The Human-Restricted Isoform of the α7 nAChR, CHRFAM7A: A Double-Edged Sword in Neurological and Inflammatory Disorders
Abstract
:1. Introduction
2. Structure of Neuronal Nicotinic Receptors (nAChRs)
2.1. The α7 nAChR
2.2. The dupα7 Receptor
2.3. The Heteromeric α7/dupα7 Receptor
3. CHRNA7 and CHRFAM7A Role in Diseases
3.1. Schizophrenia and Neuropsychiatric Disorders
3.2. Epilepsy and Neurodevelopmental Disorders
3.3. Inflammatory Diseases: The “Cholinergic Anti-Inflammatory Pathway”
Other Roles for CHRFAM7A
3.4. Neurodegenerative Diseases
3.5. Cancer
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gault, J.; Robinson, M.; Berger, R.; Drebing, C.; Logel, J.; Hopkins, J.; Moore, T.; Jacobs, S.; Meriwether, J.; Choi, M.J.; et al. Genomic organization and partial duplication of the human alpha7 neuronal nicotinic acetylcholine receptor gene (CHRNA7). Genomics 1998, 52, 173–185. [Google Scholar] [CrossRef] [PubMed]
- Riley, B.; Williamson, M.; Collier, D.; Wilkie, H.; Makoff, A. A 3-Mb map of a large Segmental duplication overlapping the alpha7-nicotinic acetylcholine receptor gene (CHRNA7) at human 15q13-q14. Genomics 2002, 79, 197–209. [Google Scholar] [CrossRef] [PubMed]
- O’Bleness, M.; Searles, V.B.; Varki, A.; Gagneux, P.; Sikela, J.M. Evolution of genetic and genomic features unique to the human lineage. Nat. Rev. Genet. 2012, 13, 853–866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Locke, D.P.; Archidiacono, N.; Misceo, D.; Cardone, M.F.; Deschamps, S.; Roe, B.; Rocchi, M.; Eichler, E.E. Refinement of a chimpanzee pericentric inversion breakpoint to a segmental duplication cluster. Genome Biol. 2003, 4, R50. [Google Scholar] [CrossRef] [Green Version]
- Locke, D.P.; Jiang, Z.; Pertz, L.M.; Misceo, D.; Archidiacono, N.; Eichler, E.E. Molecular evolution of the human chromosome 15 pericentromeric region. Cytogenet. Genome Res. 2005, 108, 73–82. [Google Scholar] [CrossRef]
- Flomen, R.H.; Davies, A.F.; Di Forti, M.; La Cascia, C.; Mackie-Ogilvie, C.; Murray, R.; Makoff, A.J. The copy number variant involving part of the alpha7 nicotinic receptor gene contains a polymorphic inversion. Eur. J. Hum. Genet. 2008, 16, 1364–1371. [Google Scholar] [CrossRef]
- Szafranski, P.; Schaaf, C.P.; Person, R.E.; Gibson, I.B.; Xia, Z.; Mahadevan, S.; Wiszniewska, J.; Bacino, C.A.; Lalani, S.; Potocki, L.; et al. Structures and molecular mechanisms for common 15q13.3 microduplications involving CHRNA7: Benign or pathological? Hum. Mutat. 2010, 31, 840–850. [Google Scholar] [CrossRef] [Green Version]
- Sinkus, M.L.; Graw, S.; Freedman, R.; Ross, R.G.; Lester, H.A.; Leonard, S. The human CHRNA7 and CHRFAM7A genes: A review of the genetics, regulation, and function. Neuropharmacology 2015, 96, 274–288. [Google Scholar] [CrossRef] [Green Version]
- Sinkus, M.L.; Lee, M.J.; Gault, J.; Logel, J.; Short, M.; Freedman, R.; Christian, S.L.; Lyon, J.; Leonard, S. A 2-base pair deletion polymorphism in the partial duplication of the alpha7 nicotinic acetylcholine gene (CHRFAM7A) on chromosome 15q14 is associated with schizophrenia. Brain Res. 2009, 1291, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Taske, N.L.; Williamson, M.P.; Makoff, A.; Bate, L.; Curtis, D.; Kerr, M.; Kjeldsen, M.J.; Pang, K.A.; Sundqvist, A.; Friis, M.L.; et al. Evaluation of the positional candidate gene CHRNA7 at the juvenile myoclonic epilepsy locus (EJM2) on chromosome 15q13-14. Epilepsy Res 2002, 49, 157–172. [Google Scholar] [CrossRef]
- Costantini, T.W.; Chan, T.W.; Cohen, O.; Langness, S.; Treadwell, S.; Williams, E.; Eliceiri, B.P.; Baird, A. Uniquely human CHRFAM7A gene increases the hematopoietic stem cell reservoir in mice and amplifies their inflammatory response. Proc. Natl. Acad. Sci. USA 2019, 116, 7932–7940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szigeti, K.; Ihnatovych, I.; Birkaya, B.; Chen, Z.; Ouf, A.; Indurthi, D.C.; Bard, J.E.; Kann, J.; Adams, A.; Chaves, L.; et al. CHRFAM7A: A human specific fusion gene, accounts for the translational gap for cholinergic strategies in Alzheimer’s disease. EBioMedicine 2020, 59, 102892. [Google Scholar] [CrossRef] [PubMed]
- Lin, M.; Huang, W.; Kabbani, N.; Theiss, M.M.; Hamilton, J.F.; Ecklund, J.M.; Conley, Y.P.; Vodovotz, Y.; Brienza, D.; Wagner, A.K.; et al. Effect of CHRFAM7A Δ2bp gene variant on secondary inflammation after spinal cord injury. PLoS ONE 2021, 16, e0251110. [Google Scholar] [CrossRef] [PubMed]
