The Non-Invasive Prediction of Colorectal Neoplasia (NIPCON) Study 1995–2022: A Comparison of Guaiac-Based Fecal Occult Blood Test (FOBT) and an Anti-Adenoma Antibody, Adnab-9
Abstract
:1. Introduction
2. Results
Phase 2 Studies
3. Discussion
4. Materials and Methods
4.1. Participants
4.2. Adnab-9 Stool ELISA
4.3. ELISA and Western Blotting
4.4. Immunostaining
4.5. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board and Permissions
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Helsingen, L.M.; Kalager, M. Colorectal Cancer Screening—Approach, Evidence, and Future Directions. N. Engl. J. Med. Evid. 2022, 1, 1–13. [Google Scholar] [CrossRef]
- Mandel, J.S.; Bond, J.H.; Church, T.R.; Snover, D.C.; Bradley, G.M.; Schuman, L.M.; Ederer, F. Reducing mortality from colorectal cancer by screening for fecal occult blood. Minnesota Colon Cancer Control Study. N. Engl. J. Med. 1993, 328, 1365–1371. [Google Scholar] [CrossRef] [PubMed]
- Murakami, T.; Kurosawa, T.; Fukushima, H.; Shibuya, T.; Yao, T.; Nagahara, A. Sessile serrated lesions: Clinicopathological characteristics, endoscopic diagnosis, and management. Dig. Endosc. 2022, 34, 1096–1109. [Google Scholar] [CrossRef] [PubMed]
- Mezzapesa, M.; Losurdo, G.; Celiberto, F.; Rizzi, S.; D’amati, A.; Piscitelli, D.; Ierardi, E.; Di Leo, A. Serrated Colorectal Lesions: An Up-to-Date Review from Histological Pattern to Molecular Pathogenesis. Int. J. Mol. Sci. 2022, 23, 4461. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, F.; Sato, Y.; Okamoto, K.; Fujino, Y.; Mitsui, Y.; Kagemoto, K.; Kawaguchi, T.; Miyamoto, H.; Muguruma, N.; Sonoda, T.; et al. Colorectal carcinoma occurring via the adenoma–carcinoma pathway in patients with serrated polyposis syndrome. J. Gastroenterol. 2022, 57, 286–299. [Google Scholar] [CrossRef]
- Imperiale, T.F.; Ransohoff, D.F.; Itzkowitz, S.H.; Levin, T.R.; Lavin, P.; Lidgard, G.P.; Ahlquist, D.A.; Berger, B.M. Multitarget Stool DNA Testing for Colorectal-Cancer Screening. N. Engl. J. Med. 2014, 370, 1287–1297. [Google Scholar] [CrossRef] [PubMed]
- Yuan, M.; Xhang, X.; Leu, Y.; Xu, Y.; Ullah, N.; Lawson, M.; Tobi, M. Fecal Adnab-9 binding as a risk marker for colorectal neoplasia. Cancer Lett. 2006, 235, 48–52. [Google Scholar] [CrossRef]
- Tobi, M.; Darmon, E.; Phillips, T.; Heller, T.; Rozen, P.; Nochomovitz, L.; Steinberg, W. Increased expression of a putative adenoma-associated antigen in pre-colonoscopic effluent of patients with colorectal cancer. Cancer Lett. 1990, 51, 21–25. [Google Scholar] [CrossRef] [PubMed]
- Rocker, J.M.; DiPalma, J.A.; Pannell, L.K. Rectal Effluent as a Research Tool. Dig. Dis. Sci. 2015, 60, 24–31. [Google Scholar] [CrossRef]
- Tobi, M.; Prabhu, S.; Gage, R.E.; Orr, T.; Lawson, M.J. Colorectal cancer risk: The impact of evidence of a field effect of carcinogenesis on blinded diagnosis using an anti-adenoma antibody test performed on colonoscopic effluent. Dig. Dis. Sci. 2002, 47, 317–321. [Google Scholar] [CrossRef]
- Tobi, M.; Darmon, E.; Rozen, P.; Harpaz, N.; Fink, A.; Maliakkal, B.; Halline, A.; Mobarhan, S.; Bentwich, Z. Urinary organ specific neoantigen—A potentially diagnostic test for colorectal cancer. Dig. Dis. Sci. 1995, 40, 1531–1537. [Google Scholar] [CrossRef]
- Deibel, A.; Deng, L.; Cheng, C.-Y.; Schlander, M.; Ran, T.; Lang, B.; Krupka, N.; Beerenwinkel, N.; Rogler, G.; Wiest, R.; et al. Evaluating key characteristics of ideal colorectal cancer screening modalities: The microsimulation approach. Gastrointest. Endosc. 2021, 94, 379–390.e7. [Google Scholar] [CrossRef]
- Deatg Rate by Age and Sex in the U.S. 2020. Available online: https://www.statista.com/statistics/241572/death-rate-by-age-and-sex-in-the-us/ (accessed on 5 December 2023).
