Ni-Doped In2O3 Nanoparticles and Their Composite with rGO for Efficient Degradation of Organic Pollutants in Wastewater under Visible Light Irradiation
Abstract
:1. Introduction
2. Results and Discussion
2.1. X-ray Diffraction (XRD) Analysis
2.2. Fourier-Transform Spectroscopy (FTIR) Analysis
2.3. Scanning Electron Microscopy (SEM) and EDS Analysis of rGO/Ni-In2O3
2.4. Transmission Electron Microscopy (TEM)
2.5. Electrical Conductivity Measurements (I–V Analysis)
2.6. Electrochemical Measurements
2.7. Photocatalytic Degradation Study
2.7.1. Photocatalytic Degradation Study of MB
2.7.2. Kinetic Study of the Photocatalyst
2.7.3. Photodegradation Mechanism
2.7.4. Stability and Recyclability
3. Materials and Methods
3.1. Characterization
3.1.1. Physical Characterization of Photocatalyst
3.1.2. Photoelectrochemical Measurement Methods
3.1.3. Photocatalytic Degradation of MB Dye Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hassaan, M.A.; Nemr, A.E. Health and Environmental Impacts of Dyes: Mini Review. Am. J. Environ. Sci. Eng. 2017, 1, 64–67. [Google Scholar]
- Bau, J.A. Transition Metal Oxide Materials for Electrocatalytic and Photocatalytic Water Splitting. Ph.D. Thesis, University of Alberta, Edmonton, AB, Canada, 2015. [Google Scholar]
- Chan, S.H.S.; Wu, T.Y.; Juan, J.C.; Teh, C.Y. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. J. Chem. Technol. Biotechnol. 2011, 86, 1130–1158. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, L.; Xu, L.; Cao, X.; Li, X.; Huang, Y.; Meng, C.; Wang, Z.; Zhu, W. Ag2O/TiO2/V2O5 one-dimensional nanoheterostructures for superior solar light photocatalytic activity. Nanoscale 2014, 6, 6790–6797. [Google Scholar] [CrossRef] [PubMed]
- Nakano, R.; Hara, M.; Ishiguro, H.; Yao, Y.; Ochiai, T.; Nakata, K.; Murakami, T.; Kajioka, J.; Sunada, K.; Hashimoto, K.; et al. Broad Spectrum Microbicidal Activity of Photocatalysis by TiO2. Catalysts 2013, 3, 310–323. [Google Scholar] [CrossRef]
- Ge, M.; Cao, C.; Huang, J.; Li, S.; Chen, Z.; Zhang, K.-Q.; Al-Deyab, S.S.; Lai, Y. A review of one-dimensional TiO2nanostructured materials for environmental and energy applications. J. Mater. Chem. A 2013, 4, 6772–6801. [Google Scholar] [CrossRef]
- Wang, C.; Gao, Y.; Wang, L.; Li, P. Morphology regulation, structural, and photocatalytic properties of ZnO hierarchical microstructures synthesized by a simple hydrothermal method. Phys. Status Solidi Appl. Mater. Sci. 2017, 214, 1600876. [Google Scholar] [CrossRef]
- Roy, A.; Pradhan, M.; Ray, C.; Sahoo, R.; Dutta, S.; Pal, T. Facile synthesis of pyridine intercalated ultra-long V2O5nanowire from commercial V2O5: Catalytic applications in selective dye degradation. Crystengcomm 2014, 16, 7738–7744. [Google Scholar] [CrossRef]
- Saravanan, R.; Joicy, S.; Gupta, V.; Narayanan, V.; Stephen, A. Visible light induced degradation of methylene blue using CeO2/V2O5 and CeO2/CuO catalysts. Mater. Sci. Eng. C 2013, 33, 4725–4731. [Google Scholar] [CrossRef]
- Al-Hamdi, A.M.; Rinner, U.; Sillanpää, M. Tin Dioxide As A Photocatalyst For Water Treatment: A Review; Institution of Chemical Engineers: Rugby, UK, 2017; pp. 190–205. [Google Scholar]
