehriz, A.; Shakeri-Zadeh, A. Combinatorial effects of radiofrequency hyperthermia and radiotherapy in the presence of magneto-plasmonic nanoparticles on MCF-7 breast cancer cells. J. Cell. Physiol. 2019, 234, 20028–20035. [Google Scholar] [CrossRef] [PubMed]
- Nasseri, B.; Yilmaz, M.; Turk, M.; Kocum, I.C.; Piskin, E. Antenna-type radiofrequency generator in nanoparticle-mediated hyperthermia. RSC Adv. 2016, 6, 48427–48434. [Google Scholar] [CrossRef]
- Kulkarni, V.M.; Bodas, D.; Dhoble, D.; Ghormade, V.; Paknikar, K. Radio-frequency triggered heating and drug release using doxorubicin-loaded LSMO nanoparticles for bimodal treatment of breast cancer. Colloids Surf. B Biointerfaces 2016, 145, 878–890. [Google Scholar] [CrossRef]
- Alavijeh, M.; Maghsoudpour, A.; Khayat, M.; Rad, I.; Hatamie, S. Distribution of “molybdenum disulfide/cobalt ferrite” nanocomposite in animal model of breast cancer, following injection via differential infusion flow rates. J. Pharm. Investig. 2020, 50, 583–592. [Google Scholar] [CrossRef]
- Salimi, M.; Sarkar, S.; Hashemi, M.; Saber, R. Treatment of Breast Cancer-Bearing BALB/c Mice with Magnetic Hyperthermia using Dendrimer Functionalized Iron-Oxide Nanoparticles. Nanomaterials 2020, 10, 2310. [Google Scholar] [CrossRef]
- Zhou, Z.; Yan, Y.; Wang, L.; Zhang, Q.; Cheng, Y. Melanin-like nanoparticles decorated with an autophagy-inducing peptide for efficient targeted photothermal therapy. Biomaterials 2019, 203, 63–72. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Hua, M.; Yu, H.; Wei, S.; Wang, A.; Zhou, J. Photothermal-Triggered Controlled Drug Release from Mesoporous Silica Nanoparticles Based on Base-Pairing Rules. ACS Biomater. Sci. Eng. 2019, 5, 2399–2408. [Google Scholar] [CrossRef]
- Bi, Y.; Wang, M.; Peng, L.; Ruan, L.; Zhou, M.; Hu, Y.; Chen, J.; Gao, J. Photo/thermo-responsive and size-switchable nanoparticles for chemo-photothermal therapy against orthotopic breast cancer. Nanoscale Adv. 2020, 2, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Shafei, A.; El-Bakly, W.; Sobhy, A.; Wagdy, O.; Reda, A.; Aboelenin, O.; Marzouk, A.; El Habak, K.; Mostafa, R.; Ali, M.A.; et al. A review on the efficacy and toxicity of different doxorubicin nanoparticles for targeted therapy in metastatic breast cancer. Biomed. Pharmacother. 2017, 95, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Deng, J.; He, D.; Yang, E.; Yang, W.; Shi, D.; Jiang, Y.; Qiu, Z.; Webster, T.J.; Shen, Y. PEGylated hollow gold nanoparticles for combined X-ray radiation and photothermal therapy in vitro and enhanced CT imaging in vivo. Nanomedicine 2019, 16, 195–205. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.-W.; Liu, T.-Y.; Chang, P.-H.; Hsu, P.-H.; Liu, H.-L.; Lin, H.-C.; Chen, S.-Y. A theranostic nrGO@MSN-ION nanocarrier developed to enhance the combination effect of sonodynamic therapy and ultrasound hyperthermia for treating tumor. Nanoscale 2016, 8, 12648–12657. [Google Scholar] [CrossRef] [PubMed]
- García, M.C.; Naitlho, N.; Calderón-Montaño, J.M.; Drago, E.; Rueda, M.; Longhi, M.; Rabasco, A.M.; López-Lázaro, M.; Prieto-Dapena, F.; González-Rodríguez, M.L. Cholesterol Levels Affect the Performance of AuNPs-Decorated Thermo-Sensitive Liposomes as Nanocarriers for Controlled Doxorubicin Delivery. Pharmaceutics 2021, 13, 973. [Google Scholar] [CrossRef] [PubMed]
