Functionalization of Polyhydroxyalkanoates (PHA)-Based Bioplastic with Phloretin for Active Food Packaging: Characterization of Its Mechanical, Antioxidant, and Antimicrobial Activities
Abstract
:1. Introduction
2. Results and Discussion
2.1. Evaluation of the Antimicrobial Activity of Phloretin
2.2. Preparation and Characterization of Phloretin-Functionalized PHA Films
2.2.1. Mechanical Properties
2.2.2. Water Sensitivity and Opacity
2.2.3. FTIR Characterization
2.2.4. Raman Spectroscopy of PHA and PHA/Phloretin Film
2.3. Release Assay
2.4. Antioxidant Assay
2.5. Evaluation of Phloretin-PHA Antimicrobial Activity
2.6. Food Fresh-Keeping Test
3. Materials and Methods
3.1. Reagents and Standard Solutions
3.2. Production and Characterization of Polyhydroxyalkanoates Based-Films
3.2.1. Polymer Production
3.2.2. Film Preparation
3.2.3. Characterization of PHA-Based Films
- Mechanical properties
- Moisture content, swelling ratio, and contact angle
- Opacity
- Fourier transform infrared spectroscopy (FTIR-ATR)
- Raman spectroscopy of PHA and PHA/Phloretin film
3.3. Antimicrobial Assays
3.3.1. Microbial Strains and Culture Conditions
3.3.2. Susceptibility Studies of Phloretin
3.3.3. Disc Diffusion Assay of PHA Films
3.3.4. Antibacterial Activity of PHA Films and Biofilm Biomass Measurement
3.4. Identification of Phloretin Release
3.5. Antioxidant Assays
3.5.1. DPPH Assay
3.5.2. ABTS Radical Scavenging Assay
3.5.3. Ferric Reducing Antioxidant Power (FRAP)
3.5.4. Ferrozine Assay
3.6. Analysis of Food Preservatives Properties
3.6.1. Apple Samples Design
3.6.2. Computer and Graphic Elaboration
3.6.3. Browning Reaction and Determination of Brix Degree
3.6.4. Weight Loss
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Asgher, M.; Qamar, S.A.; Bilal, M.; Iqbal, H.M.N. Bio-based active food packaging materials: Sustainable alternative to conventional petrochemical-based packaging materials. Food Res. Int. 2020, 137, 109625. [Google Scholar] [CrossRef]
- Dilkes-Hoffman, S.; Lane, J.L.; Grant, T.; Pratt, S.; Lant, P.A.; Laycock, B. Environmental impact of biodegradable food packaging when considering food waste. J. Clean. Prod. 2018, 180, 325–334. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, R. Production of Polyhydroxyalkanoates (PHA) by Haloferax mediterranei from food waste derived nutrients for biodegradable plastic applications. J. Microbiol. Biotechnol. 2021, 31, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Turco, R.; Santagata, G.; Corrado, I.; Pezzella, C.; Di Serio, M. In vivo and post- synthesis strategies to enhance the properties of PHB-based materials: A review. Front. Bioeng. Biotechnol. 2021, 8, 619266. [Google Scholar] [CrossRef]
- Fernandez-Bunster, G.; Pavez, P. Novel Production Methods of Polyhydroxyalkanoates and Their Innovative Uses in Biomedicine and Industry. Molecules 2022, 27, 8351. [Google Scholar] [CrossRef] [PubMed]
- Vijayamma, R.; Maria, H.J.; Thomas, S.; Shishatskaya, E.I.; Kiselev, E.G.; Nemtsev, I.V.; Sukhanova, A.A.; Volova, T.G. A study of the properties and efficacy of microparticles based on P(3HB) and P(3HB/3HV) loaded with herbicides. J. Appl. Polym. Sci. 2021, 139, 51756. [Google Scholar] [CrossRef]
- Corrado, I.; Varriale, S.; Pezzella, C. Microbial processes for upcycling food wastes into sustainable bioplastics. In Sustainable Food Science, A Comprehensive Approach; Elsevier: Amsterdam, The Netherlands, 2023; Volume 4, pp. 51–74. [Google Scholar]