- Nedeljkovic, J.M.; Nenadovic, M.T.; Micic, O.I.; Nozik, A.J. Enhanced photoredox chemistry in quantized semiconductor colloids. J. Phys. Chem. 1986, 90, 12–13. [Google Scholar] [CrossRef]
- Shahid, M.; Bashir, S.; Habib, A.; Jamil, A.; Afzal, A.; Iqbal, N. Fabrication of Silica-Supported Al-Doped ZnO and Its Use in the Elimination of the Toxic Organic Ingredients from Industrial Effluents. Chemistryselect 2021, 6, 10501–10513. [Google Scholar] [CrossRef]
- Xia, P.; Zhu, B.; Cheng, B.; Yu, J.; Xu, J. 2D/2D g-C3N4/MnO2 Nanocomposite as a Direct Z-Scheme Photocatalyst for Enhanced Photocatalytic Activity. ACS Sustain. Chem. Eng. 2018, 6, 965–973. [Google Scholar] [CrossRef]
- Bashir, S.; Habib, A.; Jamil, A.; Alazmi, A.; Shahid, M. Fabrication of Ag-doped MoO3 and its nanohybrid with a two-dimensional carbonaceous material to enhance photocatalytic activity. Adv. Powder Technol. 2022, 33, 103482. [Google Scholar] [CrossRef]
- Das, A.; Patra, M.; Mathan, K.P.; Bhagavathiachari, M.; Nair, R.G. Role of type II heterojunction in ZnO–In2O3 nanodiscs for enhanced visible-light photocatalysis through the synergy of effective charge carrier separation and charge transport. Mater. Chem. Phys. 2021, 263, 124431. [Google Scholar] [CrossRef]
- Zhao, J.; Ge, S.; Pan, D.; Pan, Y.; Murugadoss, V.; Li, R.; Xie, W.; Lu, Y.; Wu, T.; Wujcik, E.K.; et al. Microwave Hydrothermal Synthesis of In2O3—ZnO Nanocomposites and Their Enhanced Photoelectrochemical Properties. J. Electrochem. Soc. 2019, 166, H3074–H3083. [Google Scholar] [CrossRef]
- Shanker, G.S.; Panchal, R.A.; Ogale, S.; Nag, A. g-C3N4:Sn-doped In2O3 (ITO) nanocomposite for photoelectrochemical reduction of water using solar light. J. Solid State Chem. 2020, 285, 121187. [Google Scholar] [CrossRef]
- Shanmuganathan, V.; Kumar, J.S.; Pachaiappan, R.; Thangadurai, P. Transition metal ion-doped In2O3 nanocubes: Investigation of their photocatalytic degradation activity under sunlight. Nanoscale Adv. 2021, 3, 471–485. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, P.; Li, J.; Shao, T.; Jin, L. Synthesis of In2O3-graphene composites and their photocatalytic performance towards perfluorooctanoic acid decomposition. J. Photochem. Photobiol. A Chem. 2013, 271, 111–116. [Google Scholar] [CrossRef]
- Sun, Q.; Zeng, Y.; Jiang, D.J.C. One-step solvothermal synthesis of Ni2+ doped indium oxide nanocrystals and evidences of their in situ growth mechanism. CrystEngComm 2012, 14, 1595–1601. [Google Scholar] [CrossRef]
- Seetha, M.; Meena, P.; Mangalaraj, D.; Masuda, Y.; Senthil, K. Synthesis of indium oxide cubic crystals by modified hydrothermal route for application in room temperature flexible ethanol sensors. Mater. Chem. Phys. 2012, 133, 47–54. [Google Scholar] [CrossRef]
- Farjami, E.; Rottmayer, M.A.; Deiner, L.J. Evidence for oxygen reduction reaction activity of a Ni(OH)2/graphene oxide catalyst. J. Mater. Chem. A 2013, 1, 15501–15508. [Google Scholar] [CrossRef]
- Liu, C.; Mao, S.; Shi, M.; Hong, X.; Wang, D.; Wang, F.; Xia, M.; Chen, Q. Enhanced photocatalytic degradation performance of BiVO4/BiOBr through combining Fermi level alteration and oxygen defect engineering. Chem. Eng. J. 2022, 449, 137757. [Google Scholar] [CrossRef]
