Mining of Minor Disease Resistance Genes in V. vinifera Grapes Based on Transcriptome
Abstract
:1. Introduction
2. Results
2.1. Identification and Genetic Analysis of Disease Resistance
2.2. Transcriptome Sequencing Data Analysis
2.3. Overall Analysis of Differential Genes
2.4. Differential Gene Analysis of Different Plant Samples
2.4.1. GO Enrichment Analysis
2.4.2. KEGG Enrichment Analysis
2.5. Expression Analysis of Disease Resistance Genes in Hybrid Populations
2.5.1. Synthesis of Secondary Metabolites
2.5.2. Signal Transduction and Environmental Adaptation
2.5.3. Carbohydrates
2.5.4. Transcription Factors
3. Discussion
3.1. Evaluation of Disease Resistance in V. vinifera Hybrid Population
3.2. Disease Resistance and Secondary Metabolites
3.3. Disease Resistance, Signal Transduction, and Environmental Adaptation
3.4. Disease Resistance and Carbohydrates
3.5. Disease Resistance and Transcription Factor Regulation
4. Methods and Materials
4.1. Experimental Materials
4.2. Identification of Resistance to Downy Mildew
4.3. Transcriptome Material
4.4. Transcriptome Sequencing
4.4.1. RNA Extraction, Quality Control, Transcriptome Library Construction, and On-Line Sequencing
- (1)
- Enrichment of total RNA using mRNA enrichment method: Enrichment of mRNA with polyA tail using magnetic beads with Oligo dT.
- (2)
- Fragmentation of the obtained RNA using interrupted buffers, reverse transcription with random N6 primers, and synthesis of cDNA double-stranded to form double-stranded DNA.
- (3)
- Flatten the ends of the synthesized double-stranded DNA and phosphorylate the 5′ end, forming a protruding “A” sticky end at the 3′ end, and then connect a bubbly junction with a protruding “T” at the 3′ end.
- (4)
- The connecting products were amplified by PCR using specific primers.
- (5)
- The PCR product is thermally denatured into a single strand and then cyclized with a bridge primer to obtain a single-stranded circular DNA library. The cDNA library was sequenced based on the technology of Sequencing while Synthesis (SBS).
Data Quality Control and Analysis
- (1)
- Paired reads containing linker sequences were filtered.
- (2)
- The proportion of paired reads that remove n (N for undetermined base information) is greater than 0.5%.
- (3)
- Removal of low-quality paired reads.
4.4.2. Analysis of Differentially Expressed Genes (DEGs)
- (1)
- Normalization of the original read count, mainly to correct for sequencing depth.
- (2)
- Statistical models were calculated for hypothesis-testing probability (p-value).
- (3)
- Multiple hypothesis testing was performed to obtain the FDR (discovery error rate).
4.4.3. Functional Annotation and Enrichment Analysis of Differential Genes
4.5. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sargolzaei, M.; Rustioni, L.; Cola, G.; Ricciardi, V.; Bianco, P.A.; Maghradze, D.; Failla, O.; Quaglino, F.; Toffolatti, S.L.; De Lorenzis, G. Georgian grapevine cultivars: Ancient biodiversity for future viticulture. Front. Plant Sci. 2021, 12, 94. [Google Scholar]
- Gadoury, D.M.; Cadle-Davidson, L.; Wilcox, W.F.; Dry, I.B.; Seem, R.C.; Milgroom, M.G. Grapevine powdery mildew (Erysiphe necator): A fascinating system for the study of the biology, ecology and epidemiology of an obligate biotroph. Mol. Plant Pathol. 2012, 13, 1–16. [Google Scholar] [PubMed]
- Unsworth, J.B.; Corsi, C.; Van Emon, J.M.; Farenhorst, A.; Hamilton, D.J.; Howard, C.J.; Hunter, R.; Jenkins, J.J.; Kleter, G.A.; Kookana, R.S.; et al. Developing global leaders for research, regulation, and stewardship of crop protection chemistry in the 21st Century. J. Agric. Food Chem. 2016, 64, 52–60. [Google Scholar] [PubMed]
- Sosa-Zuniga, V.; Valenzuela, A.V.; Barba, P.; Cancino, C.E.; Romero-Romero, J.L.; Arce-Johnson, P. Powdery mildew resistance genes in vines: An opportunity to achieve a more sustainable viticulture. Pathogens 2022, 11, 703. [Google Scholar] [CrossRef]
- Dry, I.B.; Feechan, A.; Anderson, C.; Jermakow, A.M.; Bouquet, A.; Adam-Blondon, A.F.; Thomas, M.R. Molecular strategies to enhance the genetic resistance of grapevines to powdery mildew. Aust. J. Grape Wine Res. 2010, 16, 94–105. [Google Scholar]
- Teissedre, P.-L. Composition of grape and wine from resistant vine varieties. OENO One 2018, 52, 211–217. [Google Scholar] [CrossRef]