- Bhatavdekar, J.M.; Patel, D.D.; Chikhlikar, P.R.; Shah, N.G.; Vora, H.H.; Ghosh, N.; Trivedi, T.I. Molecular markers are predictors of recurrence and survival in patients with Dukes B and Dukes C colorectal adenocarcinoma. Dis. Colon Rectum 2001, 44, 523–533. [Google Scholar] [CrossRef] [PubMed]
- Bretthauer, M.; Løberg, M.; Wieszczy, P.; Kalager, M.; Emilsson, L.; Garborg, K.; Rupinski, M.; Dekker, E.; Spaander, M.; Bugajski, M.; et al. Effect of Colonoscopy Screening on Risks of Colorectal Cancer and Related Death. N. Engl. J. Med. 2022, 387, 1547–1556. [Google Scholar] [CrossRef] [PubMed]
- Bretthauer, M.; Wieszczy, P.; Løberg, M.; Kaminski, M.F.; Werner, T.F.; Helsingen, L.M.; Mori, Y.; Holme, Ø.; Adami, H.O.; Kalager, M. Estimated Lifetime Gained With Cancer Screening Tests: A Meta-Analysis of Randomized Clinical Trials. JAMA Intern Med. 2023, 183, 1196–1203. [Google Scholar] [CrossRef] [PubMed]
- Dominitz, J.A.; Robertson, D.J. Colonoscopy Screening and Colorectal Cancer Incidence and Mortality. Reply. N. Engl. J. Med. 2023, 388, 379. [Google Scholar]
- Cappell, M.S.; Tobi, M.; Yang, Y.X. Colonoscopy Screening and Colorectal Cancer Incidence and Mortality. N. Engl. J. Med. 2023, 388, 378. [Google Scholar] [CrossRef]
- Death in the United States-Statistics & Facts. Available online: https://www.statistica.com/topics/1294/#1topicOverview (accessed on 25 October 2023).
- Lawson, M.J.; Tobi, M. Cecal Stampede: The Headlong Rush for Screening Colonoscopy: A Position Paper. Dig. Dis. Sci. 2007, 53, 871–874. [Google Scholar] [CrossRef] [PubMed]
- Barber, L.E.; Bertrand, K.A.; Petrick, J.L.; Gerlovin, H.; White, L.F.; Adams-Campbell, L.L.; Rosenberg, L.; Roy, H.K.; Palmer, J.R. Predicted Vitamin D Status and Colorectal Cancer Incidence in the African American Women’s Health Study. Cancer Epidemiol. Biomark. Prev. 2021, 30, 2334–2341. [Google Scholar] [CrossRef]
- Available online: https://www.va.gov/vetdata/docs/SpecialReports/Mortality_study_USVETS_2015_1980_2014.pdf (accessed on 25 October 2023).
