Comparison of Evolutionary Relationships between Branchiostoma floridae, Ciona intestinalis, and Homo sapiens Globins Provide Evidence of Gene Co-Option and Convergent Evolution
Abstract
:1. Introduction
2. Results
2.1. All Five Ciona Globins Were Monophyletic
2.2. Gb-1 and Gb-2 Expressed in Continuously Moving Tissues
2.3. Gb-1 and Gb-2 Were Induced by Hypoxia, While Gb-3 and Gb-4 Were Not
3. Discussion
4. Materials and Methods
4.1. Experimental Animal
4.2. Quest for the New Ciona GLOBIN Genes and Phylogenic Analyses
4.3. Primer Design
4.4. RNA Extraction and cDNA Synthesis
4.5. Real-Time RT-PCR
4.6. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gell, D.A. Structure and function of hemoglobins. Blood Cells Mol. Dis. 2018, 70, 13–42. [Google Scholar] [CrossRef] [PubMed]
- Vinogradov, S.N.; Moens, L. Diversity of globin function: Enzymatic, transport, storage, and sensing. J. Biol. Chem. 2008, 283, 8773–8777. [Google Scholar] [CrossRef]
- Hardison, R.C. Evolution of hemoglobin and its genes. Cold Spring Harb. Perspect. Med. 2012, 2, a011627. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, M.H.; Embury, S.H. Alpha-thalassemia in blacks: Genetic and clinical aspects and interactions with the sickle hemoglobin gene. Blood 1986, 68, 985–990. [Google Scholar]
- Keppner, A.; Maric, D.; Correia, M.; Koay, T.W.; Orlando, I.M.C.; Vinogradov, S.N.; Hoogewijs, D. Globin diversity beyond oxygen binding and transport. Redox Biol. 2020, 37, 101687. [Google Scholar] [CrossRef]
- Wilson, M.T.; Reeder, B.J. Oxygen-binding haem proteins. Exp. Physiol. 2008, 93, 128–132. [Google Scholar] [CrossRef] [PubMed]
- Yonetani, T.; Kanaori, K. How does hemoglobin generate such diverse functionality of physiological relevance? Biochim. Biophys. Acta 2013, 1834, 1873–1884. [Google Scholar] [CrossRef]
- Garry, D.J.; Kanatous, S.B.; Mammen, P.P. Emerging roles for myoglobin in the heart. Trends Cardiovasc. Med. 2003, 13, 111–116. [Google Scholar] [CrossRef]
- Wittenberg, B.A.; Wittenberg, J.B. Myoglobin-mediated oxygen delivery to mitochondria of isolated cardiac myocytes. Proc. Natl. Acad. Sci. USA 1987, 84, 7503–7507. [Google Scholar] [CrossRef]
- Hankeln, T.; Ebner, B.; Fuchs, C.; Gerlach, F.; Haberkamp, M.; Laufs, T.L.; Roesner, A.; Schmidt, M.; Weich, B.; Wystub, S.; et al. Neuroglobin and cytoglobin in search of their role in the vertebrate globin family. J. Inorg. Biochem. 2005, 99, 110–119. [Google Scholar] [CrossRef]
- Schmidt, M.; Gerlach, F.; Avivi, A.; Laufs, T.; Wystub, S.; Simpson, J.C.; Nevo, E.; Saaler-Reinhardt, S.; Reuss, S.; Hankeln, T.; et al. Cytoglobin is a respiratory protein in connective tissue and neurons, which is up-regulated by hypoxia. J. Biol. Chem. 2004, 279, 8063–8069. [Google Scholar] [CrossRef]
- Keppner, A.; Correia, M.; Santambrogio, S.; Koay, T.W.; Maric, D.; Osterhof, C.; Winter, D.V.; Clerc, A.; Stumpe, M.; Chalmel, F.; et al. Androglobin, a chimeric mammalian globin, is required for male fertility. eLife 2022, 11, e72374. [Google Scholar] [CrossRef] [PubMed]
- Fraser, J.; de Mello, L.V.; Ward, D.; Rees, H.H.; Williams, D.R.; Fang, Y.; Brass, A.; Gracey, A.Y.; Cossins, A.R. Hypoxia-inducible myoglobin expression in nonmuscle tissues. Proc. Natl. Acad. Sci. USA 2006, 103, 2977–2981. [Google Scholar] [CrossRef] [PubMed]
- Emara, M.; Turner, A.R.; Allalunis-Turner, J. Hypoxic regulation of cytoglobin and neuroglobin expression in human normal and tumor tissues. Cancer Cell. Int. 2010, 10, 33. [Google Scholar] [PubMed]
- Storz, J.F.; Opazo, J.C.; Hoffmann, F.G. Phylogenetic diversification of the globin gene superfamily in chordates. IUBMB Life 2011, 63, 313–322. [Google Scholar] [CrossRef]
- Hoffmann, F.G.; Opazo, J.C.; Storz, J.F. Gene cooption and convergent evolution of oxygen transport hemoglobins in jawed and jawless vertebrates. Proc. Natl. Acad. Sci. USA 2010, 107, 14274–14279. [Google Scholar] [CrossRef] [PubMed]
