An In Vivo Dual-Observation Method to Monitor Tumor Mass and Tumor-Surface Blood Vessels for Developing Anti-Angiogenesis Agents against Submillimeter Tumors
Abstract
:1. Introduction
2. Results
2.1. In Vivo Dual-Observation of Submillimeter Tumor Model
2.2. Evaluation of Comparative Experiment with Regorafenib
2.3. Frozen Section Analysis
3. Discussion
4. Materials and Methods
4.1. Cell Cultivation and Culture of Spheroids on rGHM Arrays
4.2. Ethical Approval
4.3. A Xenograft In Vivo Mouse Model of Subcutaneous Submillimeter Tumor
4.4. Establishment of In Vivo Dual-Observation of Tumor Mass and Tumor-Surface Blood Vessels with Subcutaneous Submillimeter Tumor Model
4.5. Comparative Experiment with Regorafenib
4.6. Image Analysis on Tumor Volume and Angiogenesis Parameters
4.7. Intratumoral Analysis via Fluorescence Microscopy with Frozen Sections
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seyfried, T.N.; Huysentruyt, L.C. On the origin of cancer metastasis. Crit. Rev. Oncog. 2013, 18, 43–73. [Google Scholar] [CrossRef] [PubMed]
- Saga, T.; Sakahara, H.; Nakamoto, Y.; Sato, N.; Zhao, S.; Iida, Y.; Kuroki, M.; Endo, K.; Konishi, J. Radioimmunotherapy for liver micrometastases in mice: Pharmacokinetics, dose estimation, and long-term effect. Jpn. J. Cancer Res. 1999, 90, 342–348. [Google Scholar] [CrossRef] [PubMed]
- Folkman, J.; Hochberg, M. Self-regulation of growth in three dimensions. J. Exp. Med. 1973, 138, 745–753. [Google Scholar] [CrossRef] [PubMed]
- Tannock, I.F. The relation between cell proliferation and the vascular system in a transplanted mouse mammary tumour. Br. J. Cancer 1968, 22, 258–273. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Langer, R. A review of Judah Folkman’s remarkable achievements in biomedicine. Proc. Natl. Acad. Sci. USA 2008, 105, 13203–13205. [Google Scholar] [CrossRef] [PubMed]
- Folkman, J. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 2002, 29, 15–18. [Google Scholar] [CrossRef] [PubMed]
- Pugh, C.W.; Ratcliffe, P.J. Regulation of angiogenesis by hypoxia: Role of the HIF system. Nat. Med. 2003, 9, 677–684. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.C.; Li, X.X.; Sun, X.; Li, G.Y.; Sun, J.L.; Ye, Y.P.; Cong, L.L.; Li, W.M.; Lu, S.Y.; Feng, J.; et al. Activation of AMPK by simvastatin inhibited breast tumor angiogenesis via impeding HIF-1alpha-induced pro-angiogenic factor. Cancer Sci. 2018, 109, 1627–1637. [Google Scholar] [CrossRef]
- Kopec, M.; Abramczyk, H. The role of pro- and antiangiogenic factors in angiogenesis process by Raman spectroscopy. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 268, 120667. [Google Scholar] [CrossRef]
- Olejarz, W.; Kubiak-Tomaszewska, G.; Chrzanowska, A.; Lorenc, T. Exosomes in Angiogenesis and Anti-angiogenic Therapy in Cancers. Int. J. Mol. Sci. 2020, 21, 5840. [Google Scholar] [CrossRef]
- Okada, Y. Relationships of cervical lymph node metastasis to histopathological malignancy grade, tumor angiogenesis, and lymphatic invasion in tongue cancer. Odontology 2010, 98, 153–159. [Google Scholar] [CrossRef] [PubMed]
- Bielenberg, D.R.; Zetter, B.R. The Contribution of Angiogenesis to the Process of Metastasis. Cancer J. 2015, 21, 267–273. [Google Scholar] [CrossRef] [PubMed]