- Riaz, S.; Tenscher, A.C.; Heinitz, C.C.; Huerta-Acosta, K.G.; Walker, M.A. Genetic analysis reveals an east-west divide within North American Vitis species that mirrors their resistance to Pierce’s disease. PLoS ONE 2020, 15, e0243445. [Google Scholar]
- Agurto, M.; Schlechter, R.O.; Armijo, G.; Solano, E.; Serrano, C.; Contreras, R.A.; Zuniga, G.E.; Arce-Johnson, P. RUN1 and REN1 pyramiding in grapevine (Vitis vinifera cv. Crimson Seedless) displays an improved defense response leading to enhanced resistance to powdery mildew (Erysiphe necator). Front. Plant Sci. 2017, 8, 758. [Google Scholar]
- Wang, Z.L.; Wang, Y.; Cao, X.; Wu, D.; Hui, M.; Han, X.; Yao, F.; Li, Y.H.; Li, H.; Wang, H. Screening and validation of SSR molecular markers for identification of downy mildew resistance in Intraspecific Hybrid F-1 Progeny (V. vinifera). Horticulturae 2022, 8, 706. [Google Scholar]
- Goyal, N.; Bhatia, G.; Garewal, N.; Upadhyay, A.; Singh, K. Identification of defense related gene families and their response against powdery and downy mildew infections in Vitis vinifera. Bmc Genom. 2021, 22, 776. [Google Scholar]
- Noman, A.; Aqeel, M.; Lou, Y.G. PRRs and NB-LRRs: From signal perception to activation of plant innate immunity. Int. J. Mol. Sci. 2019, 20, 1882. [Google Scholar] [CrossRef]
- Rojas, C.M.; Senthil-Kumar, M.; Tzin, V.; Mysore, K.S. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. Front. Plant Sci. 2014, 5, 17. [Google Scholar] [CrossRef]
- Kliebenstein, D.J. Secondary metabolites and plant/environment interactions: A view through Arabidopsis thaliana tinged glasses. Plant Cell Environ. 2004, 27, 675–684. [Google Scholar] [CrossRef]
- Jones, J.D.G.; Dangl, J.L. The plant immune system. Nature 2006, 444, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.N.; Li, Y.T.; Wu, Y.Z.; Li, T.; Geng, R.; Cao, J.; Zhang, W.; Tan, X.L. Plant disease resistance-related signaling pathways: Recent progress and future prospects. Int. J. Mol. Sci. 2022, 23, 16200. [Google Scholar] [CrossRef] [PubMed]
- Szugyi, S.; Sardi, E. Connection between the disease resistance of sour cherry genotypes and the carbohydrate content of the leaf and phloem tissues. Hortic. Sci. 2018, 45, 181–186. [Google Scholar] [CrossRef]
- Eulgem, T.; Somssich, I.E. Networks of WRKY transcription factors in defense signaling. Curr. Opin. Plant Biol. 2007, 10, 366–371. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.M.; Jiang, H.M. Resistance analysis of grape Botrytis cinerea based on PCR and sequencing technology. Cell. Mol. Biol. 2021, 67, 181–190. [Google Scholar] [CrossRef] [PubMed]
- Yu, Y.H.; Wan, Y.T.; Jiao, Z.L.; Bian, L.; Yu, K.K.; Zhang, G.H.; Guo, D.L. Functional characterization of resistance to powdery mildew of VvTIFY9 from Vitis vinifera. Int. J. Mol. Sci. 2019, 20, 4286. [Google Scholar] [CrossRef]
- Su, K.; Zhao, W.; Lin, H.; Jiang, C.Y.; Zhao, Y.H.; Guo, Y.S. Candidate gene discovery of Botrytis cinerea resistance in grapevine based on QTL mapping and RNA-seq. Front. Plant Sci. 2023, 14, 1127206. [Google Scholar] [CrossRef]
- Lei, Y.; Yuan, X.J.; Chen, T.; Yuan, Y.; Liu, X.M.; Tang, X.B.; Chen, Q.X. Transcriptome analysis of berries of spine grape (Vitis davidii Foex) infected by colletotrichum viniferum during symptom development. Horticulturae 2022, 8, 843. [Google Scholar] [CrossRef]
- Wang, D.; Jiang, C.Y.; Liu, W.D.; Wang, Y.J. The WRKY53 transcription factor enhances stilbene synthesis and disease resistance by interacting with MYB14 and MYB15 in Chinese wild grape. J. Exp. Bot. 2020, 71, 3211–3226. [Google Scholar] [CrossRef]
- Burruano, S. The life-cycle of Plasmopara viticola, cause of downy mildew of vine. Mycologist 2000, 14, 179–182. [Google Scholar] [CrossRef]
- Li, H. A new hybrid breeding method for high quality and disease resistance breeding of grapes. J. Northwest AF Univ. (Nat. Sci. Ed.) 1989, 17, 112–114. [Google Scholar]
- Wang, Z.L.; Xue, T.T.; Gao, F.F.; Zhang, L.; Han, X.; Wang, Y.; Hui, M.; Wu, D.; Li, H.; Wang, H. Intraspecific recurrent selection in V. vinifera: An effective method for breeding of high quality, disease-, cold-, and drought -resistant grapes. Euphytica 2021, 217, 111. [Google Scholar] [CrossRef]