- Liu, C.; Mao, S.; Wang, H.; Wu, Y.; Wang, F.; Xia, M.; Chen, Q. Peroxymonosulfate-assisted for facilitating photocatalytic degradation performance of 2D/2D WO3/BiOBr S-scheme heterojunction. Chem. Eng. J. 2022, 430, 132806. [Google Scholar] [CrossRef]
- Liu, C.; Mao, S.; Shi, M.; Wang, F.; Xia, M.; Chen, Q.; Ju, X. Peroxymonosulfate activation through 2D/2D Z-scheme CoAl-LDH/BiOBr photocatalyst under visible light for ciprofloxacin degradation. J. Hazard. Mater. 2021, 420, 126613. [Google Scholar] [CrossRef] [PubMed]
- Prakash, R.; Kumar, S.; Ahmed, F.; Lee, C.G.; Song, J.I. Room temperature ferromagnetism in Ni doped In2O3 nanoparticles. Thin Solid Films 2011, 519, 8243–8246. [Google Scholar] [CrossRef]
- Krishna, N.S.; Kaleemulla, S.; Amarendra, G.; Rao, N.M.; Krishnamoorthi, C.; Kuppan, M.; Begam, M.R.; Reddy, D.S.; Omkaram, I. Structural, optical, and magnetic properties of Fe doped In2O3 powders. Mater. Res. Bull. 2015, 61, 486–491. [Google Scholar] [CrossRef]
- Jiao, X.; Qiu, Y.; Zhang, L.; Zhang, X. Comparison of the characteristic properties of reduced graphene oxides synthesized from natural graphites with different graphitization degrees. RSC Adv. 2017, 7, 52337–52344. [Google Scholar] [CrossRef]
- Parast, M.S.Y.; Morsali, A. Sonochemical-assisted synthesis of nano-structured indium(III) hydroxide and oxide. Ultrason. Sonochemistry 2011, 18, 375–381. [Google Scholar] [CrossRef]
- Yang, J.; Li, C.; Quan, Z.; Kong, D.; Zhang, X.; Yang, P.; Lin, J. One-Step Aqueous Solvothermal Synthesis of In2O3 Nanocrystals. Cryst. Growth Des. 2008, 8, 695–699. [Google Scholar] [CrossRef]
- Narmada, A.; Kathirvel, P.; Lakshmi, M.; Saravanakumar, S.; Marnadu, R.; Chandrasekaran, J. Jet nebuliser spray pyrolysed indium oxide and nickel doped indium oxide thin films for photodiode application. Optik 2020, 202, 163701. [Google Scholar] [CrossRef]
- Ayeshamariam, A.; Bououdina, M.; Sanjeeviraja, C. Optical, electrical and sensing properties of In2O3 nanoparticles. Mater. Sci. Semicond. Process. 2013, 16, 686–695. [Google Scholar] [CrossRef]
- Ivanovskaya, M.I.; Ovodok, E.A.; Kotsikau, D. Sol-gel synthesis and features of the structure of Au-In2O3 nanocomposites. Glass Phys. Chem. 2011, 37, 560–567. [Google Scholar] [CrossRef]
- Sabeeh, H.; Zulfiqar, S.; Aadil, M.; Shahid, M.; Shakir, I.; Khan, M.A.; Warsi, M.F. Flake-like MoS2 nano-architecture and its nanocomposite with reduced Graphene Oxide for hybrid supercapacitors applications. Ceram. Int. 2020, 46, 21064–21072. [Google Scholar] [CrossRef]
- Liu, H.; Zhai, H.; Hu, C.; Yang, J.; Liu, Z. Hydrothermal synthesis of In2O3 nanoparticles hybrid twins hexagonal disk ZnO heterostructures for enhanced photocatalytic activities and stability. Nanoscale Res. Lett. 2017, 12, 1–10. [Google Scholar] [CrossRef]
- Dong, H.; Chen, G.; Sun, J.; Feng, Y.; Li, C.; Lv, C. Stability, durability and regeneration ability of a novel Ag-based photocatalyst. Ag2Nb4O11. Chem. Commun. 2014, 50, 6596–6599. [Google Scholar] [CrossRef]
- Shakir, I.; Almutairi, Z.; Shar, S.S.; Nafady, A. Nickel hydroxide nanoparticles and their hybrids with carbon nanotubes for electrochemical energy storage applications. Results Phys. 2020, 17, 103117. [Google Scholar] [CrossRef]