- Tepus, M.; Yau, T.O. Non-Invasive Colorectal Cancer Screening: An Overview. Gastrointest. Tumors 2020, 7, 62–73. [Google Scholar] [CrossRef]
- Simon, K.; Balchen, V. Colorectal cancer development and advances in screening. Clin. Interv. Aging 2016, 11, 967–976. [Google Scholar] [CrossRef]
- Loktionov, A. Biomarkers for detecting colorectal cancer non-invasively: DNA, RNA or proteins? World J. Gastrointest. Oncol. 2020, 12, 124–148. [Google Scholar] [CrossRef]
- Corte, C.J.; Leong, R.W. Improving the utility of colonoscopy: Recent advances in practice. J. Gastroenterol. Hepatol. 2015, 31, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Urban, G.; Tripathi, P.; Alkayali, T.; Mittal, M.; Jalali, F.; Karnes, W.; Baldi, P. Deep Learning Localizes and Identifies Polyps in Real Time With 96% Accuracy in Screening Colonoscopy. Gastroenterology 2018, 155, 1069–1078.e8. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Park, S.W.; Kim, Y.S.; Lee, K.J.; Sung, H.; Song, P.H.; Yoon, W.J.; Moon, J.S. Risk factors of missed colorectal lesions after colonoscopy. Medicine 2017, 96, e7468. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, E.; Uhl, A.; Hafner, M. Colonic polyp classification with convolutional neural networks. In Proceedings of the IEEE 29th International Symposium on Computer-Based Medical Systems, Belfast and Dublin, Ireland, 20–24 June 2016. [Google Scholar] [CrossRef]
- Liang, J.Q.; Li, T.; Nakatsu, G.; Chen, Y.-X.; Yau, T.O.; Chu, E.; Wong, S.; Szeto, C.H.; Ng, S.C.; Chan, F.K.L.; et al. A novel faecal Lachnoclostridium marker for the non-invasive diagnosis of colorectal adenoma and cancer. Gut 2019, 69, 1248–1257. [Google Scholar] [CrossRef]
- Wong, S.H.; Zhao, L.; Zhang, X.; Nakatsu, G.; Han, J.; Xu, W.; Xiao, X.; Kwong, T.N.Y.; Tsoi, H.; Wu, W.K.K.; et al. Gavage of Fecal Samples from Patients with Colorectal Cancer Promotes Intestinal Carcinogenesis in Germ-Free and Conventional Mice. Gastroenterology 2017, 153, 1621–1633.e6. [Google Scholar] [CrossRef]
- Kostic, A.D.; Chun, E.; Robertson, L.; Glickman, J.N.; Gallini, C.A.; Michaud, M.; Clancy, T.E.; Chung, D.C.; Lochhead, P.; Hold, G.L.; et al. Fusobacterium nucleatum Potentiates Intestinal Tumorigenesis and Modulates the Tumor-Immune Microenvironment. Cell Host Microbe 2013, 14, 207–215. [Google Scholar] [CrossRef]
- Rubinstein, M.R.; Wang, X.; Liu, W.; Hao, Y.; Cai, G.; Han, Y.W. Fusobacterium nucleatum Promotes Colorectal Carcinogenesis by Modulating E-Cadherin/β-Catenin Signaling via its FadA Adhesin. Cell Host Microbe 2013, 14, 195–206. [Google Scholar] [CrossRef]
- Yu, T.; Guo, F.; Yu, Y.; Sun, T.; Ma, D.; Han, J.; Qian, Y.; Kryczek, I.; Sun, D.; Nagarsheth, N.; et al. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell 2017, 170, 548–563.e16. [Google Scholar] [CrossRef]
- Tsoi, H.; Chu, E.S.; Zhang, X.; Sheng, J.; Nakatsu, G.; Ng, S.C.; Chan, A.W.; Chan, F.K.; Sung, J.J.; Yu, J. Peptostreptococcus anaerobius Induces Intracellular Cholesterol Biosynthesis in Colon Cells to Induce Proliferation and Causes Dysplasia in Mice. Gastroenterology 2017, 152, 1419–1433.e5. [Google Scholar] [CrossRef] [PubMed]