- Li, H.; Zhang, Z.W. Accumulation of micro effective resistance genes to powdery mildew in V. vinifera varieties by original substitution. Acta Bot. Boreali-Occident. Sin. 1995, 2, 120–124. [Google Scholar]
- He, P.Q. Study on the Response Characteristics of Volatile Substances in Tomato Leaves to Inducers such as Chitooligosaccharides. Ph.D. Thesis, Ocean University of China, Qingdao, China, 2005. [Google Scholar]
- Guo, Y.L.; Zhang, P.Y.; Guo, M.R.; Chen, K.S. Secondary metabolites and plant disease resistance defense responses. J. Plant Physiol. 2012, 48, 429–434. [Google Scholar]
- Dixon, P.; Weinig, C.; Schmitt, J. Susceptibility to UV damage in Impatiens capensis (Balsaminaceae): Testing for opportunity costs to shade-avoidance and population differentiation. Am. J. Bot. 2001, 88, 1401–1408. [Google Scholar] [CrossRef]
- Cui, W.; Bai, X.S.; Wang, J.; Jin, H. Research progress in the regulation of abscisic acid and the biosynthesis of secondary metabolites related to plant disease resistance. Phytomedicine 2022, 1, 1–11. [Google Scholar]
- Boba, A.; Kulma, A.; Kostyn, K.; Starzycki, M.; Starzycka, E.; Szopa, J. The influence of carotenoid biosynthesis modification on the Fusarium culmorum and Fusarium oxysporum resistance in flax. Physiol. Mol. Plant Pathol. 2011, 76, 39–47. [Google Scholar] [CrossRef]
- Padhy, A.K.; Sharma, A.; Sharma, H.; Srivastava, P.; Singh, S.; Kaur, P.; Kaur, J.; Kaur, S.; Chhuneja, P.; Bains, N.S. Combining high carotenoid, grain protein content and rust resistance in wheat for food and nutritional security. Front. Genet. 2023, 14, 1075767. [Google Scholar] [CrossRef]
- Heng-Moss, T.M.; Ni, X.; Macedo, T.; Markwell, J.P.; Baxendale, F.P.; Quisenberry, S.S.; Tolmay, V. Comparison of chlorophyll and carotenoid concentrations among Russian wheat aphid (Homoptera: Aphididae)-infested wheat isolines. J. Econ. Entomol. 2003, 96, 475–481. [Google Scholar] [CrossRef]
- Yu, Y.; Shi, J.Y.; Li, X.Y.; Liu, J.; Geng, Q.; Shi, H.C.; Ke, Y.P.; Sun, Q. Transcriptome analysis reveals the molecular mechanisms of the defense response to gray leaf spot disease in maize. Bmc Genom. 2018, 19, 742. [Google Scholar] [CrossRef] [PubMed]
- Ouhibi, C.; Attia, H.; Nicot, P.; Urban, L.; Lachaal, M.; Aarrouf, J. Effect of UV-C radiation on resistance of romaine lettuce (Lactuca sativa L.) against Botrytis cinerea and sclerotinia minor. J. Phytopathol. 2015, 163, 578–582. [Google Scholar]
- Sakamoto, Y.; Mori, K.; Matsuo, Y.; Mukojima, N.; Watanabe, W.; Sobaru, N.; Tamiya, S.; Nakao, T.; Hayashi, K.; Watanuki, H.; et al. Breeding of a new potato variety ‘Nagasaki Kogane’ with high eating quality, high carotenoid content, and resistance to diseases and pests. Breed. Sci. 2017, 67, 320–326. [Google Scholar] [CrossRef] [PubMed]
- Fraser, P.D.; Romer, S.; Shipton, C.A.; Mills, P.B.; Kiano, J.W.; Misawa, N.; Drake, R.G.; Schuch, W.; Bramley, P.M. Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc. Natl. Acad. Sci. USA 2002, 99, 1092–1097. [Google Scholar] [CrossRef]
- Diretto, G.; Al-Babili, S.; Tavazza, R.; Papacchioli, V.; Beyer, P.; Giuliano, G. Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS ONE 2007, 2, e350. [Google Scholar] [CrossRef] [PubMed]
- Aluru, M.; Xu, Y.; Guo, R.; Wang, Z.G.; Li, S.S.; White, W.; Wang, K.; Rodermel, S. Generation of transgenic maize with enhanced provitamin A content. J. Exp. Bot. 2008, 59, 3551–3562. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.A.; Parrott, W.A.; Hildebrand, D.F.; Berg, R.H.; Cooksey, A.; Pendarvis, K.; He, Y.H.; McCarthy, F.; Herman, E.M. Transgenic soya bean seeds accumulating beta-carotene exhibit the collateral enhancements of oleate and protein content traits. Plant Biotechnol. J. 2015, 13, 590–600. [Google Scholar] [CrossRef] [PubMed]
- Beyene, G.; Solomon, F.R.; Chauhan, R.D.; Gaitan-Solis, E.; Narayanan, N.; Gehan, J.; Siritunga, D.; Stevens, R.L.; Jifon, J.; Van Eck, J.; et al. Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch. Plant Biotechnol. J. 2018, 16, 1186–1200. [Google Scholar] [CrossRef]
- Duan, L.; Liu, H.B.; Li, X.H.; Xiao, J.H.; Wang, S.P. Multiple phytohormones and phytoalexins are involved in disease resistance to Magnaporthe oryzae invaded from roots in rice. Physiol. Plant. 2014, 152, 486–500. [Google Scholar] [CrossRef]