- Al-Abd, A.M.; Alamoudi, A.J.; Abdel-Naim, A.B.; Neamatallah, T.A.; Ashour, O.M. Anti-angiogenic agents for the treatment of solid tumors: Potential pathways, therapy and current strategies—A review. J. Adv. Res. 2017, 8, 591–605. [Google Scholar] [CrossRef] [PubMed]
- Weidner, N.; Semple, J.P.; Welch, W.R.; Folkman, J. Tumor angiogenesis and metastasis--correlation in invasive breast carcinoma. N. Engl. J. Med. 1991, 324, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.M.; Dumas, J.; Adnane, L.; Lynch, M.; Carter, C.A.; Schutz, G.; Thierauch, K.H.; Zopf, D. Regorafenib (BAY 73-4506): A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical antitumor activity. Int. J. Cancer 2011, 129, 245–255. [Google Scholar] [CrossRef] [PubMed]
- Grothey, A.; Van Cutsem, E.; Sobrero, A.; Siena, S.; Falcone, A.; Ychou, M.; Humblet, Y.; Bouche, O.; Mineur, L.; Barone, C.; et al. Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013, 381, 303–312. [Google Scholar] [CrossRef] [PubMed]
- Abou-Elkacem, L.; Arns, S.; Brix, G.; Gremse, F.; Zopf, D.; Kiessling, F.; Lederle, W. Regorafenib inhibits growth, angiogenesis, and metastasis in a highly aggressive, orthotopic colon cancer model. Mol. Cancer Ther. 2013, 12, 1322–1331. [Google Scholar] [CrossRef]
- Tachibana, T.; Yoshii, Y.; Matsumoto, H.; Zhang, M.R.; Nagatsu, K.; Hihara, F.; Igarashi, C.; Sugyo, A.; Tsuji, A.B.; Higashi, T. Efficacy of vorinostat-sensitized intraperitoneal radioimmunotherapy with (64)Cu-labeled cetuximab against peritoneal dissemination of gastric cancer in a mouse model. J. Cancer Res. Ther. 2022, 18, 907–914. [Google Scholar] [CrossRef]
- Smith, J.J.; Deane, N.G.; Wu, F.; Merchant, N.B.; Zhang, B.; Jiang, A.; Lu, P.; Johnson, J.C.; Schmidt, C.; Bailey, C.E.; et al. Experimentally derived metastasis gene expression profile predicts recurrence and death in patients with colon cancer. Gastroenterology 2010, 138, 958–968. [Google Scholar] [CrossRef]
- Chen, C.C.; Li, J.J.; Guo, N.H.; Chang, D.Y.; Wang, C.Y.; Chen, J.T.; Lin, W.J.; Chi, K.H.; Lee, Y.J.; Liu, R.S.; et al. Evaluation of the Biological Behavior of a Gold Nanocore-Encapsulated Human Serum Albumin Nanoparticle (Au@HSANP) in a CT-26 Tumor/Ascites Mouse Model after Intravenous/Intraperitoneal Administration. Int. J. Mol. Sci. 2019, 20, 217. [Google Scholar] [CrossRef]
- Tachibana, T.; Oyama, T.G.; Yoshii, Y.; Hihara, F.; Igarashi, C.; Tsuji, A.B.; Higashi, T.; Taguchi, M. Establishment of an In Vivo Xenograft Mouse Model of a Subcutaneous Submillimeter HT-29 Tumor Formed from a Single Spheroid Transplanted Using Radiation-Crosslinked Gelatin Hydrogel Microwell. Appl. Sci. 2021, 11, 7031. [Google Scholar] [CrossRef]
- Nazarov, A.A.; Baquie, M.; Nowak-Sliwinska, P.; Zava, O.; van Beijnum, J.R.; Groessl, M.; Chisholm, D.M.; Ahmadi, Z.; McIndoe, J.S.; Griffioen, A.W.; et al. Synthesis and characterization of a new class of anti-angiogenic agents based on ruthenium clusters. Sci. Rep. 2013, 3, 1485. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Qiu, Y.; Pei, X.; Chitteti, R.; Steiner, R.; Zhang, S.; Jin, Z.G. Endothelial specific YY1 deletion restricts tumor angiogenesis and tumor growth. Sci. Rep. 2020, 10, 20493. [Google Scholar] [CrossRef] [PubMed]