- Liang, Q.; Chiu, J.; Chen, Y.; Huang, Y.; Higashimori, A.; Fang, J.; Brim, H.; Ashktorab, H.; Ng, S.C.; Ng, S.S.M.; et al. Fecal Bacteria Act as Novel Biomarkers for Noninvasive Diagnosis of Colorectal Cancer. Clin. Cancer Res. 2017, 23, 2061–2070. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.-H.; Gao, Q.-Y.; Cai, G.-X.; Sun, X.-M.; Zou, T.-H.; Chen, H.-M.; Yu, S.-Y.; Qiu, Y.-W.; Gu, W.-Q.; Chen, X.-Y.; et al. Fecal Clostridium symbiosum for Noninvasive Detection of Early and Advanced Colorectal Cancer: Test and Validation Studies. eBioMedicine 2017, 25, 32–40, Erratum in: eBioMedicine 2018, 31, 320. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.S.; DeSantis, T.Z.; Weinmaier, T.; McMurdie, P.J.; Cope, J.L.; Altrichter, A.; Yamal, J.-M.; Hollister, E.B. Leveraging sequence-based faecal microbial community survey data to identify a composite biomarker for colorectal cancer. Gut 2017, 67, 882–891. [Google Scholar] [CrossRef] [PubMed]
- Tilg, H.; Adolph, T.E.; Gerner, R.R.; Moschen, A.R. The Intestinal Microbiota in Colorectal Cancer. Cancer Cell 2018, 33, 954–964. [Google Scholar] [CrossRef]
- Yu, J.; Feng, Q.; Wong, S.H.; Zhang, D.; Liang, Q.Y.; Qin, Y.; Tang, L.; Zhao, H.; Stenvang, J.; Li, Y.; et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut 2015, 66, 70–78. [Google Scholar] [CrossRef]
- Tobi, M.; Kaila, V.; Hassan, N.; Gallinger, S.; Fligiel, S.; Hatfield, J.; Gesell, M.; Sakr, W.; Luk, G.; Odze, R.D. Monoclonal antibody Adnab-9 defines a preneoplastic marker in epithelium at risk for adenocarcinoma of the small intestine. Hum. Pathol. 1999, 30, 467–473. [Google Scholar] [CrossRef]
- Tobi, M.; Bluth, M.H.; Rossi, N.F.; Demian, E.; Talwar, H.; Tobi, Y.Y.; Sochacki, P.; Levi, E.; Lawson, M.; McVicker, B. In the SARS-CoV-2 Pandora Pandemic: Can the Stance of Premorbid Intestinal Innate Immune System as Measured by Fecal Adnab-9 Binding of P87: Blood Ferritin, Yielding the Ferad Ratio, Predict COVID-19 Susceptibility and Survival in a Prospective Population Database? Int. J. Mol. Sci. 2023, 24, 7536. [Google Scholar] [CrossRef]
- Tobi, M.; Weinstein, D.; Kim, M.; Hatfield, J.; Sochacki, P.; Levi, E.; An, T.; Hamre, M.; Tolia, V.; Fligiel, S.; et al. Helicobacter pylori Status May Differentiate Two Distinct Pathways of Gastric Adenocarcinoma Carcinogenesis. Curr. Oncol. 2023, 30, 7950–7963. [Google Scholar] [CrossRef]
- Longacre, T.A.; Fenoglio-Preiser, C.M. Mixed Hyperplastic Adenomatous Polyps/Serrated Adenomas. A distinct form of colorectal neoplasia. Am. J. Surg. Pathol. 1990, 14, 524–537. [Google Scholar] [CrossRef]
- Nagtegaal, I.D.; Snover, D.C. Head to head: Should we adopt the term ‘sessile serrated lesion’? Histopathology 2022, 80, 1019–1025. [Google Scholar] [CrossRef]
- Choi, C.-H.R.; Rutter, M.D.; Askari, A.; Lee, G.H.; Warusavitarne, J.; Moorghen, M.; Thomas-Gibson, S.; Saunders, B.P.; A Graham, T.; Hart, A.L.; et al. Forty-Year Analysis of Colonoscopic Surveillance Program for Neoplasia in Ulcerative Colitis: An Updated Overview. Am. J. Gastroenterol. 2015, 110, 1022–1034. [Google Scholar] [CrossRef] [PubMed]