- Song, W.W.; Ma, X.R.; Tan, H.; Zhou, J.Y. Abscisic acid enhances resistance to Alternaria solani in tomato seedlings. Plant Physiol. Biochem. 2011, 49, 693–700. [Google Scholar] [CrossRef]
- Chen, O.; Deng, L.L.; Ruan, C.Q.; Yi, L.H.; Zeng, K.F. Pichia galeiformis induces resistance in postharvest citrus by activating the phenylpropanoid biosynthesis pathway. J. Agric. Food Chem. 2021, 69, 2619–2631. [Google Scholar] [CrossRef]
- Shi, J.Y.; Liu, A.Y.; Li, X.P.; Feng, S.J.; Chen, W.X. Inhibitory mechanisms induced by the endophytic bacterium MGY2 in controlling anthracnose of papaya. Biol. Control 2011, 56, 2–8. [Google Scholar] [CrossRef]
- Lin, J.H.; Gong, D.Q.; Zhu, S.J.; Zhang, L.J.; Zhang, L.B. Expression of PPO and POD genes and contents of polyphenolic compounds in harvested mango fruits in relation to Benzothiadiazole-induced defense against anthracnose. Sci. Hortic. 2011, 130, 85–89. [Google Scholar] [CrossRef]
- Li, C.H.; Wang, K.T.; Lei, C.Y.; Cao, S.F.; Huang, Y.X.; Ji, N.N.; Xu, F.; Zheng, Y.H. Alterations in sucrose and phenylpropanoid metabolism affected by BABA-Primed defense in postharvest grapes and the associated transcriptional mechanism. Mol. Plant-Microbe Interact. 2021, 34, 1250–1266. [Google Scholar] [CrossRef]
- Zhao, L.; Shu, Y.L.; Liang, L.Y.; Wang, Y.J.; Godana, E.A.; Zhang, X.Y.; Zhang, H.Y. Integrated transcriptomic and metabonomic analysis reveal mechanisms of disease resistance in apples induced by Wickerhamomyces anomalus. Biol. Control 2022, 173, 105005. [Google Scholar] [CrossRef]
- Wei, L.B.; Zhang, H.Y.; Duan, Y.H.; Li, C.; Chang, S.X.; Miao, H.M. Transcriptome comparison of resistant and susceptible sesame (Sesamum indicum L.) varieties inoculated with Fusarium oxysporum f.sp.sesami. Plant Breed. 2016, 135, 627–635. [Google Scholar] [CrossRef]
- Bate, N.J.; Orr, J.; Ni, W.T.; Meromi, A.; Nadlerhassar, T.; Doerner, P.W.; Dixon, R.A.; Lamb, C.J.; Elkind, Y. Quantitative relationship between phenylalanine ammonia-lyase levels and phenylpropanoid accumulation in transgenic tobacco identifies a rate-determining step in natural product synthesis. Proc. Natl. Acad. Sci. USA 1994, 91, 7608–7612. [Google Scholar] [CrossRef]
- Shadle, G.L.; Wesley, S.V.; Korth, K.L.; Chen, F.; Lamb, C.; Dixon, R.A. Phenylpropanoid compounds and disease resistance in transgenic tobacco with altered expression of L-phenylalanine ammonia-lyase. Phytochemistry 2003, 64, 153–161. [Google Scholar] [CrossRef]
- Ogawa, D.; Nakajima, N.; Sano, T.; Tamaoki, M.; Aono, M.; Kubo, A.; Kamada, H.; Saji, H. Regulation of salicylic acid synthesis in ozone-exposed tobacco and Arabidopsis. Phyton-Ann. Rei Bot. 2005, 45, 169–175. [Google Scholar]
- Yuan, W.; Jiang, T.; Du, K.T.; Chen, H.; Cao, Y.Y.; Xie, J.P.; Li, M.F.; Carr, J.P.; Wu, B.M.; Fan, Z.F.; et al. Maize phenylalanine ammonia-lyases contribute to resistance to sugarcane mosaic virus infection, most likely through positive regulation of salicylic acid accumulation. Mol. Plant Pathol. 2019, 20, 1365–1378. [Google Scholar] [CrossRef]
- Riseh, R.S.; Dashti, H.; Vazvani, M.G.; Dini, A. Changes in the activity of enzymes phenylalanine ammonia-lyase, polyphenol oxidase, and peroxidase in some wheat genotypes against take-all disease. J. Agric. Sci. Technol. 2021, 23, 929–942. [Google Scholar]
- Tezuka, D.; Matsuura, H.; Saburi, W.; Mori, H.; Imai, R. A ubiquitously expressed UDP-glucosyltransferase, UGT74J1, controls basal salicylic acid levels in rice. Plants 2021, 10, 1875. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.J.; Kim, S.K.; Choi, S.B.; Bae, J.; Kim, K.J.; Kim, Y.J.; Paek, K.H. Pathogen-inducible CaUGT1 is involved in resistance response against TMV infection by controlling salicylic acid accumulation. Febs Lett. 2009, 583, 2315–2320. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.Q.; Zhang, M.T.; Lu, M.Q.; Wu, Y.; Jing, T.T.; Zhao, M.Y.; Zhao, Y.F.; Feng, Y.Y.; Wang, J.M.; Gao, T.; et al. Salicylic acid carboxyl glucosyl transferase UGT87E7 regulates disease resistance in Camellia sinensis (vol 188, pg 1507, 2022). Plant Physiol. 2022, 189, 1169. [Google Scholar] [CrossRef]
- Robatzek, S.; Chinchilla, D.; Boller, T. Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Genes Dev. 2006, 20, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Ali, G.S.; Prasad, K.; Day, I.; Reddy, A.S.N. Ligand-dependent reduction in the membrane mobility of FLAGELLIN SENSITIVE2, an Arabidopsis receptor-like kinase. Plant Cell Physiol. 2007, 48, 1601–1611. [Google Scholar] [CrossRef] [PubMed]