- Fink, C.; Kiessling, F.; Bock, M.; Lichy, M.P.; Misselwitz, B.; Peschke, P.; Fusenig, N.E.; Grobholz, R.; Delorme, S. High-resolution three-dimensional MR angiography of rodent tumors: Morphologic characterization of intratumoral vasculature. J. Magn. Reson. Imaging An. Off. J. Int. Soc. Magn. Reson. Med. 2003, 18, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Asao, Y.; Nagae, K.; Miyasaka, K.; Sekiguchi, H.; Aiso, S.; Watanabe, S.; Sato, M.; Kizaka-Kondoh, S.; Nakajima, Y.; Kishi, K. In vivo label-free observation of tumor-related blood vessels in small animals using a newly designed photoacoustic 3D imaging system. Ultrason. Imaging 2022, 44, 96–104. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Yuan, W.; Park, H.-C.; Li, X. In vivo assessment of vascular-targeted photodynamic therapy effects on tumor microvasculature using ultrahigh-resolution functional optical coherence tomography. Biomed. Opt. Express 2020, 11, 4316–4325. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, S.; Liu, Y.; Zhang, C.; Li, H.; Lai, B. Metastatic patterns and survival outcomes in patients with stage IV colon cancer: A population-based analysis. Cancer Med. 2020, 9, 361–373. [Google Scholar] [CrossRef]
- Bazyari, M.J.; Saadat, Z.; Firouzjaei, A.A.; Aghaee-Bakhtiari, S.H. Deciphering colorectal cancer progression features and prognostic signature by single-cell RNA sequencing pseudotime trajectory analysis. Biochem. Biophys. Rep. 2023, 35, 101491. [Google Scholar] [CrossRef]
- Majek, O.; Gondos, A.; Jansen, L.; Emrich, K.; Holleczek, B.; Katalinic, A.; Nennecke, A.; Eberle, A.; Brenner, H.; Group, G.C.S.W. Survival from colorectal cancer in Germany in the early 21st century. Br. J. Cancer 2012, 106, 1875–1880. [Google Scholar] [CrossRef]
- Wang, L.F.; Liu, Y.S.; Yang, B.; Li, P.; Cheng, X.S.; Xiao, C.X.; Liu, J.J.; Li, S.; Ren, J.L.; Guleng, B. The extracellular matrix protein mindin attenuates colon cancer progression by blocking angiogenesis via Egr-1-mediated regulation. Oncogene 2018, 37, 601–615. [Google Scholar] [CrossRef] [PubMed]
- Yoshii, Y.; Waki, A.; Yoshida, K.; Kakezuka, A.; Kobayashi, M.; Namiki, H.; Kuroda, Y.; Kiyono, Y.; Yoshii, H.; Furukawa, T. The use of nanoimprinted scaffolds as 3D culture models to facilitate spontaneous tumor cell migration and well-regulated spheroid formation. Biomaterials 2011, 32, 6052–6058. [Google Scholar] [CrossRef] [PubMed]
- Pelletier, J.; Dayan, F.; Durivault, J.; Ilc, K.; Pecou, E.; Pouyssegur, J.; Mazure, N. The asparaginyl hydroxylase factor-inhibiting HIF is essential for tumor growth through suppression of the p53–p21 axis. Oncogene 2012, 31, 2989–3001. [Google Scholar] [CrossRef] [PubMed]
- Verhoeckx, K.; Cotter, P.; López-Expósito, I.; Kleiveland, C.; Lea, T.; Mackie, A.; Requena, T.; Swiatecka, D.; Wichers, H. The Impact of Food Bioactives on Health: In Vitro and Ex Vivo Models; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Konda, B.; Shum, H.; Rajdev, L. Anti-angiogenic agents in metastatic colorectal cancer. World J. Gastrointest. Oncol. 2015, 7, 71–86. [Google Scholar] [CrossRef] [PubMed]
- Eklund, L.; Bry, M.; Alitalo, K. Mouse models for studying angiogenesis and lymphangiogenesis in cancer. Mol. Oncol. 2013, 7, 259–282. [Google Scholar] [CrossRef] [PubMed]
- Abdolahi, S.; Ghazvinian, Z.; Muhammadnejad, S.; Saleh, M.; Asadzadeh Aghdaei, H.; Baghaei, K. Patient-derived xenograft (PDX) models, applications and challenges in cancer research. J. Transl. Med. 2022, 20, 206. [Google Scholar] [CrossRef] [PubMed]