- Putnam, N.; Butts, T.; Ferrier, D.E.K.; Furlong, R.F.; Hellsten, U.; Kawashima, T.; Robinson-Rechavi, M.; Shoguchi, E.; Terry, A.; Yu, J.K.; et al. Amphioxus genome and evolution of the chordate karyotype. Nature 2008, 453, 1064–1071. [Google Scholar] [CrossRef]
- Dehal, P.; Satou, Y.; Campbell, R.K.; Chapman, J.; Degnan, B.; De Tomaso, A.; Davidson, B.; Di Gregorio, A.; Gelpke, M.; Goodstein, D.M.; et al. Draft genome of Ciona intestinalis: Insights into chordate and vertebrate origins. Science 2002, 298, 2157–2167. [Google Scholar] [CrossRef]
- Ebner, B.; Panopoulou, G.; Vinogradov, S.N.; Kiger, L.; Marden, M.C.; Burmester, T.; Hankeln, T. The globin gene family of the cephalochordate amphioxus: Implications for chordate globin evolution. BMC Evol. Biol. 2010, 10, 370. [Google Scholar] [CrossRef]
- Ebner, B.; Burmester, T.; Hankeln, T. Globin genes are present in Ciona intestinalis. Mol. Biol. Evol. 2003, 20, 1521–1525. [Google Scholar] [CrossRef]
- Satoh, N.; Rokhsar, D.; Nishikawa, T. Chordate evolution and the three-phylum system. Proc. Biol. Sci. 2014, 281, 20141729. [Google Scholar] [CrossRef] [PubMed]
- Isogai, Y.; Ota, M.; Fujisawa, T.; Izuno, H.; Mukai, M.; Nakamura, H.; Iizuka, T.; Nishikawa, K. Design and synthesis of a globin fold. Biochemistry 1999, 38, 7431–7443. [Google Scholar] [CrossRef] [PubMed]
- Hoogewijs, D.; Ebner, B.; Germani, F.; Hoffmann, F.G.; Fabrizius, A.; Moens, L.; Burmester, T.; Dewilde, S.; Storz, J.F.; Vinogradov, S.N.; et al. Androglobin: A chimeric globin in metazoans that is preferentially expressed in mammalian testes. Mol. Biol. Evol. 2012, 29, 1105–1114. [Google Scholar] [CrossRef]
- Kuraku, S.; Zmasek, C.M.; Nishimura, O.; Katoh, K. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. 2013, 41, W22–W28. [Google Scholar] [CrossRef] [PubMed]
- Fuke, M. Cell types involved in allogeneic contact reactions of the solitary ascidian, Halocynthia roretzi. Zool. Sci. 2001, 18, 195–205. [Google Scholar] [CrossRef]
- Burmester, T.; Hankeln, T. Function and evolution of vertebrate globins. Acta Physiol. 2014, 211, 501–514. [Google Scholar] [CrossRef]
- Wetten, O.F.; Nederbragt, A.J.; Wilson, R.C.; Jakobsen, K.S.; Edvardsen, R.B.; Andersen, Ø. Genomic organization and gene expression of the multiple globins in Atlantic cod: Conservation of globin-flanking genes in chordates infers the origin of the vertebrate globin clusters. BMC Evol. Biol. 2010, 10, 315. [Google Scholar] [CrossRef]
- Burmester, T.; Ebner, B.; Weich, B.; Hankeln, T. Cytoglobin: A novel globin type ubiquitously expressed in vertebrate tissues. Mol. Biol. Evol. 2002, 19, 416–421. [Google Scholar] [CrossRef]
- Gros, G.; Wittenberg, B.A.; Jue, T. Myoglobin’s old and new clothes: From molecular structure to function in living cells. J. Exp. Biol. 2010, 213 Pt 16, 2713–2725. [Google Scholar] [CrossRef]
- Armbruster, J.; Aboouf, M.A.; Gassmann, M.; Egert, A.; Schorle, H.; Hornung, V.; Schmidt, T.; Schmid-Burgk, J.L.; Kristiansen, G.; Bicker, A.; et al. Myoglobin regulates fatty acid trafficking and lipid metabolism in mammary epithelial cells. PLoS ONE 2022, 17, e0275725. [Google Scholar] [CrossRef]
- Avivi, A.; Gerlach, F.; Joel, A.; Reuss, S.; Burmester, T.; Nevo, E.; Hankeln, T. Neuroglobin, cytoglobin, and myoglobin contribute to hypoxia adaptation of the subterranean mole rat Spalax. Proc. Natl. Acad. Sci. USA 2010, 107, 21570–21575. [Google Scholar] [CrossRef] [PubMed]
- Drvenica, I.T.; Stančić, A.Z.; Maslovarić, I.S.; Trivanović, D.I.; Ilić, V.L. Extracellular Hemoglobin: Modulation of Cellular Functions and Pathophysiological Effects. Biomolecules 2022, 12, 1708. [Google Scholar] [CrossRef]
- Belato, F.A.; Coates, C.J.; Halanych, K.M.; Weber, R.E.; Costa-Paiva, E.M. Evolutionary History of the Globin Gene Family in Annelids. Genome Biol. Evol. 2020, 12, 1719–1733. [Google Scholar] [CrossRef] [PubMed]
- Weber, R.E.; Vinogradov, S.N. Nonvertebrate hemoglobins: Functions and molecular adaptations. Physiol. Rev. 2002, 81, 569–628. [Google Scholar] [CrossRef]