- Dunning, F.M.; Sun, W.; Jansen, K.L.; Helft, L.; Bent, A.F. Identification and mutational analysis of Arabidopsis FLS2 leucine-rich repeat domain residues that contribute to flagellin perception. Plant Cell 2007, 19, 3297–3313. [Google Scholar] [CrossRef]
- Cao, Y.R.; Aceti, D.J.; Sabat, G.; Song, J.Q.; Makino, S.; Fox, B.G.; Bent, A.F. Mutations in FLS2 ser-938 dissect signaling activation in FLS2-mediated arabidopsis immunity. PLoS Pathog. 2013, 9, e1003313. [Google Scholar] [CrossRef]
- Wang, W.; Liu, N.; Gao, C.Y.; Cai, H.R.; Romeis, T.; Tang, D.Z. The arabidopsis exocyst subunits EXO70B1 and EXO70B2 regulate FLS2 homeostasis at the plasma membrane. New Phytol. 2020, 227, 529–544. [Google Scholar] [CrossRef]
- Ali, G.S.; Reddy, A. PAMP-triggered immunity: Early events in the activation of FLAGELLIN SENSITIVE2. Plant Signal. Behav. 2008, 3, 423–426. [Google Scholar] [CrossRef]
- Sun, Y.D.; Li, L.; Macho, A.P.; Han, Z.F.; Hu, Z.H.; Zipfel, C.; Zhou, J.M.; Chai, J.J. Structural Basis for flg22-Induced Activation of the Arabidopsis FLS2-BAK1 Immune Complex. Science 2013, 342, 624–628. [Google Scholar] [CrossRef]
- Yang, F.; Kimberlin, A.N.; Elowsky, C.G.; Liu, Y.F.; Gonzalez-Solis, A.; Cahoon, E.B.; Alfano, J.R. A plant immune receptor degraded by selective autophagy. Mol. Plant 2019, 12, 113–123. [Google Scholar] [CrossRef] [PubMed]
- Kiirika, L.M.; Stahl, F.; Wydra, K. Phenotypic and molecular characterization of resistance induction by single and combined application of chitosan and silicon in tomato against Ralstonia solanacearum. Physiol. Mol. Plant Pathol. 2013, 81, 1–12. [Google Scholar] [CrossRef]
- Saito, S.; Odagiri, M.; Furuya, S.; Suzuki, S.; Takayanagi, T. Inhibitory effect of chitinases isolated from Semillon grapes (Vitis vinifera) on growth of grapevine pathogens. J. Plant Biochem. Biotechnol. 2011, 20, 47–54. [Google Scholar] [CrossRef]
- Chen, F.F.; Liu, C.X.; Zhang, J.T.; Lei, H.H.; Li, H.P.; Liao, Y.C.; Tang, H.R. Combined metabonomic and quantitative RT-PCR analyses revealed metabolic reprogramming associated with Fusarium graminearum resistance in transgenic Arabidopsis thaliana. Front. Plant Sci. 2018, 8, 2177. [Google Scholar] [CrossRef] [PubMed]
- Buzzell, R.I.; Anderson, T.R. Inheritance and race reaction of a new soybean Rps1 allele. Plant Dis. 1992, 76, 600–601. [Google Scholar] [CrossRef]
- Weng, C.; Yu, K.; Anderson, T.R.; Poysa, V. Mapping genes conferring resistance to Phytophthora root rot of soybean, Rps1a and Rps7. J. Hered. 2001, 92, 442–446. [Google Scholar] [CrossRef]
- Zhong, C.; Sun, S.L.; Zhang, X.C.; Duan, C.X.; Zhu, Z.D. Fine mapping, candidate gene identification and co-segregating marker development for the phytophthora root rot resistance gene RpsYD25. Front. Genet. 2020, 11, 799. [Google Scholar] [CrossRef]
- Wu, X.; Zhou, B.; Zhao, J.; Guo, N.; Zhang, B.; Yang, F.; Chen, S.; Gai, J.; Xing, H. Identification of quantitative trait loci for partial resistance to Phytophthora sojae in soybean. Plant Breed. 2011, 130, 144–149. [Google Scholar] [CrossRef]
- Sun, S.; Wu, X.L.; Zhao, J.M.; Wang, Y.C.; Tang, Q.H.; Yu, D.Y.; Gai, J.Y.; Xing, H. Characterization and mapping of RpsYu25, a novel resistance gene to Phytophthora sojae. Plant Breed. 2011, 130, 139–143. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Xia, C.J.; Wang, X.M.; Duan, C.X.; Sun, S.L.; Wu, X.F.; Zhu, Z.D. Genetic characterization and fine mapping of the novel Phytophthora resistance gene in a Chinese soybean cultivar. Theor. Appl. Genet. 2013, 126, 1555–1561. [Google Scholar] [CrossRef]
- Lin, F.; Zhao, M.X.; Ping, J.Q.; Johnson, A.; Zhang, B.; Abney, T.S.; Hughes, T.J.; Ma, J.X. Molecular mapping of two genes conferring resistance to Phytophthora sojae in a soybean landrace PI 567139B. Theor. Appl. Genet. 2013, 126, 2177–2185. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Sun, S.L.; Zhong, C.; Wang, X.M.; Wu, X.F.; Zhu, Z.D. Genetic mapping and development of co-segregating markers of RpsQ, which provides resistance to Phytophthora sojae in soybean. Theor. Appl. Genet. 2017, 130, 1223–1233. [Google Scholar] [CrossRef]