- Turell, M.E.; Singh, A.D. Vascular tumors of the retina and choroid: Diagnosis and treatment. Middle East. Afr. J. Ophthalmol. 2010, 17, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Mestas, J.; Hughes, C.C. Of mice and not men: Differences between mouse and human immunology. J. Immunol. 2004, 172, 2731–2738. [Google Scholar] [CrossRef]
- Oyama, T.G.; Oyama, K.; Kimura, A.; Yoshida, F.; Ishida, R.; Yamazaki, M.; Miyoshi, H.; Taguchi, M. Collagen hydrogels with controllable combined cues of elasticity and topography to regulate cellular processes. Biomed. Mater. 2021, 16, 045037. [Google Scholar] [CrossRef]
- Egawa, G.; Nakamizo, S.; Natsuaki, Y.; Doi, H.; Miyachi, Y.; Kabashima, K. Intravital analysis of vascular permeability in mice using two-photon microscopy. Sci. Rep. 2013, 3, 1932. [Google Scholar] [CrossRef]
- Schmieder, R.; Hoffmann, J.; Becker, M.; Bhargava, A.; Muller, T.; Kahmann, N.; Ellinghaus, P.; Adams, R.; Rosenthal, A.; Thierauch, K.H.; et al. Regorafenib (BAY 73-4506): Antitumor and antimetastatic activities in preclinical models of colorectal cancer. Int. J. Cancer 2014, 135, 1487–1496. [Google Scholar] [CrossRef]
- Liu, X.-Z.; Rulina, A.; Choi, M.H.; Pedersen, L.; Lepland, J.; Takle, S.T.; Madeleine, N.; Peters, S.D.m.; Wogsland, C.E.; Grøndal, S.M. C/EBPB-dependent adaptation to palmitic acid promotes tumor formation in hormone receptor negative breast cancer. Nat. Commun. 2022, 13, 69. [Google Scholar] [CrossRef]
- Tomayko, M.M.; Reynolds, C.P. Determination of subcutaneous tumor size in athymic (nude) mice. Cancer Chemother. Pharmacol. 1989, 24, 148–154. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tachibana, T.; Oyama, T.G.; Yoshii, Y.; Hihara, F.; Igarashi, C.; Shinada, M.; Matsumoto, H.; Higashi, T.; Kishimoto, T.; Taguchi, M. An In Vivo Dual-Observation Method to Monitor Tumor Mass and Tumor-Surface Blood Vessels for Developing Anti-Angiogenesis Agents against Submillimeter Tumors. Int. J. Mol. Sci. 2023, 24, 17234. https://doi.org/10.3390/ijms242417234
Tachibana T, Oyama TG, Yoshii Y, Hihara F, Igarashi C, Shinada M, Matsumoto H, Higashi T, Kishimoto T, Taguchi M. An In Vivo Dual-Observation Method to Monitor Tumor Mass and Tumor-Surface Blood Vessels for Developing Anti-Angiogenesis Agents against Submillimeter Tumors. International Journal of Molecular Sciences. 2023; 24(24):17234. https://doi.org/10.3390/ijms242417234
Chicago/Turabian StyleTachibana, Tomoko, Tomoko Gowa Oyama, Yukie Yoshii, Fukiko Hihara, Chika Igarashi, Mitsuhiro Shinada, Hiroki Matsumoto, Tatsuya Higashi, Toshihiko Kishimoto, and Mitsumasa Taguchi. 2023. "An In Vivo Dual-Observation Method to Monitor Tumor Mass and Tumor-Surface Blood Vessels for Developing Anti-Angiogenesis Agents against Submillimeter Tumors" International Journal of Molecular Sciences 24, no. 24: 17234. https://doi.org/10.3390/ijms242417234
APA StyleTachibana, T., Oyama, T. G., Yoshii, Y., Hihara, F., Igarashi, C., Shinada, M., Matsumoto, H., Higashi, T., Kishimoto, T., & Taguchi, M. (2023). An In Vivo Dual-Observation Method to Monitor Tumor Mass and Tumor-Surface Blood Vessels for Developing Anti-Angiogenesis Agents against Submillimeter Tumors. International Journal of Molecular Sciences, 24(24), 17234. https://doi.org/10.3390/ijms242417234