The CXCL13 Index as a Predictive Biomarker for Activity in Clinically Isolated Syndrome
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wekerle, H. B cells in multiple sclerosis. Autoimmunity 2017, 50, 57–60. [Google Scholar] [CrossRef]
- Holm Hansen, R.; Talbot, J.; Højsgaard Chow, H.; Bredahl Hansen, M.; Buhelt, S.; Herich, S.; Schwab, N.; Hellem, M.N.N.; Nielsen, J.E.; Sellebjerg, F.; et al. Increased Intrathecal Activity of Follicular Helper T Cells in Patients With Relapsing-Remitting Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e200009. [Google Scholar] [CrossRef] [PubMed]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef] [PubMed]
- López-Gómez, J.; Sacristán-Enciso, B.; Caro-Miró, M.A.; Querol Pascual, M.R. Clinically isolated syndrome: Diagnosis and risk of developing clinically definite multiple sclerosis. Neurologia 2021, 21, S0213-4853, (In English/Spanish). [Google Scholar] [CrossRef]
- Okuda, D.T.; Mowry, E.M.; Beheshtian, A.; Waubant, E.; Baranzini, S.E.; Goodin, D.S.; Hauser, S.L.; Pelletier, D. Incidental MRI anomalies suggestive of multiple sclerosis: The radiologically isolated syndrome. Neurology 2009, 72, 800–805. [Google Scholar] [CrossRef]
- Novakova, L.; Skoog, B.; Runmarker, B.; Ekholm, S.; Winblad, S.; Lisovskaja, V.; Andersen, O. Clinically isolated syndromes with no further disease activity suggestive of multiple sclerosis at the age of population life expectancy. Mult. Scler. 2014, 20, 496–500. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, M.; Marastoni, D.; Crescenzo, F.; Scalfari, A. Early multiple sclerosis: Diagnostic challenges in clinically and radiologically isolated syndrome patients. Curr. Opin. Neurol. 2021, 34, 277–285. [Google Scholar] [CrossRef]
- Poser, C.M.; Paty, D.W.; Scheinberg, L.; McDonald, W.I.; Davis, F.A.; Ebers, G.C.; Johnson, K.P.; Sibley, W.A.; Silberberg, D.H.; Tourtellotte, W.W. New diagnostic criteria for multiple sclerosis: Guidelines for research protocols. Ann. Neurol. 1983, 13, 227–231. [Google Scholar] [CrossRef]
- Armoiry, X.; Kan, A.; Melendez-Torres, G.J.; Court, R.; Sutcliffe, P.; Auguste, P.; Madan, J.; Counsell, C.; Clarke, A. Short- and long-term clinical outcomes of use of beta-interferon or glatiramer acetate for people with clinically isolated syndrome: A systematic review of randomised controlled trials and network meta-analysis. J. Neurol. 2018, 265, 999–1009. [Google Scholar] [CrossRef]
- Simonsen, C.S.; Flemmen, H.; Lauritzen, T.; Berg-Hansen, P.; Moen, S.M.; Celius, E.G. The diagnostic value of IgG index versus oligoclonal bands in cerebrospinal fluid of patients with multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2020, 6, 2055217319901291. [Google Scholar] [CrossRef]
- Villar, L.M.; Espiño, M.; Costa-Frossard, L.; Muriel, A.; Jiménez, J.; Alvarez-Cermeño, J.C. High levels of cerebrospinal fluid free kappa chains predict conversion to multiple sclerosis. Clin. Chim. Acta 2012, 413, 1813–1816. [Google Scholar] [CrossRef]
- Castillo-Villalba, J.; Gil-Perotín, S.; Gasque-Rubio, R.; Cubas-Nuñez, L.; Carratalà-Boscà, S.; Alcalá, C.; Quintanilla-Bordás, C.; Pérez-Miralles, F.; Ferrer, C.; Cañada Martínez, A.; et al. High Levels of Cerebrospinal Fluid Kappa Free Light Chains Relate to IgM Intrathecal Synthesis and Might Have Prognostic Implications in Relapsing Multiple Sclerosis. Front. Immunol. 2022, 13, 827738. [Google Scholar] [CrossRef] [PubMed]
- Brändle, S.M.; Obermeier, B.; Senel, M.; Bruder, J.; Mentele, R.; Khademi, M.; Olsson, T.; Tumani, H.; Kristoferitsch, W.; Lottspeich, F.; et al. Distinct oligoclonal band antibodies in multiple sclerosis recognize ubiquitous self-proteins. Proc. Natl. Acad. Sci. USA 2016, 113, 7864–7869. [Google Scholar] [CrossRef] [PubMed]