- Cheng, Y.B.; Ma, Q.B.; Ren, H.L.; Xia, Q.J.; Song, E.L.; Tan, Z.Y.; Li, S.X.; Zhang, G.Y.; Nian, H. Fine mapping of a Phytophthora-resistance gene RpsWY in soybean (Glycine max L.) by high-throughput genome-wide sequencing. Theor. Appl. Genet. 2017, 130, 1041–1051. [Google Scholar] [CrossRef]
- Niu, J.P.; Guo, N.; Sun, J.T.; Li, L.H.; Cao, Y.C.; Li, S.G.; Huang, J.L.; Zhao, J.M.; Zhao, T.J.; Xing, H. Fine mapping of a resistance gene RpsHN that controls Phytophthora sojae using recombinant inbred lines and secondary populations. Front. Plant Sci. 2017, 8, 538. [Google Scholar] [CrossRef] [PubMed]
- Zhong, C.; Li, Y.P.; Sun, S.L.; Duan, C.X.; Zhu, Z.D. Genetic mapping and molecular characterization of a broad-spectrum Phytophthora sojae resistance gene in chinese soybean. Int. J. Mol. Sci. 2019, 20, 1809. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, W.; Ping, J.; Fitzgerald, J.C.; Cai, G.; Clark, C.B.; Aggarwal, R.; Ma, J. Identification and molecular mapping of Rps14, a gene conferring broad-spectrum resistance to Phytophthora sojae in soybean. Theor. Appl. Genet. 2021, 134, 3863–3872. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, D.K.; Abeysekara, N.S.; Cianzio, S.R.; Robertson, A.E.; Bhattacharyya, M.K. A novel Phytophthora sojae resistance Rps12 gene mapped to a genomic region that contains several Rps genes. PLoS ONE 2017, 12, e0169950. [Google Scholar] [CrossRef]
- Axtell, M.J.; McNellis, T.W.; Mudgett, M.B.; Hsu, C.S.; Staskawicz, B.J. Mutational analysis of the Arabidopsis RPS2 disease resistance gene and the corresponding Pseudomonas syringae avrRpt2 avirulence gene. Mol. Plant-Microbe Interact. 2001, 14, 181–188. [Google Scholar] [CrossRef]
- Chowdhury, J.; Henderson, M.; Schweizer, P.; Burton, R.A.; Fincher, G.B.; Little, A. Differential accumulation of callose, arabinoxylan and cellulose in non-penetrated versus penetrated papillae on leaves of barley infected with Blumeria graminis f. sp hordei. New Phytol. 2014, 204, 650–660. [Google Scholar] [CrossRef] [PubMed]
- Dusotoit-Coucaud, A.; Porcheron, B.; Brunel, N.; Kongsawadworakul, P.; Franchel, J.; Viboonjun, U.; Chrestin, H.; Lemoine, R.; Sakr, S. Cloning and characterization of a new polyol transporter (HbPLT2) in hevea brasiliensis. Plant Cell Physiol. 2010, 51, 1878–1888. [Google Scholar] [CrossRef]
- Ruijter, G.J.G.; Bax, M.; Patel, H.; Flitter, S.J.; van de Vondervoort, P.J.I.; de Vries, R.P.; vanKuyk, P.A.; Visser, J. Mannitol is required for stress tolerance in Aspergillus niger conidiospores. Eukaryot. Cell 2003, 2, 690–698. [Google Scholar] [CrossRef]
- Stoop, J.M.H.; Pharr, D.M. Partial-purification and characterization of mannitol—Mannose 1-oxidoreductase from celeriac (apium-graveolens var rapaceum) roots. Arch. Biochem. Biophys. 1992, 298, 612–619. [Google Scholar] [CrossRef]
- Chaturvedi, V.; Bartiss, A.; Wong, B. Expression of bacterial mtlD in Saccharomyces cerevisiae results in mannitol synthesis and protects a glycerol-defective mutant from high-salt and oxidative stress. J. Bacteriol. 1997, 179, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Voegele, R.T.; Hahn, M.; Lohaus, G.; Link, T.; Heiser, I.; Mendgen, K. Possible roles for mannitol and mannitol dehydrogenase in the biotrophic plant pathogen Uromyces fabae. Plant Physiol. 2005, 137, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Chan, Z.L.; Grumet, R.; Loescher, W. Global gene expression analysis of transgenic, mannitol-producing, and salt-tolerant Arabidopsis thaliana indicates widespread changes in abiotic and biotic stress-related genes. J. Exp. Bot. 2011, 62, 4787–4803. [Google Scholar] [CrossRef] [PubMed]
- Wyatt, T.T.; van Leeuwen, M.R.; Wosten, H.A.B.; Dijksterhuis, J. Mannitol is essential for the development of stress-resistant ascospores in Neosartorya fischeri (Aspergillus fischeri). Fungal Genet. Biol. 2014, 64, 11–24. [Google Scholar] [CrossRef] [PubMed]
- Pacheco-Hernandez, Y.; Hidalgo-Martinez, D.; Zepeda-Vallejo, G.; Cruz-Narvaez, Y.; Escobar-Garcia, R.L.; Becerra-Martinez, E.; Villa-Ruano, N. Untargeted H-1-NMR metabolome of celery during fusarium wilt: Implications for vegetable quality. Chem. Biodivers. 2022, 19, e202200745. [Google Scholar] [CrossRef]
- Kawaura, K.; Mochida, K.; Ogihara, Y. Genome-wide analysis for identification of salt-responsive genes in common wheat. Funct. Integr. Genom. 2008, 8, 277–286. [Google Scholar] [CrossRef]