- Najafipour, A.; Gharieh, A.; Fassihi, A.; Sadeghi-Aliabadi, H.; Mahdavian, A.R. MTX-Loaded Dual Thermoresponsive and pH-Responsive Magnetic Hydrogel Nanocomposite Particles for Combined Controlled Drug Delivery and Hyperthermia Therapy of Cancer. Mol. Pharm. 2021, 18, 275–284. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Liu, L.; Zhang, S.; Zheng, M.; Ma, A.; Chen, Z.; Pan, H.; Zhou, H.; Liang, R.; Cai, L. Smart gold nanocages for mild heat-triggered drug release and breaking chemoresistance. J. Control. Release 2020, 323, 387–397. [Google Scholar] [CrossRef]
- Kwon, Y.; Choi, Y.; Jang, J.; Yoon, S.; Choi, J. NIR Laser-Responsive PNIPAM and Gold Nanorod Composites for the Engineering of Thermally Reactive Drug Delivery Nanomedicine. Pharmaceutics 2020, 12, 204. [Google Scholar] [CrossRef]
- Zhang, J.; Huang, H.; Xue, L.; Zhong, L.; Ge, W.; Song, X.; Zhao, Y.; Wang, W.; Dong, X. On-demand drug release nanoplatform based on fluorinated aza-BODIPY for imaging-guided chemo-phototherapy. Biomaterials 2020, 256, 120211. [Google Scholar] [CrossRef]
- Lei, W.; Sun, C.; Jiang, T.; Gao, Y.; Yang, Y.; Zhao, Q.; Wang, S. Polydopamine-coated mesoporous silica nanoparticles for multi-responsive drug delivery and combined chemo-photothermal therapy. Mater. Sci. Eng. C Mater. Biol. Appl. 2019, 105, 110103. [Google Scholar] [CrossRef]
- Deng, Z.; Xiao, Y.; Pan, M.; Li, F.; Duan, W.; Meng, L.; Liu, X.; Yan, F.; Zheng, H. Hyperthermia-triggered drug delivery from iRGD-modified temperature-sensitive liposomes enhances the anti-tumor efficacy using high intensity focused ultrasound. J. Control. Release 2016, 243, 333–341. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.; Gao, J.; Jiang, L.; Luo, J.; Jing, L.; Li, X.; Jin, Y.; Dai, Z. Nanohybrid liposomal cerasomes with good physiological stability and rapid temperature responsiveness for high intensity focused ultrasound triggered local chemotherapy of cancer. ACS Nano 2015, 9, 1280–1293. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.; Zeng, J.; Jiang, Y.; Zhen, X.; Wang, T.; Qiu, S.; Lou, X.; Gao, M.; Pu, K. Enhancing Both Biodegradability and Efficacy of Semiconducting Polymer Nanoparticles for Photoacoustic Imaging and Photothermal Therapy. ACS Nano 2018, 12, 1801–1810. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Miao, Z.; Shang, Z.; Cai, Y.; Cheng, J.; Xu, X. A Visible- and NIR-Light Responsive Photothermal Therapy Agent by Chirality-Dependent MoO 3− x Nanoparticles. Adv. Funct. Mater. 2019, 30, 1906311. [Google Scholar] [CrossRef]
- Gongalsky, M.; Gvindzhiliia, G.; Tamarov, K.; Shalygina, O.; Pavlikov, A.; Solovyev, V.; Kudryavtsev, A.; Sivakov, V.; Osminkina, L.A. Radiofrequency Hyperthermia of Cancer Cells Enhanced by Silicic Acid Ions Released During the Biodegradation of Porous Silicon Nanowires. ACS Omega 2019, 4, 10662–10669. [Google Scholar] [CrossRef] [PubMed]
- Montha, W.; Maneeprakorn, W.; Tang, I.M.; Pon-On, W. Hyperthermia evaluation and drug/protein-controlled release using alternating magnetic field stimuli-responsive Mn-Zn ferrite composite particles. RSC Adv. 2020, 10, 40206–40214. [Google Scholar] [CrossRef] [PubMed]
- Mekonnen, T.W.; Birhan, Y.S.; Andrgie, A.T.; Hanurry, E.Y.; Darge, H.F.; Chou, H.Y.; Lai, J.Y.; Tsai, H.C.; Yang, J.M.; Chang, Y.H. Encapsulation of gadolinium ferrite nanoparticle in generation 4.5 poly(amidoamine) dendrimer for cancer theranostics applications using low frequency alternating magnetic field. Colloids Surf. B Biointerfaces 2019, 184, 110531. [Google Scholar] [CrossRef] [PubMed]