- Polman, C.H.; O’Connor, P.W.; Havrdova, E.; Hutchinson, M.; Kappos, L.; Miller, D.H.; Phillips, J.T.; Lublin, F.D.; Giovannoni, G.; Wajgt, A.; et al. A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N. Engl. J. Med. 2006, 354, 899–910. [Google Scholar] [CrossRef] [PubMed]
- Hauser, S.L.; Bar-Or, A.; Comi, G.; Giovannoni, G.; Hartung, H.P.; Hemmer, B.; Lublin, F.; Montalban, X.; Rammohan, K.W.; Selmaj, K.; et al. Ocrelizumab versus Interferon Beta-1a in Relapsing Multiple Sclerosis. N. Engl. J. Med. 2017, 376, 221–234. [Google Scholar] [CrossRef]
- de Sèze, J.; Maillart, E.; Gueguen, A.; Laplaud, D.A.; Michel, L.; Thouvenot, E.; Zephir, H.; Zimmer, L.; Biotti, D.; Liblau, R. Anti-CD20 therapies in multiple sclerosis: From pathology to the clinic. Front. Immunol. 2023, 14, 1004795. [Google Scholar] [CrossRef]
- Magliozzi, R.; Howell, O.; Vora, A.; Serafini, B.; Nicholas, R.; Puopolo, M.; Reynolds, R.; Aloisi, F. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain 2007, 130, 1089–1104. [Google Scholar] [CrossRef]
- Moccia, M.; Haider, L.; Eshaghi, A.; van de Pavert, S.H.P.; Brescia Morra, V.; Patel, A.; Wheeler-Kingshott, C.A.M.; Barkhof, F.; Ciccarelli, O. B Cells in the CNS at Postmortem Are Associated with Worse Outcome and Cell Types in Multiple Sclerosis. Neurol. Neuroimmunol. Neuroinflamm. 2022, 9, e1108. [Google Scholar] [CrossRef]
- Zhan, J.; Kipp, M.; Han, W.; Kaddatz, H. Ectopic lymphoid follicles in progressive multiple sclerosis: From patients to animal models. Immunology 2021, 164, 450–466. [Google Scholar] [CrossRef]
- Bjornevik, K.; Cortese, M.; Healy, B.C.; Kuhle, J.; Mina, M.J.; Leng, Y.; Elledge, S.J.; Niebuhr, D.W.; Scher, A.I.; Munger, K.L.; et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Science 2022, 375, 296–301. [Google Scholar] [CrossRef]
- Bar-Or, A.; Pender, M.P.; Khanna, R.; Steinman, L.; Hartung, H.P.; Maniar, T.; Croze, E.; Aftab, B.T.; Giovannoni, G.; Joshi, M.A. Epstein-Barr Virus in Multiple Sclerosis: Theory and Emerging Immunotherapies. Trends Mol. Med. 2020, 26, 296–310. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Zhu, T.; Liu, Y.; Zhang, N. Role of the CXCL13/CXCR5 Axis in Autoimmune Diseases. Front. Immunol. 2022, 13, 850998. [Google Scholar] [CrossRef] [PubMed]
- Moser, B. CXCR5, the Defining Marker for Follicular B Helper T (TFH) Cells. Front. Immunol. 2015, 6, 296. [Google Scholar] [CrossRef]
- Phares, T.W.; DiSano, K.D.; Stohlman, S.A.; Segal, B.M.; Bergmann, C.C. CXCL13 promotes isotype-switched B cell accumulation to the central nervous system during viral encephalomyelitis. Brain Behav. Immun. 2016, 54, 128–139. [Google Scholar] [CrossRef] [PubMed]
- DiSano, K.D.; Royce, D.B.; Gilli, F.; Pachner, A.R. Central Nervous System Inflammatory Aggregates in the Theiler’s Virus Model of Progressive Multiple Sclerosis. Front. Immunol. 2019, 10, 1821. [Google Scholar] [CrossRef]
- Magliozzi, R.; Columba-Cabezas, S.; Serafini, B.; Aloisi, F. Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J. Neuroimmunol. 2004, 148, 11–23. [Google Scholar] [CrossRef]
- Krumbholz, M.; Theil, D.; Cepok, S.; Hemmer, B.; Kivisäkk, P.; Ransohoff, R.M.; Hofbauer, M.; Farina, C.; Derfuss, T.; Hartle, C.; et al. Chemokines in multiple sclerosis: CXCL12 and CXCL13 up-regulation is differentially linked to CNS immune cell recruitment. Brain 2006, 129, 200–211. [Google Scholar] [CrossRef]
- Novakova, L.; Axelsson, M.; Malmeström, C.; Zetterberg, H.; Blennow, K.; Svenningsson, A.; Lycke, J. NFL and CXCL13 may reveal disease activity in clinically and radiologically stable MS. Mult. Scler. Relat. Disord. 2020, 46, 102463. [Google Scholar] [CrossRef]
- Pachner, A.R.; DiSano, K.; Royce, D.B.; Gilli, F. Clinical utility of a molecular signature in inflammatory demyelinating disease. Neurol. Neuroimmunol. Neuroinflamm. 2019, 6, e520. [Google Scholar] [CrossRef]