- Winawer, S.J.; Zauber, A.G.; O’brien, M.J.; Geenen, J.; Waye, J.D. The National Polyp Study at 40: Challenges then and now. Gastrointest. Endosc. 2020, 93, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Santos, D.A.R.; Gaiteiro, C.; Santos, M.; Santos, L.; Dinis-Ribeiro, M.; Lima, L. MicroRNA Biomarkers as Promising Tools for Early Colorectal Cancer Screening—A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 11023. [Google Scholar] [CrossRef] [PubMed]
- Sałagacka-Kubiak, A.; Zawada, D.; Saed, L.; Kordek, R.; Jeleń, A.; Balcerczak, E. ABCG2 Gene and ABCG2 Protein Expression in Colorectal Cancer—In Silico and Wet Analysis. Int. J. Mol. Sci. 2023, 24, 10539. [Google Scholar] [CrossRef]
- Johnstone, M.S.; Lynch, G.; Park, J.; McSorley, S.; Edwards, J. Novel Methods of Risk Stratifying Patients for Metachronous, Pre-Malignant Colorectal Polyps: A Systematic Review. Crit. Rev. Oncol. Hematol. 2021, 164, 103421. [Google Scholar] [CrossRef]
Parameter (Total) | Detroit | Albany | Philadelphia |
---|---|---|---|
Participants (2294) | 2169 | 67 | 58 |
Withdrew (28) | 27 | 1 | 0 |
Removed (123) | 115 | 8 | 0 |
Sex Males:Females (unk) | 1929:240 | 9:(58) | 41:12(5) |
Age x ± sd | 60.54 ± 12.32 | 64.45 ± 9.35 | 54.68 ± 12.49 |
Ethnicity His/AA/C (unk) | 28/1082/1026 (33) | C34:(33) | 4/16/18(20) |
Parameter | Years (Proportions) | African American n = 1101 | Caucasians n = 1114 |
---|---|---|---|
Mean follow-up live Pts | 14.56 ± 7.99 med 15.9 | 14.45 ± 5.33 | 14.29 ± 5.16 |
Mean f/u deceased Pts stool | 9.25 ± 9.07 med 8.58 | 10.12 ± 11.45 | 8.36 ± 5.08 |
Survival alive/dead | 1140/909 55.6% alive | 577/472 (55.01%) | 512/412 (55.4%) |
Age at enrollment (years) | 60.52 ± 12.31 med 60 | 60.27 ± 12.7 | 60.79 ± 12.45 |
Smoking status active/never/quit | 554/374/230 Active: 47.84% | 330/182/113 (52.8%). 1.46(1.16–1.85); p < 0.002. | 224/179/114 (43.33%) |
Chronic hepatitis C | 178 of 931- 19.1% | 133 of 533: 24.95% 2.86(1.94–4.20); p < 0.0001 | 39 of 374: 10.43% |
Family history cancers | 828 of 2682- 30.9% | 400 of 900 (44.44%) 3.67(1.09–1.66); p < 0.0001 | 385 of 1000 (38.5%) |
Personal history cancer | 228 of 1854: 12.3% | 180 of 956 (18.83%) 1.69(2.95–4.57); p < 0.0001 | 105 of 968 (12.10%) |
Compliance DCBE | 317 of 1987 (15.95%) | 190 of 1021 (18.61%) 1.47(1.15–1.88); p < 0.003 | 121 of 898 (13.47%) |
Metformin | 80 of 390 (20.51%) | 35 of 218 (16.06%) | 44 of 161 (27.33%) 1.97(1.19–3.25): p < 0.011 |
Illicit drug use | 102 of 632 (16.13%) | 77+ 289- (21.0%) 2.61(1.59–4.29); p < 0.0002. | 23 of 248 (9.27%) |
Vitamin D blood level ng/mL mean ± standard deviation | 23.00 ± 12.03 n = 358 | 21.82 ± 12.16 n = 209 p = 0.4 AA versus Caucasian. | 25.07 ± 10.85 n = 149 |
Significant proportional differences | N/A | Males deficient with concentrations < 30 ng/mL: 51.3% AA vs. 25.85% Caucasian OR3.16(1.25–8.01); p < 0.02. | Males deficient in 25.85%; <30 51% deficient |
Female vs. Male survival 55–64-year age group * | OR3.14(1.98–5.00) p < 0.0001 | OR2.71(1.74–4.20); p < 0.0001 | OR3.07(1.91–4.93) p < 0.0001 |
Group | Number | Mean Values | Standard Deviation | p-Values |
---|---|---|---|---|
No neoplasia | 59 | 1.724 | 1.080 | Basis of comparison |