- Beik, J.; Shiran, M.B.; Abed, Z.; Shiri, I.; Ghadimi-Daresajini, A.; Farkhondeh, F.; Ghaznavi, H.; Shakeri-Zadeh, A. Gold nanoparticle-induced sonosensitization enhances the antitumor activity of ultrasound in colon tumor-bearing mice. Med. Phys. 2018, 45, 4306–4314. [Google Scholar] [CrossRef]
- Beik, J.; Abed, Z.; Ghadimi-Daresajini, A.; Nourbakhsh, M.; Shakeri-Zadeh, A.; Ghasemi, M.S.; Shiran, M.B. Measurements of nanoparticle-enhanced heating from 1MHz ultrasound in solution and in mice bearing CT26 colon tumors. J. Therm. Biol. 2016, 62 Pt A, 84–89. [Google Scholar] [CrossRef]
- Thébault, C.J.; Ramniceanu, G.; Boumati, S.; Michel, A.; Seguin, J.; Larrat, B.; Mignet, N.; Ménager, C.; Doan, B.T. Theranostic MRI liposomes for magnetic targeting and ultrasound triggered release of the antivascular CA4P. J. Control. Release 2020, 322, 137–148. [Google Scholar] [CrossRef]
- West, C.M.L.; Price, P. Combretastatin A4 phosphate. Anticancer. Drugs 2004, 15, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Irajirad, R.; Ahmadi, A.; Najafabad, B.K.; Abed, Z.; Sheervalilou, R.; Khoei, S.; Shiran, M.B.; Ghaznavi, H.; Shakeri-Zadeh, A. Combined thermo-chemotherapy of cancer using 1 MHz ultrasound waves and a cisplatin-loaded sonosensitizing nanoplatform: An in vivo study. Cancer Chemother. Pharmacol. 2019, 84, 1315–1321. [Google Scholar] [CrossRef] [PubMed]
- Kaimin, d.; Lei, P.; Dong, L.; Zhang, M.; Gao, X.; Yao, S.; Feng, J.; Zhang, H. In situ decorating of ultrasmall Ag2Se on upconversion nanoparticles as novel nanotheranostic agent for multimodal imaging-guided cancer photothermal therapy. Appl. Mater. Today 2019, 18, 100497. [Google Scholar] [CrossRef]
- Chen, C.-C.; Chen, C.-L.; Li, J.-J.; Chen, Y.-Y.; Wang, C.-Y.; Wang, Y.-S.; Chi, K.-H.; Wang, H.-E. Presence of Gold Nanoparticles in Cells Associated with the Cell-Killing Effect of Modulated Electro-Hyperthermia. ACS Appl. Bio Mater. 2019, 2, 3573–3581. [Google Scholar] [CrossRef] [PubMed]
- Hedayatnasab, Z.; Dabbagh, A.; Abnisa, F.; Daud, W. Polycaprolactone-Coated Superparamagnetic Iron Oxide Nanoparticles for In Vitro Magnetic Hyperthermia Therapy of Cancer. Eur. Polym. J. 2020, 133, 109789. [Google Scholar] [CrossRef]
- Sudame, A.; Kandasamy, G.; Singh, D.; Tomy, C.V.; Maity, D. Symbiotic thermo-chemotherapy for enhanced HepG2 cancer treatment via magneto-drugs encapsulated polymeric nanocarriers. Colloids Surf. A Physicochem. Eng. Asp. 2020, 606, 125355. [Google Scholar] [CrossRef]
- Liu, X.; He, Z.; Chen, Y.; Zhou, C.; Wang, C.; Liu, Y.; Feng, C.; Yang, Z.; Li, P. Dual drug delivery system of photothermal-sensitive carboxymethyl chitosan nanosphere for photothermal-chemotherapy. Int. J. Biol. Macromol. 2020, 163, 156–166. [Google Scholar] [CrossRef]
- Wang, Y.; Zou, L.; Qiang, Z.; Jiang, J.; Zhu, Z.; Ren, J. Enhancing Targeted Cancer Treatment by Combining Hyperthermia and Radiotherapy Using Mn-Zn Ferrite Magnetic Nanoparticles. ACS Biomater. Sci. Eng. 2020, 6, 3550–3562. [Google Scholar] [CrossRef]
- Dabbagh, A.; Hedayatnasab, Z.; Karimian, H.; Sarraf, M.; Yeong, C.H.; Madaah Hosseini, H.R.; Abu Kasim, N.H.; Wong, T.W.; Rahman, N.A. Polyethylene glycol-coated porous magnetic nanoparticles for targeted delivery of chemotherapeutics under magnetic hyperthermia condition. Int. J. Hyperth. 2019, 36, 104–114. [Google Scholar] [CrossRef]
- Pan, A.; Jakaria, M.G.; Meenach, S.A.; Bothun, G.D. Radiofrequency and Near-Infrared Responsive Core-Shell Nanostructures Using Layersome Templates for Cancer Treatment. ACS Appl. Bio Mater. 2020, 3, 273–281. [Google Scholar] [CrossRef]