- Vinogradov, S.N.; Walz, D.A.; Pohajdak, B.; Moens, L.; Kapp, O.H.; Suzuki, T.; Trotman, C.N. Adventitious variability? The amino acid sequences of nonvertebrate globins. Comp. Biochem. Physiol. B 1993, 106, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Almagro Armenteros, J.J.; Tsirigos, K.D.; Sønderby, C.K.; Petersen, T.N.; Winther, O.; Brunak, S.; von Heijne, G.; Nielsen, H. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 2019, 37, 420–423. [Google Scholar] [CrossRef]
- Tsukihara, T.; Kobayashi, M.; Nakamura, M.; Katsube, Y.; Fukuyama, K.; Hase, T.; Wada, K.; Matsubara, H. Structure-function relationship of [2Fe-2S] ferredoxins and design of a model molecule. Biosystems 1982, 15, 243–257. [Google Scholar] [CrossRef]
- Ishii, H.; Goto, T.; Nishikata, T. Microtubule array observed in the posterior-vegetal cortex during cytoplasmic and cortical reorganization of the ascidian egg. Dev. Growth Differ. 2017, 59, 648–656. [Google Scholar] [CrossRef]
- Satou, Y.; Kawashima, T.; Shoguchi, E.; Nakayama, A.; Satoh, N. An integrated database of the ascidian; Ciona intestinalis: Towards functional genomics. Zoolog. Sci. 2005, 22, 837–843. [Google Scholar] [CrossRef]
- Katoh, K.; Rozewicki, J.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief Bioinform. 2019, 20, 1160–1166. [Google Scholar] [CrossRef]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3—New capabilities and interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef] [PubMed]
- Ye, J.; Coulouris, G.; Zaretskaya, I.; Cutcutache, I.; Rozen, S.; Madden, T. Primer-BLAST: A tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012, 13, 134. [Google Scholar] [CrossRef]
This Study | NCBI | |||||
---|---|---|---|---|---|---|
Gene name | Suggested similarity | Gene ID | Gene symbol | Description | Location | Synonym |
Gb-1 | hemoglobin α/β | 100183004 | LOC100183004 | cytoglobin-1 | NW_004190356.2 (222268..229486) | hb1, CinHb1 * |
Gb-2 | hemoglobin α/β | 100183005 | LOC100183005 | neuroglobin-like | NW_004190356.2 (220381..222229) | hb2, CinHb2 * |
Gb-3 | myoglobin/cytoglobin? | 445724 | hb3 | globin | Ch. 3, NC_020168.2 (5923997..5925496) | hb3, CinHb3 * |
Gb-4 | invertebrate extracellular globin | 445726 | hb4 | globin | Ch. 2, NC_020167.2 (2194984..2197811) | hb4, CinHb4 * |
Gb-5 | neuroglobin/pseudogene? | 100181975 | LOC100181975 | uncharacterized | NW_004190472.2 (70166..73938) | |
Gb-6 | androglobin | 100181831 | LOC100181831 | androglobin | Ch. 12, NC_020177.2 (4003794..4017836) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yano, N.; Minamoto, T.; Yamaguchi, H.; Goto, T.; Nishikata, T. Comparison of Evolutionary Relationships between Branchiostoma floridae, Ciona intestinalis, and Homo sapiens Globins Provide Evidence of Gene Co-Option and Convergent Evolution. Int. J. Mol. Sci. 2023, 24, 16009. https://doi.org/10.3390/ijms242116009
Yano N, Minamoto T, Yamaguchi H, Goto T, Nishikata T. Comparison of Evolutionary Relationships between Branchiostoma floridae, Ciona intestinalis, and Homo sapiens Globins Provide Evidence of Gene Co-Option and Convergent Evolution. International Journal of Molecular Sciences. 2023; 24(21):16009. https://doi.org/10.3390/ijms242116009
Chicago/Turabian StyleYano, Nanako, Toshifumi Minamoto, Hirosi Yamaguchi, Toshiyuki Goto, and Takahito Nishikata. 2023. "Comparison of Evolutionary Relationships between Branchiostoma floridae, Ciona intestinalis, and Homo sapiens Globins Provide Evidence of Gene Co-Option and Convergent Evolution" International Journal of Molecular Sciences 24, no. 21: 16009. https://doi.org/10.3390/ijms242116009
APA StyleYano, N., Minamoto, T., Yamaguchi, H., Goto, T., & Nishikata, T. (2023). Comparison of Evolutionary Relationships between Branchiostoma floridae, Ciona intestinalis, and Homo sapiens Globins Provide Evidence of Gene Co-Option and Convergent Evolution. International Journal of Molecular Sciences, 24(21), 16009. https://doi.org/10.3390/ijms242116009