- Mirpoor, S.F.; Corrado, I.; Di Girolamo, R.; Dal Poggetto, G.; Panzella, L.; Borselleca, E.; Pezzella, C.; Giosafatto, C.V.L. Manufacture of active multilayer films made of functionalized pectin coated by polyhydroxyalkanoates: A fully renewable approach to active food packaging. Polymer 2023, 281, 126136. [Google Scholar] [CrossRef]
- Barreca, D.; Bellocco, E.; Laganà, G.; Ginestra, G.; Bisignano, C. Biochemical and antimicrobial activity of phloretin and its glycosilated derivatives present in apple and kumquat. Food Chem. 2014, 160, 292–297. [Google Scholar] [CrossRef] [PubMed]
- Barreca, D.; Currò, M.; Bellocco, E.; Ficarra, S.; Laganà, G.; Tellone, E.; Giunta, M.L.; Visalli, G.; Caccamo, D.; Galtieri, A.; et al. Neuroprotective effects of phloretin and its glycosylated derivative on rotenone-induced toxicity in human SH-SY5Y neuronal-like cells. Biofactors 2017, 43, 549–557. [Google Scholar] [CrossRef]
- Behzad, S.; Sureda, A.; Barreca, D.; Nabavi, S.F.; Rastrelli, L.; Nabavi, S.M. Health effects of Phloretin: From chemistry to medicine. Phytochem. Rev. 2017, 16, 527–533. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, H.; Hu, X.; Xu, M.; Su, Y.; Zhang, C.; Yue, Y.; Zhang, X.; Wang, X.; Cui, W.; et al. Phloretin exhibits potential food-drug interactions by inhibiting human UDP-glucuronosyltransferases in vitro. Toxicol. In Vitro 2022, 84, 105447. [Google Scholar] [CrossRef] [PubMed]
- Habtemariam, S. The molecular pharmacology of phloretin: Anti-inflammatory mechanisms of action. Biomedicines 2023, 11, 143. [Google Scholar] [CrossRef] [PubMed]
- Majdoub, Y.O.E.; Ginestra, G.; Mandalari, G.; Dugo, P.; Mondello, L.; Cacciola, F. The digestibility of Hibiscus sabdariffa L. polyphenols using an in vitro human digestion model and evaluation of their antimicrobial activity. Nutrients 2021, 13, 2360. [Google Scholar] [CrossRef]
- Mandalari, G.; Bisignano, C.; D’arrigo, M.; Ginestra, G.; Arena, A.; Tomaino, A.; Wickham, M.S.J. Antimicrobial potential of polyphenols extracted from almond skins. Lett. Appl. Microbiol. 2010, 51, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Bisignano, C.; Filocamo, A.; Faulks, R.M.; Mandalari, G. In vitro antimicrobial activity of pistachio (Pistacia vera L.) polyphenols. FEMS Microbiol. Lett. 2013, 341, 62–67. [Google Scholar] [CrossRef] [Green Version]
- Figueroa-Lopez, K.J.; Cabedo, L.; Lagaron, J.M.; Torres-Giner, S. Development of electrospun poly (3-hydroxybutyrate-co-3-hydroxyvalerate) monolayers containing eugenol and their application in multilayer antimicrobial food packaging. Front. Nutr. 2020, 7, 140. [Google Scholar] [CrossRef]
- Rubini, K.; Boanini, E.; Menichetti, A.; Bonvicini, F.; Gentilomi, G.A.; Montalti, M.; Bigi, A. Quercetin loaded gelatin films with modulated release and tailored anti-oxidant, mechanical and swelling properties. Food Hydrocoll. 2020, 109, 106089. [Google Scholar] [CrossRef]
- Sarıcaoglu, F.T.; Turhan, S. Physicochemical, antioxidant and antimicrobial properties of mechanically deboned chicken meat protein films enriched with various essential oils. Food Packag. Shelf Life 2020, 25, 100527. [Google Scholar] [CrossRef]