Minor adenomas | 25 | 1.712 | 1.080 | 0.96 |
Advanced adenomas | 23 | 2.274 | 1.162 | <0.047 |
Region | Cecum | Ascending | Transverse | Descending | Sigmoid | Rectum |
---|---|---|---|---|---|---|
Number | 195 | 163 | 209 | 209 | 213 | 226 |
% Stained | 72 | 87 | 92 | 92 | 94 | 91 |
Figure 5 #: % All | 5+: 1.3 | 3+: 4.3 | 4+: 0 | 2+: 13.6 | 0.5+: 53 | 1+: 29 |
IHC x ± sd | 0.419 ± 0.665 | 0.347 ± 0.621 | 0.210 ± 0.474 | 0.199 ± 0.468 | 0.230 ± 0.522 | 0.254 ± 0.557 |
Lane # | Age Gender Ethnicity | Colorectal Neoplasia | Band Strength, ELISA OD Smoker |
---|---|---|---|
1 | 53 yr male, Caucasian | Small adenoma of TC | ±33 kDa, OD 0.030 45 pyh |
2 | 79 yr male, Caucasian | Sigmoid adenoma | Strong, multiple ODE 0.659 65 pyh * |
3 | 55 yr male, African Am | Small cecal/TC adenomas | ±33 kDa OD 0.100+ ODE 0.007 60 pyh * |
4 | 77 yr male African Am | Small sigmoid adenomas | ±33 kDa OD 0.007 ODE 0.040 60 pyh * |
6 | 51 yr male African Am | Ulcerative colitis | +33 kDa OD 0.034 ODE 0.000 15 pyh # |
7 | 51 yr male Caucasian | F/H GI cancers (PC Gf) | ±33 kDa OD 0.117 20 pyh |
8 | 61 yr female Caucasian | Two small DC adenomas | +44/30 kDa OD 0.100 ODE 0.005 @^Quit |
9 | 64 yr male African Am | Small polyp TC, F/H CRC Pa | +44/33 OD 0.024 ODE 1.060 #^; Quit |
10 | 38 yr male Hispanic | Poor prep F/H Ma Fem gen | No bands OD 0.001 (low stool protein) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tobi, M.; Antaki, F.; Rambus, M.A.; Yang, Y.-X.; Kaplan, D.; Rodriguez, R.; Maliakkal, B.; Majumdar, A.; Demian, E.; Tobi, Y.Y.; et al. The Non-Invasive Prediction of Colorectal Neoplasia (NIPCON) Study 1995–2022: A Comparison of Guaiac-Based Fecal Occult Blood Test (FOBT) and an Anti-Adenoma Antibody, Adnab-9. Int. J. Mol. Sci. 2023, 24, 17257. https://doi.org/10.3390/ijms242417257
Tobi M, Antaki F, Rambus MA, Yang Y-X, Kaplan D, Rodriguez R, Maliakkal B, Majumdar A, Demian E, Tobi YY, et al. The Non-Invasive Prediction of Colorectal Neoplasia (NIPCON) Study 1995–2022: A Comparison of Guaiac-Based Fecal Occult Blood Test (FOBT) and an Anti-Adenoma Antibody, Adnab-9. International Journal of Molecular Sciences. 2023; 24(24):17257. https://doi.org/10.3390/ijms242417257
Chicago/Turabian StyleTobi, Martin, Fadi Antaki, Mary Ann Rambus, Yu-Xiao Yang, David Kaplan, Rebecca Rodriguez, Benedict Maliakkal, Adhip Majumdar, Ereny Demian, Yosef Y. Tobi, and et al. 2023. "The Non-Invasive Prediction of Colorectal Neoplasia (NIPCON) Study 1995–2022: A Comparison of Guaiac-Based Fecal Occult Blood Test (FOBT) and an Anti-Adenoma Antibody, Adnab-9" International Journal of Molecular Sciences 24, no. 24: 17257. https://doi.org/10.3390/ijms242417257
APA StyleTobi, M., Antaki, F., Rambus, M. A., Yang, Y.-X., Kaplan, D., Rodriguez, R., Maliakkal, B., Majumdar, A., Demian, E., Tobi, Y. Y., Sochacki, P., Ehrinpreis, M., Lawson, M. G., & McVicker, B. (2023). The Non-Invasive Prediction of Colorectal Neoplasia (NIPCON) Study 1995–2022: A Comparison of Guaiac-Based Fecal Occult Blood Test (FOBT) and an Anti-Adenoma Antibody, Adnab-9. International Journal of Molecular Sciences, 24(24), 17257. https://doi.org/10.3390/ijms242417257