- Zhang, G.Y.; Chen, M.; Li, L.C.; Xu, Z.S.; Chen, X.P.; Guo, J.M.; Ma, Y.Z. Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J. Exp. Bot. 2009, 60, 3781–3796. [Google Scholar] [CrossRef]
- Liu, L. Mining of Genes Related to Grape Downy Mildew Resistance and Functional Analysis of VvPYL4. Ph.D. Thesis, Shenyang Agricultural University, Shenyang, China, 2021. [Google Scholar]
- Sharoni, A.M.; Nuruzzaman, M.; Satoh, K.; Moumeni, A.; Attia, K.; Venuprasad, R.; Serraj, R.; Kumar, A.; Leung, H.; Islam, A.; et al. Comparative transcriptome analysis of AP2/EREBP gene family under normal and hormone treatments, and under two drought stresses in NILs setup by Aday Selection and IR64. Mol. Genet. Genom. 2012, 287, 1–19. [Google Scholar] [CrossRef]
- Zeng, L.P.; Yin, Y.; You, C.J.; Pan, Q.L.; Xu, D.; Jin, T.J.; Zhang, B.L.; Ma, H. Evolution and protein interactions of AP2 proteins in Brassicaceae: Evidence linking development and environmental responses. J. Integr. Plant Biol. 2016, 58, 549–563. [Google Scholar] [CrossRef]
- Bai, Y.L.; Sunarti, S.; Kissoudis, C.; Visser, R.G.F.; van der Linden, C.G. The role of tomato WRKY genes in plant responses to combined abiotic and biotic stresses. Front. Plant Sci. 2018, 9, 801. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.J.; Guo, D.Z.; Zhao, G.D.; Wang, J.Y.; Zhang, S.X.; Wang, C.; Guo, X.Q. Group IIc WRKY transcription factors regulate cotton resistance to Fusarium oxysporum by promoting GhMKK2-mediated flavonoid biosynthesis. New Phytol. 2022, 236, 249–265. [Google Scholar] [CrossRef] [PubMed]
- Wei, T.; Ou, B.; Li, J.B.; Zhao, Y.; Guo, D.S.; Zhu, Y.Y.; Chen, Z.L.; Gu, H.Y.; Li, C.Y.; Qin, G.J.; et al. Transcriptional profiling of rice early response to magnaporthe oryzae identified OsWRKYs as important regulators in rice blast resistance. PLoS ONE 2013, 8, e59720. [Google Scholar] [CrossRef] [PubMed]
- Marchive, C.; Mzid, R.; Deluc, L.; Barrieu, F.; Pirrello, J.; Gauthier, A.; Corio-Costet, M.F.; Regad, F.; Cailleteau, B.; Hamdi, S.; et al. Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. J. Exp. Bot. 2007, 58, 1999–2010. [Google Scholar] [CrossRef]
- Raffaele, S.; Rivas, S. Regulate and be regulated: Integration of defense and other signals by the AtMYB30 transcription factor. Front. Plant Sci. 2013, 4, 98. [Google Scholar] [CrossRef]
- Yang, Y.O.; Klessig, D.F. Isolation and characterization of a tobacco mosaic virus-inducible myb oncogene homolog from tobacco. Proc. Natl. Acad. Sci. USA 1996, 93, 14972–14977. [Google Scholar] [CrossRef]
- Zhu, Y.X.; Zhang, X.M.; Zhang, Q.H.; Chai, S.Y.; Yin, W.C.; Gao, M.; Li, Z.; Wang, X.P. The transcription factors VaERF16 and VaMYB306 interact to enhance resistance of grapevine to Botrytis cinerea infection. Mol. Plant Pathol. 2022, 23, 1415–1432. [Google Scholar] [CrossRef] [PubMed]
- Li, H.C.; Hu, C.H.; Xie, A.F.; Wu, S.P.; Bi, F.C.; Dong, T.; Li, C.Y.; Deng, G.M.; He, W.D.; Gao, H.J.; et al. of MpbHLH transcription factor, an encoding ICE1-like protein, enhances Foc TR4-resistance of Cavendish banana. Sci. Hortic. 2022, 291, 110590. [Google Scholar] [CrossRef]
- Chen, Y.X.; Chen, Y.S.; Shi, C.M.; Huang, Z.B.; Zhang, Y.; Li, S.K.; Li, Y.; Ye, J.; Yu, C.; Li, Z.; et al. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 2017, 7, gix120. [Google Scholar] [CrossRef]
- Li, B.; Dewey, C.N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. Bmc Bioinform. 2011, 12, 323. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Kuehn, H.; Gould, J.; Tamayo, P.; Mesirov, J.P. GSEA-P: A desktop application for gene set enrichment analysis. Bioinformatics 2007, 23, 3251–3253. [Google Scholar] [CrossRef] [PubMed]
- Mai, Y.T.; Shui, L.Y.; Huo, K.S.; Niu, J. Genome-wide characterization of the NUCLEAR FACTOR-Y (NF-Y) family in Citrus grandis identified CgNF-YB9 involved in the fructose and glucose accumulation. Genes Genom. 2019, 41, 1341–1355. [Google Scholar] [CrossRef] [PubMed]
Sample Name | Clean Reads Pairs | Clean Base (GP) | Length | Q20 (%) | Q30 (%) | GC (%) | Total Mapped Ratio% |
---|---|---|---|---|---|---|---|
S1022 | 26.14 | 7.84 | 150; 150 | 97.0; 97.3 | 91.1; 91.7 | 46.0;46.0 | 87.38 |
S1023 | 29.74 | 8.92 | 150; 150 | 96.9; 97.0 | 90.9; 90.7 | 46.0; 45.9 | 89.44 |