- Chung, H.-J.; Kim, H.-J.; Hong, S.-T. Iron-dextran as a thermosensitizer in radiofrequency hyperthermia for cancer treatment. Appl. Biol. Chem. 2019, 62, 24. [Google Scholar] [CrossRef]
- Tamarov, K.; Xu, W.; Osminkina, L.; Zinovyev, S.; Soininen, P.; Kudryavtsev, A.; Gongalsky, M.; Gaydarova, A.; Närvänen, A.; Timoshenko, V.; et al. Temperature responsive porous silicon nanoparticles for cancer therapy—Spatiotemporal triggering through infrared and radiofrequency electromagnetic heating. J. Control. Release 2016, 241, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Albarqi, H.A.; Demessie, A.A.; Sabei, F.Y.; Moses, A.S.; Hansen, M.N.; Dhagat, P.; Taratula, O.R.; Taratula, O. Systemically Delivered Magnetic Hyperthermia for Prostate Cancer Treatment. Pharmaceutics 2020, 12, 1020. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Gu, Q.; Ma, R.; Zhu, L. Heating Protocol Design Affected by Nanoparticle Redistribution and Thermal Damage Model in Magnetic Nanoparticle Hyperthermia for Cancer Treatment. J. Heat Transf. 2020, 142, 072501. [Google Scholar] [CrossRef]
- Singh, M.; Flores, H.; Ma, R.; Zhu, L. Extraction of Baseline Blood Perfusion Rates in Mouse Body and Implanted PC3 Tumor Using Infrared Images and Theoretical Simulation. In Proceedings of the Summer Biomechanics, Bioengineering and Biotransport Conference, Virtual, 17–20 June 2020. [Google Scholar]
- Lafuente-Gómez, N.; Milán-Rois, P.; García-Soriano, D.; Luengo, Y.; Cordani, M.; Alarcón-Iniesta, H.; Salas, G.; Somoza, Á. Smart Modification on Magnetic Nanoparticles Dramatically Enhances Their Therapeutic Properties. Cancers 2021, 13, 4095. [Google Scholar] [CrossRef] [PubMed]
- Sousa-Junior, A.A.; Mello-Andrade, F.; Rocha, J.V.R.; Hayasaki, T.G.; de Curcio, J.S.; Silva, L.D.C.; de Santana, R.C.; Martins Lima, E.; Cardoso, C.G.; Silveira-Lacerda, E.D.P.; et al. Immunogenic Cell Death Photothermally Mediated by Erythrocyte Membrane-Coated Magnetofluorescent Nanocarriers Improves Survival in Sarcoma Model. Pharmaceutics 2023, 15, 943. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Chen, Z.; Wang, L.; Wang, B.; Xu, L.; Hou, L.; Zhang, Z. A tumor-specific cleavable nanosystem of PEG-modified C60@Au hybrid aggregates for radio frequency-controlled release, hyperthermia, photodynamic therapy and X-ray imaging. Acta Biomater. 2016, 29, 282–297. [Google Scholar] [CrossRef]
- Park, S.; Lee, W.J.; Park, S.; Choi, D.; Kim, S.; Park, N. Reversibly pH-responsive gold nanoparticles and their applications for photothermal cancer therapy. Sci. Rep. 2019, 9, 20180. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, Y.; Lin, H.; Kang, S.; Li, Y.; Sun, D.; Chen, M.; Wang, Z.; Jiao, Z.; Wang, Y.; et al. Ultrasound and Near-Infrared Light Dual-Triggered Upconversion Zeolite-Based Nanocomposite for Hyperthermia-Enhanced Multimodal Melanoma Therapy via a Precise Apoptotic Mechanism. ACS Appl. Mater. Interfaces 2020, 12, 32420–32431. [Google Scholar] [CrossRef]
- Singh, M. Modified Pennes bioheat equation with heterogeneous blood perfusion: A newer perspective. Int. J. Heat Mass Transf. 2024, 218, 124698. [Google Scholar] [CrossRef]