- Alvarez, E.; Piccio, L.; Mikesell, R.J.; Klawiter, E.C.; Parks, B.J.; Naismith, R.T.; Cross, A.H. CXCL13 is a biomarker of inflammation in multiple sclerosis, neuromyelitis optica, and other neurological conditions. Mult. Scler. 2013, 19, 1204–1208. [Google Scholar] [CrossRef]
- DiSano, K.D.; Gilli, F.; Pachner, A.R. Intrathecally produced CXCL13: A predictive biomarker in multiple sclerosis. Mult. Scler. J. Exp. Transl. Clin. 2020, 6, 2055217320981396. [Google Scholar] [CrossRef] [PubMed]
- Si, Z.; Hu, H. Identification of CXCL13 as an Immune-Related Biomarker Associated with Tumorigenesis and Prognosis in Cutaneous Melanoma Patients. Med. Sci. Monit. 2021, 27, e932052. [Google Scholar] [CrossRef] [PubMed]
- Remy, M.M.; Schöbi, N.; Kottanattu, L.; Pfister, S.; Duppenthaler, A.; Suter-Riniker, F. Cerebrospinal fluid CXCL13 as a diagnostic marker of neuroborreliosis in children: A retrospective case-control study. J. Neuroinflamm. 2017, 14, 173. [Google Scholar] [CrossRef]
- Pike, S.C.; Welsh, N.; Linzey, M.; Gilli, F. Theiler’s virus-induced demyelinating disease as an infectious model of progressive multiple sclerosis. Front. Mol. Neurosci. 2022, 15, 1019799. [Google Scholar] [CrossRef]
- Teunissen, C.; Menge, T.; Altintas, A.; Álvarez-Cermeño, J.C.; Bertolotto, A.; Berven, F.S.; Brundin, L.; Comabella, M.; Degn, M.; Deisenhammer, F.; et al. Consensus definitions and application guidelines for control groups in cerebrospinal fluid biomarker studies in multiple sclerosis. Mult. Scler. 2013, 19, 1802–1809. [Google Scholar] [CrossRef]
- Link, H.; Tibbling, G. Principles of albumin and IgG analyses in neurological disorders. III. Evaluation of IgG synthesis within the central nervous system in multiple sclerosis. Scand. J. Clin. Lab. Investig. 1977, 37, 397–401. [Google Scholar] [CrossRef]
- Krämer, J.; Bar-Or, A.; Turner, T.J.; Wiendl, H. Bruton tyrosine kinase inhibitors for multiple sclerosis. Nat. Rev. Neurol. 2023, 19, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Filippi, M.; Preziosa, P.; Meani, A.; Dalla Costa, G.; Mesaros, S.; Drulovic, J.; Ivanovic, J.; Rovira, A.; Tintorè, M.; Montalban, X.; et al. Performance of the 2017 and 2010 Revised McDonald Criteria in Predicting MS Diagnosis After a Clinically Isolated Syndrome: A MAGNIMS Study. Neurology 2022, 98, e1–e14. [Google Scholar] [CrossRef]
- Buron, M.D.; Chalmer, T.A.; Sellebjerg, F.; Barzinji, I.; Danny, B.; Christensen, J.R.; Christensen, M.K.; Hansen, V.; Illes, Z.; Jensen, H.B.; et al. Initial high-efficacy disease-modifying therapy in multiple sclerosis: A nationwide cohort study. Neurology 2020, 95, e1041–e1051. [Google Scholar] [CrossRef] [PubMed]
- Spelman, T.; Magyari, M.; Piehl, F.; Svenningsson, A.; Rasmussen, P.V.; Kant, M.; Sellebjerg, F.; Joensen, H.; Hillert, J.; Lycke, J. Treatment Escalation vs Immediate Initiation of Highly Effective Treatment for Patients With Relapsing-Remitting Multiple Sclerosis: Data From 2 Different National Strategies. JAMA Neurol. 2021, 78, 1197–1204. [Google Scholar] [CrossRef]
- Filippi, M.; Amato, M.P.; Centonze, D.; Gallo, P.; Gasperini, C.; Inglese, M.; Patti, F.; Pozzilli, C.; Preziosa, P.; Trojano, M. Early use of high-efficacy disease-modifying therapies makes the difference in people with multiple sclerosis: An expert opinion. J. Neurol. 2022, 269, 5382–5394. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, P.S.; Fox, R.J.; Comi, G. The window of opportunity for treatment of progressive multiple sclerosis. Curr. Opin. Neurol. 2020, 33, 262–270. [Google Scholar] [CrossRef] [PubMed]
- Giovannoni, G. Personalized medicine in multiple sclerosis. Neurodegener. Dis. Manag. 2017, 7, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Tableone: Create ‘Table 1’ to Describe Baseline Characteristics with or without Propensity Score Weights. 2022. Available online: https://CRAN.R-project.org/package=tableone (accessed on 1 September 2022).