- Mirpoor, S.F.; Giosafatto, C.V.L.; Di Girolamo, R.; Famiglietti, M.; Porta, R. Hemp (Cannabis sativa) seed oilcake as a promising by-product for developing protein-based films: Effect of transglutaminase-induced crosslinking. Food Packag. Shelf Life 2022, 31, 100779. [Google Scholar] [CrossRef]
- Huang, S.; Xu, J.; Peng, Y.; Guo, M.; Cai, T. Facile tuning of the photoluminescence and dissolution properties of phloretin through cocrystallization. Cryst. Growth Des. 2019, 19, 6837–6844. [Google Scholar] [CrossRef]
- Li, Y.; Xiang, H.; Xue, X.; Chen, Y.; He, Z.; Yu, Z.; Zhang, L.; Miao, X. Dual Antimelanogenic effect of nicotinamide-stabilized phloretin nanocrystals in larval zebrafish. Pharmaceutics 2022, 14, 1825. [Google Scholar] [CrossRef]
- Govindammal, M.; Prasath, M.; Selvapandiyan, M. Spectroscopic (FT-IR, FT-Raman) investigations, quantum chemical calculations, ADMET and molecular docking studies of phloretin with B-RAF inhibitor. Chem. Pap. 2021, 75, 3771–3785. [Google Scholar] [CrossRef]
- Zhao, P.; Zhang, Y.; Deng, H.; Meng, Y. Antibacterial mechanism of apple phloretin on physiological and morphological properties of Listeria monocytogenes. Food Sci. Technol. 2021, 42, 55120. [Google Scholar] [CrossRef]
- Turco, R.; Corrado, I.; Zannini, D.; Gargiulo, L.; Di Serio, M.; Pezzella, C.; Santagata, G. Upgrading cardoon biomass into Polyhydroxybutyrate based blends: A holistic approach for the synthesis of biopolymers and additives. Bioresour. Technol. 2022, 363, 127954. [Google Scholar] [CrossRef] [PubMed]
- Mirpoor, S.F.; Varriale, S.; Porta, R.; Naviglio, D.; Spennato, M.; Gardossi, L.; Giosafatto, C.V.L.; Pezzella, C. A biorefinery approach for the conversion of Cynara cardunculus biomass to active films. Food Hydrocoll. 2022, 122, 107099. [Google Scholar] [CrossRef]
- Jahed, E.; Khaledabad, M.A.; Bari, M.R.; Almasi, H. Effect of cellulose and lignocellulose nanofibers on the properties of Origanum vulgare ssp. gracile essential oil-loaded chitosan films. React. Funct. Polym. 2017, 117, 70–80. [Google Scholar] [CrossRef]
- CLSI M100-S22; Performance Standards for Antimicrobial Susceptibility Testing. CLSI: Wayne, PA, USA, 2012.
- Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Disk Susceptibility Tests. M02 Standard, 13th ed.; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Ferreri, L.; Consoli, G.M.L.; Clarizia, G.; Zampino, D.C.; Nostro, A.; Granata, G.; Ginestra, G.; Giuffrida, M.L.; Zimbone, F.; Bernardo, P. A novel material based on an antibacterial choline-calixarene nanoassembly embedded in thin films. J. Mater. Sci. 2022, 57, 20685–20701. [Google Scholar] [CrossRef]
- Barreca, D.; Laganà, G.; Ficarra, S.; Tellone, E.; Leuzzi, U.; Galtieri, A.; Bellocco, E. Evaluation of the antioxidant and cytoprotective properties of the exotic fruit Annona cherimola Mill. (Annonaceae). Food Res. Int. 2011, 44, 2302–2310. [Google Scholar] [CrossRef]
- Smeriglio, A.; Mandalari, G.; Bisignano, C.; Filocamo, A.; Barreca, D.; Bellocco, E.; Trombetta, D. Polyphenolic content and biological properties of Avola almond (Prunus dulcis Mill. D.A.Webb) skin and its industrial byproducts. Ind. Crops Prod. 2016, 83, 283–293. [Google Scholar] [CrossRef]