- Wu, P.; Han, J.; Gong, Y.; Liu, C.; Yu, H.; Xie, N. Nanoparticle-Based Drug Delivery Systems Targeting Tumor Microenvironment for Cancer Immunotherapy Resistance: Current Advances and Applications. Pharmaceutics 2022, 14, 1990. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Ma, R.; Zhu, L. Quantitative evaluation of effects of coupled temperature elevation, thermal damage, and enlarged porosity on nanoparticle migration in tumors during magnetic nanoparticle hyperthermia. Int. Commun. Heat Mass Transf. 2021, 126, 105393. [Google Scholar] [CrossRef]
- Singh, M.; Singh, T.; Soni, S. Pre-operative Assessment of Ablation Margins for Variable Blood Perfusion Metrics in a Magnetic Resonance Imaging Based Complex Breast Tumour Anatomy: Simulation Paradigms in Thermal Therapies. Comput. Methods Programs Biomed. 2021, 198, 105781. [Google Scholar] [CrossRef] [PubMed]
- Singh, M. Incorporating vascular-stasis based blood perfusion to evaluate the thermal signatures of cell-death using modified Arrhenius equation with regeneration of living tissues during nanoparticle-assisted thermal therapy. Int. Commun. Heat Mass Transf. 2022, 135, 106046. [Google Scholar] [CrossRef]
- Haque, M.; Shakil, M.S.; Mahmud, K.M. The Promise of Nanoparticles-Based Radiotherapy in Cancer Treatment. Cancers 2023, 15, 1892. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, Z.; Huang, Y.; Zou, B.; Xu, Y. Amplifying cancer treatment: Advances in tumor immunotherapy and nanoparticle-based hyperthermia. Front. Immunol. 2023, 14, 1258786. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Kohane, D.S. Keeping Nanomedicine on Target. Nano Lett. 2021, 21, 3–5. [Google Scholar] [CrossRef]
- ISO/TR 10993–22:2017(En); Biological Evaluation of Medical Devices—Part 22: Guidance on Nanomaterials. International Organization for Standardization: Geneva, Switzerland, 2017.
- Yusefi, M.; Shameli, K.; Su Yee, O.; Teow, S.Y.; Hedayatnasab, Z.; Jahangirian, H.; Webster, T.J.; Kuča, K. Green Synthesis of Fe3O4 Nanoparticles Stabilized by a Garcinia mangostana Fruit Peel Extract for Hyperthermia and Anticancer Activities. Int J. Nanomed. 2021, 16, 2515–2532. [Google Scholar] [CrossRef]
- Johannsen, M.; Thiesen, B.; Wust, P.; Jordan, A. Magnetic nanoparticle hyperthermia for prostate cancer. Int. J. Hyperth. 2010, 26, 790–795. [Google Scholar] [CrossRef]
- Wasti, S.; Lee, I.H.; Kim, S.; Lee, J.H.; Kim, H. Ethical and legal challenges in nanomedical innovations: A scoping review. Front. Genet. 2023, 14, 1163392. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bala, V.-M.; Lampropoulou, D.I.; Grammatikaki, S.; Kouloulias, V.; Lagopati, N.; Aravantinos, G.; Gazouli, M. Nanoparticle-Mediated Hyperthermia and Cytotoxicity Mechanisms in Cancer. Int. J. Mol. Sci. 2024, 25, 296. https://doi.org/10.3390/ijms25010296
Bala V-M, Lampropoulou DI, Grammatikaki S, Kouloulias V, Lagopati N, Aravantinos G, Gazouli M. Nanoparticle-Mediated Hyperthermia and Cytotoxicity Mechanisms in Cancer. International Journal of Molecular Sciences. 2024; 25(1):296. https://doi.org/10.3390/ijms25010296
Chicago/Turabian StyleBala, Vanessa-Meletia, Dimitra Ioanna Lampropoulou, Stamatiki Grammatikaki, Vassilios Kouloulias, Nefeli Lagopati, Gerasimos Aravantinos, and Maria Gazouli. 2024. "Nanoparticle-Mediated Hyperthermia and Cytotoxicity Mechanisms in Cancer" International Journal of Molecular Sciences 25, no. 1: 296. https://doi.org/10.3390/ijms25010296
APA StyleBala, V. -M., Lampropoulou, D. I., Grammatikaki, S., Kouloulias, V., Lagopati, N., Aravantinos, G., & Gazouli, M. (2024). Nanoparticle-Mediated Hyperthermia and Cytotoxicity Mechanisms in Cancer. International Journal of Molecular Sciences, 25(1), 296. https://doi.org/10.3390/ijms25010296