ICXCL13 Low | ICXCL13 High | p-Value | ||
---|---|---|---|---|
n | 20 | 17 | ||
ICXCL13 (median [IQR]) | 5.99 [4.25, 10.42] | 67.07 [47.86, 83.76] | 0.003 | ** |
Serum available (%) | 6 (30.0) | 7 (41.2) | 0.512 | |
CSF CXCL13 (pg/mL) (median [IQR]) | 2.02 [0.78, 4.77] | 17.83 [12.50, 28.55] | <0.001 | *** |
Age (mean (SD)) | 41.89 (12.27) | 35.51 (10.51) | 0.101 | |
Sex = male (%) | 3 (15.0) | 3 (17.6) | >0.999 | |
Diagnosis (%) | ||||
CIS | 16 (80.0) | 17 (100.0) | ||
RIS | 4 (20.0) | 0 (0.0) | ||
Follow Up Years (median [IQR]) | 6.81 [5.38, 7.20] | 6.35 [5.56, 6.99] | 0.474 | |
Converted to CDMS (%) | 2 (10.0) | 14 (82.4) | <0.001 | *** |
OCB Positive (%) | 13 (65.0) | 16 (94.1) | 0.048 | * |
One or more clinical attacks (%) | 1 (5.0) | 9 (52.9) | 0.002 | ** |
Number of MRIs during follow-up (median [IQR]) | 3.00 [0.75, 4.25] | 4.00 [3.00, 7.00] | 0.034 | * |
Number of MRIs with new lesions (%) | ||||
None | 14 (70.0) | 4 (23.5) | ||
One | 1 (5.0) | 5 (29.4) | ||
More than one | 0 (0.0) | 8 (47.1) | ||
No MRIs Performed | 5 (25.0) | 0 (0.0) | ||
Number of New or Enhancing Lesions (mean (SD)) | 0.07 (0.26) | 1.82 (1.78) | 0.001 | ** |
Percent of MRIs with new lesions (%) (median [IQR]) | 0.0 [0.0, 0.0] | 33.0 [17.0, 50.0] | <0.001 | *** |
Treatment (%) | ||||
Dimethyl fumarate, DF | 2 (10.0) | 0 (0.0) | ||
Fingolimod, FIN | 0 (0.0) | 2 (11.8) | ||
Glatiramer acetate, GA | 3 (15.0) | 0 (0.0) | ||
GA + IFN | 0 (0.0) | 1 (5.9) | ||
Interferon, IFN | 6 (30.0) | 5 (29.4) | ||
Natalizumab, NAT | 1 (5.0) | 2 (11.8) | ||
Ocrelizumab, OCR | 0 (0.0) | 2 (11.8) | ||
Ozanimod, OZ | 1 (5.0) | 0 (0.0) |
Outcome | Sensitivity | Specificity | TP | FP | TN | FN |
---|---|---|---|---|---|---|
Converted to CDMS | 0.86 | 0.88 | 14 | 3 | 18 | 2 |
One or more new lesions | 0.83 | 0.93 | 13 | 4 | 19 | 1 |
One or more clinical attacks | 0.70 | 0.90 | 9 | 8 | 19 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pike, S.C.; Gilli, F.; Pachner, A.R. The CXCL13 Index as a Predictive Biomarker for Activity in Clinically Isolated Syndrome. Int. J. Mol. Sci. 2023, 24, 11050. https://doi.org/10.3390/ijms241311050
Pike SC, Gilli F, Pachner AR. The CXCL13 Index as a Predictive Biomarker for Activity in Clinically Isolated Syndrome. International Journal of Molecular Sciences. 2023; 24(13):11050. https://doi.org/10.3390/ijms241311050
Chicago/Turabian StylePike, Steven C., Francesca Gilli, and Andrew R. Pachner. 2023. "The CXCL13 Index as a Predictive Biomarker for Activity in Clinically Isolated Syndrome" International Journal of Molecular Sciences 24, no. 13: 11050. https://doi.org/10.3390/ijms241311050
APA StylePike, S. C., Gilli, F., & Pachner, A. R. (2023). The CXCL13 Index as a Predictive Biomarker for Activity in Clinically Isolated Syndrome. International Journal of Molecular Sciences, 24(13), 11050. https://doi.org/10.3390/ijms241311050