- Ghaffar, I.; Warsi, M.F.; Shahid, M.; Shakir, I. Unprecedented photocatalytic activity of carbon coated/MoO3 core–shell nanoheterostructurs under visible light irradiation. Phys. E Low Dimens. Syst. Nanostruct. 2016, 79, 1–7. [Google Scholar] [CrossRef]
- Feng, Y.; Feng, N.; Wei, Y.; Zhang, G. An in situ gelatin-assisted hydrothermal synthesis of ZnO–reduced graphene oxide composites with enhanced photocatalytic performance under ultraviolet and visible light. RSC Adv. 2014, 4, 7933–7943. [Google Scholar] [CrossRef]
- Zhang, L.J.; Li, S.; Liu, B.K.; Wang, D.J.; Xie, T.F. Highly Efficient CdS/WO3 Photocatalysts: Z-Scheme Photocatalytic Mechanism for Their Enhanced Photocatalytic H2 Evolution under Visible Light. ACS Catal. 2014, 4, 3724–3729. [Google Scholar] [CrossRef]
- Guo, C.; Tian, K.; Wang, L.; Liang, F.; Wang, F.; Chen, D.; Ning, J.; Zhong, Y.; Hu, Y. Approach of fermi level and electron-trap level in cadmium sulfide nanorods via molybdenum doping with enhanced carrier separation for boosted photocatalytic hydrogen production. J. Colloid Interface Sci. 2021, 583, 661–671. [Google Scholar] [CrossRef]
- Mao, C.; Zuo, F.; Hou, Y.; Bu, X.; Feng, P. In Situ Preparation of a Ti3+ Self-Doped TiO2 Film with Enhanced Activity as Photoanode by N2H4 Reduction. Angew. Chem. Int. Ed. 2014, 53, 10485–10489. [Google Scholar] [CrossRef]
- Wang, B.C.; Nisar, J.; Pathak, B.; Kang, T.W.; Ahuja, R. Band gap engineering in BiNbO4 for visible-light photocatalysis. Appl. Phys. Lett. 2012, 100, 182102. [Google Scholar] [CrossRef]
- Rao, P.S.; Hayon, E. Redox potentials of free radicals. IV. Superoxide and hydroperoxy radicals. O2− and HO2. J. Phys. Chem. 1975, 79, 397–402. [Google Scholar] [CrossRef]
- Albert, S.; Petai, P.; Elvira, G.; Laetitia, P. Efficient magnetic hybrid ZnO-based photocatalysts for visible-light-driven removal of toxic cyanobacteria blooms and cyanotoxins. Appl. Catal. B Environ. 2020, 268, 118745. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habib, A.; Khan, M.S.; Zubair, M.; Hasan, I.U. Ni-Doped In2O3 Nanoparticles and Their Composite with rGO for Efficient Degradation of Organic Pollutants in Wastewater under Visible Light Irradiation. Int. J. Mol. Sci. 2023, 24, 7950. https://doi.org/10.3390/ijms24097950
Habib A, Khan MS, Zubair M, Hasan IU. Ni-Doped In2O3 Nanoparticles and Their Composite with rGO for Efficient Degradation of Organic Pollutants in Wastewater under Visible Light Irradiation. International Journal of Molecular Sciences. 2023; 24(9):7950. https://doi.org/10.3390/ijms24097950
Chicago/Turabian StyleHabib, Amir, Muhammad Shahzeb Khan, Muhammad Zubair, and Iftikhar Ul Hasan. 2023. "Ni-Doped In2O3 Nanoparticles and Their Composite with rGO for Efficient Degradation of Organic Pollutants in Wastewater under Visible Light Irradiation" International Journal of Molecular Sciences 24, no. 9: 7950. https://doi.org/10.3390/ijms24097950
APA StyleHabib, A., Khan, M. S., Zubair, M., & Hasan, I. U. (2023). Ni-Doped In2O3 Nanoparticles and Their Composite with rGO for Efficient Degradation of Organic Pollutants in Wastewater under Visible Light Irradiation. International Journal of Molecular Sciences, 24(9), 7950. https://doi.org/10.3390/ijms24097950