- Papalia, T.; Barreca, D.; Panuccio, M.R. Assessment of antioxidant and cytoprotective potential of Jatropha (Jatropha curcas) grown in southern Italy. Int. J. Mol. Sci. 2017, 18, 660. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Yang, Z.; Ji, J.; Mou, Y.; Chen, F.; Xiao, Z.; Liao, X.; Hu, X.; Ma, L. Polyphenol mediated non-enzymatic browning and its inhibition in apple juice. Food Chem. 2023, 404, 134504. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Huang, Y.; Wang, X.-Y.; Wu, Z.-Y.; Weng, Y.-X. Kinetic analysis of PGA/PBAT plastic films for strawberry fruit preservation quality and enzyme activity. J. Food Compos. Anal. 2022, 108, 104439. [Google Scholar] [CrossRef]
MIC | MBC | |
---|---|---|
Enterococcus hirae ATCC 10541 | 250 | >1000 |
Salmonella enterica serovar Typhimurium ATCC 13311 | 500 | 500 |
S. enterica serovar Typhimurium (clinical isolate) | >1000 | >1000 |
S. enterica (clinical isolate) | 500 | 500 |
Escherichia coli ATCC 25922 | >1000 | >1000 |
E. coli ATCC 10536 | >1000 | >1000 |
Listeria monocytogenes ATCC 13932 | 125–62.5 | >1000 |
L. monocytogenes A241 (1/2a) | 125 | >1000 |
L. monocytogenes A216(1/2a) | 125 | >1000 |
L. monocytogenes A149 (1/2b) | 125–62.5 | >1000 |
L. monocytogenes A240 (1/2b) | 250–125 | >1000 |
L. monocytogenes G197 (1/2c) | 250–125 | >1000 |
L. monocytogenes G193 (1/2c) | 125 | >1000 |
L. monocytogenes G152 (4b) | 125–62.5 | >1000 |
L. monocytogenes A222 (4b) | 62.5 | >1000 |
L. monocytogenes A256 (1/2a) | 250 | >1000 |
L. monocytogenes A84(1/2b) | 125 | >1000 |
L. monocytogenes A223 (1/2c) | 125 | >1000 |
L. monocytogenes G259 (1/2b) | 125–250 | >1000 |
L. monocytogenes G171 (1/2a) | 125 | >1000 |
L. monocytogenes G282 (4b) | 125 | >1000 |
Phloretin (mg) | Moisture Content (%) | Swelling Ratio (%) | Contact Angle (θ) | Opacity (mm−1) |
---|---|---|---|---|
0 | 5.51 ± 0.24 d | 3.88 ± 0.09 d | 95.2 ± 1.6 d | 31.06 ± 2.31 a |
5 | 2.77 ± 0.12 a | 1.90 ± 0.12 a | 106.3 ± 0.7 b | 33.88 ± 3.12 ab |
7.5 | 3.42 ± 0.27 b | 2.15 ± 0.10 b | 110.9 ± 0.1 a | 36.22 ± 2.45 bc |
10 | 4.42 ± 0.19 c | 3.56 ± 0.12 c | 97.4 ± 1.2 d | 39.09 ± 2.18 cd |
20 | 4.68 ± 0.22 c | 3.48 ± 0.07 c | 100.7 ± 0.6 c | 43.91 ± 2.56 d |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mirpoor, S.F.; Patanè, G.T.; Corrado, I.; Giosafatto, C.V.L.; Ginestra, G.; Nostro, A.; Foti, A.; Gucciardi, P.G.; Mandalari, G.; Barreca, D.; et al. Functionalization of Polyhydroxyalkanoates (PHA)-Based Bioplastic with Phloretin for Active Food Packaging: Characterization of Its Mechanical, Antioxidant, and Antimicrobial Activities. Int. J. Mol. Sci. 2023, 24, 11628. https://doi.org/10.3390/ijms241411628
Mirpoor SF, Patanè GT, Corrado I, Giosafatto CVL, Ginestra G, Nostro A, Foti A, Gucciardi PG, Mandalari G, Barreca D, et al. Functionalization of Polyhydroxyalkanoates (PHA)-Based Bioplastic with Phloretin for Active Food Packaging: Characterization of Its Mechanical, Antioxidant, and Antimicrobial Activities. International Journal of Molecular Sciences. 2023; 24(14):11628. https://doi.org/10.3390/ijms241411628
Chicago/Turabian StyleMirpoor, Seyedeh Fatemeh, Giuseppe Tancredi Patanè, Iolanda Corrado, C. Valeria L. Giosafatto, Giovanna Ginestra, Antonia Nostro, Antonino Foti, Pietro G. Gucciardi, Giuseppina Mandalari, Davide Barreca, and et al. 2023. "Functionalization of Polyhydroxyalkanoates (PHA)-Based Bioplastic with Phloretin for Active Food Packaging: Characterization of Its Mechanical, Antioxidant, and Antimicrobial Activities" International Journal of Molecular Sciences 24, no. 14: 11628. https://doi.org/10.3390/ijms241411628