S1024 | 35.59 | 10.68 | 150; 150 | 96.8; 97.1 | 90.7; 91.1 | 45.8; 45.7 | 90.09 |
S1031 | 41.72 | 12.52 | 150; 150 | 97.0; 97.6 | 91.0; 92.3 | 45.7; 45.7 | 91.53 |
S1035 | 39.71 | 11.91 | 150; 150 | 97.2; 97.4 | 91.5; 91.9 | 46.0; 45.9 | 92.20 |
S1037 | 35.66 | 10.70 | 150; 150 | 97.1; 97.6 | 91.3; 92.3 | 46.2; 46.2 | 90.91 |
Classification | Access ID | Access | Genes | Functional Annotations | |
---|---|---|---|---|---|
EvsF and EvsG | Signal transduction | ko04016 | MAPK signaling pathway-plant | VIT_00021648001 | FLS2; receptor protein kinase |
VIT_00007190001 | CHI chalcone isomerase B; chitinase | ||||
VIT_00002253001 | FLS2; receptor protein kinase | ||||
Environmental adaptation | ko04626 | Plant–pathogen interactions | VIT_00021648001 | FLS2; receptor protein kinase | |
VIT_00002253001 | FLS2; receptor protein kinase | ||||
Amino acid metabolism | ko00380 | Tryptophan metabolism | VIT_00034498001 | COMT; catechol-o-methyltransferase; caffeic acid 3-O-methyltransferase | |
VIT_00011005001 | YUCCA; auxin synthesis-related enzyme | ||||
Biosynthesis of other secondary metabolite | ko00940 | Phenylalanine biosynthesis | VIT_00034498001 | COMT; catechol-o-methyltransferase; caffeic acid 3-O-methyltransferase | |
VIT_00015533001 | Peroxidase (E1.11.1.7) | ||||
Lipid metabolism | ko00600 | Sphingomyelin metabolism | VIT_00033008001 | SPT; long-chain base biosynthetic protein 2a subtype X2 | |
Carbohydrate metabolism | ko00051 | Fructose and mannose metabolism | VIT_00018923001 | MAN; mannan-end-1,4-β-mannosidase 7 | |
ko00520 | Amino and nucleotide sugars metabolism | novel.7376 | Class IV chitinase precursor; E3.2.1.14 | ||
VIT_00007190001 | CHIB | ||||
Metabolism of terpenes and polyketones | ko00906 | Carotenoid biosynthesis | VIT_00019403001 | crtZ; Beta-carotene 3-hydroxylase 1, chloroplast | |
Translation | ko00970 | Aminoacyl tRNA biosynthesis | VIT_00020308001 | FARSA, pheS | |
ko03010 | Ribosome | VIT_00030972001 | RP-L26e, RPL26 | ||
Metabolism of other amino acids | ko00480 | Glutathione metabolism | novel.18953 | GST, gst; Glutathione S-transferase | |
Folding, classification, and degradation | ko03050 | Proteasome | novel.21935 | PSMD13, RPN9; putative protein CK203_114353 | |
EvsG and FvsG | Biosynthesis of other secondary metabolite | ko00942 | Anthocyanin biosynthesis | VIT_00037411001 | UDP glycosyltransferase |
Environmental adaptation | ko04626 | Plant–pathogen interactions | novel.14505 | Disease-resistant protein RPS2 | |
VIT_00023182001 | Resistance protein (RPS2) At4g27190 | ||||
novel.14509 | Disease resistance protein (RPS2) | ||||
VIT_00023173001 | ADP binding RPS2 | ||||
novel.14523 | Disease resistance protein (RPS2) | ||||
VIT_00023210001 | Putative protein RPS2 | ||||
VIT_00023163001 | ADP in combination with RPS2 | ||||
Translation | ko00970 | Aminoacyl tRNA biosynthesis | VIT_00030775001 | Valine-tRNA ligase; mitochondria/chloroplasts (VARS, valS) | |
Lipid metabolism | ko00073 | Keratin, lutein and wax biosynthesis | VIT_00030078001 | ω-hydroxypalmitate o-ferulate transferase (HHT1) | |
ko00592 | α-linolenic acid metabolism | VIT_00009751001 | Jasmonate o-methyltransferase | ||
Carbohydrate metabolism | ko00030 | Pentose phosphate pathway | VIT_00004774001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Wang, L.; Jiang, S.; Wang, Z.; Li, H.; Wang, H. Mining of Minor Disease Resistance Genes in V. vinifera Grapes Based on Transcriptome. Int. J. Mol. Sci. 2023, 24, 15311. https://doi.org/10.3390/ijms242015311
Liu J, Wang L, Jiang S, Wang Z, Li H, Wang H. Mining of Minor Disease Resistance Genes in V. vinifera Grapes Based on Transcriptome. International Journal of Molecular Sciences. 2023; 24(20):15311. https://doi.org/10.3390/ijms242015311
Chicago/Turabian StyleLiu, Junli, Liang Wang, Shan Jiang, Zhilei Wang, Hua Li, and Hua Wang. 2023. "Mining of Minor Disease Resistance Genes in V. vinifera Grapes Based on Transcriptome" International Journal of Molecular Sciences 24, no. 20: 15311. https://doi.org/10.3390/ijms242015311
APA StyleLiu, J., Wang, L., Jiang, S., Wang, Z., Li, H., & Wang, H. (2023). Mining of Minor Disease Resistance Genes in V. vinifera Grapes Based on Transcriptome. International Journal of Molecular Sciences, 24(20), 15311. https://doi.org/10.3390/ijms242015311