- Courties, A.; Boussier, J.; Hadjadj, J.; Yatim, N.; Barnabei, L.; Péré, H.; Veyer, D.; Kernéis, S.; Carlier, N.; Pène, F.; et al. Regulation of the acetylcholine/α7nAChR anti-inflammatory pathway in COVID-19 patients. Sci. Rep. 2021, 11, 11886. [Google Scholar] [CrossRef]
- Thompson, A.J.; Lester, H.A.; Lummis, S.C. The structural basis of function in Cys-loop receptors. Q. Rev. Biophys. 2010, 43, 449–499. [Google Scholar] [CrossRef] [Green Version]
- Fasoli, F.; Gotti, C. Structure of neuronal nicotinic receptors. Curr. Top. Behav. Neurosci. 2015, 23, 1–17. [Google Scholar] [CrossRef]
- Schaaf, C.P. Nicotinic acetylcholine receptors in human genetic disease. Genet. Med. 2014, 16, 649–656. [Google Scholar] [CrossRef] [Green Version]
- Shytle, R.D.; Mori, T.; Townsend, K.; Vendrame, M.; Sun, N.; Zeng, J.; Ehrhart, J.; Silver, A.A.; Sanberg, P.R.; Tan, J. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. J. Neurochem. 2004, 89, 337–343. [Google Scholar] [CrossRef]
- Gamage, R.; Wagnon, I.; Rossetti, I.; Childs, R.; Niedermayer, G.; Chesworth, R.; Gyengesi, E. Cholinergic modulation of glial function during aging and chronic neuroinflammation. Front. Cell. Neurosci. 2020, 14, 577912. [Google Scholar] [CrossRef]
- Patel, H.; McIntire, J.; Ryan, S.; Dunah, A.; Loring, R. Anti-inflammatory effects of astroglial α7 nicotinic acetylcholine receptors are mediated by inhibition of the NF-κB pathway and activation of the Nrf2 pathway. J. Neuroinflamm. 2017, 14, 192. [Google Scholar] [CrossRef]
- Song, P.; Spindel, E.R. Basic and clinical aspects of non-neuronal acetylcholine: Expression of non-neuronal acetylcholine in lung cancer provides a new target for cancer therapy. J. Pharmacol. Sci. 2008, 106, 180–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Son, J.H.; Meizel, S. Evidence suggesting that the mouse sperm acrosome reaction initiated by the zona pellucida involves an alpha7 nicotinic acetylcholine receptor. Biol. Reprod. 2003, 68, 1348–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summers, A.E.; Whelan, C.J.; Parsons, M.E. Nicotinic acetylcholine receptor subunits and receptor activity in the epithelial cell line HT29. Life Sci. 2003, 72, 2091–2094. [Google Scholar] [CrossRef]
- Saeed, R.W.; Varma, S.; Peng-Nemeroff, T.; Sherry, B.; Balakhaneh, D.; Huston, J.; Tracey, K.J.; Al-Abed, Y.; Metz, C.N. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. J. Exp. Med. 2005, 201, 1113–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roman, J.; Ritzenthaler, J.D.; Gil-Acosta, A.; Rivera, H.N.; Roser-Page, S. Nicotine and fibronectin expression in lung fibroblasts: Implications for tobacco-related lung tissue remodeling. FASEB J. 2004, 18, 1436–1438. [Google Scholar] [CrossRef] [PubMed]
- Olofsson, P.S.; Katz, D.A.; Rosas-Ballina, M.; Levine, Y.A.; Ochani, M.; Valdés-Ferrer, S.I.; Pavlov, V.A.; Tracey, K.J.; Chavan, S.S. α7 nicotinic acetylcholine receptor (α7nAChR) expression in bone marrow-derived non-T cells is required for the inflammatory reflex. Mol. Med. 2012, 18, 539–543. [Google Scholar] [CrossRef]
- Courties, A.; Do, A.; Leite, S.; Legris, M.; Sudre, L.; Pigenet, A.; Petit, J.; Nourissat, G.; Cambon-Binder, A.; Maskos, U.; et al. The role of the non-neuronal cholinergic system in inflammation and degradation processes in osteoarthritis. Arthritis Rheumatol. 2020, 72, 2072–2082. [Google Scholar] [CrossRef]
- Skok, M.; Grailhe, R.; Agenes, F.; Changeux, J.P. The role of nicotinic acetylcholine receptors in lymphocyte development. J. Neuroimmunol. 2006, 171, 86–98. [Google Scholar] [CrossRef]
- Skok, M.; Grailhe, R.; Changeux, J.P. Nicotinic receptors regulate B lymphocyte activation and immune response. Eur. J. Pharmacol. 2005, 517, 246–251. [Google Scholar] [CrossRef]
- de Jonge, W.J.; Ulloa, L. The alpha7 nicotinic acetylcholine receptor as a pharmacological target for inflammation. Br. J. Pharmacol. 2007, 151, 915–929. [Google Scholar] [CrossRef] [Green Version]
- Benfante, R.; Di Lascio, S.; Cardani, S.; Fornasari, D. Acetylcholinesterase inhibitors targeting the cholinergic anti-inflammatory pathway: A new therapeutic perspective in aging-related disorders. Aging Clin. Exp. Res. 2021, 33, 823–834. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yu, M.; Ochani, M.; Amella, C.A.; Tanovic, M.; Susarla, S.; Li, J.H.; Yang, H.; Ulloa, L.; Al-Abed, Y.; et al. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 2003, 421, 384–388. [Google Scholar] [CrossRef] [PubMed]
- Hoover, D.B. Cholinergic modulation of the immune system presents new approaches for treating inflammation. Pharmacol. Ther. 2017, 179, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Leonard, S.; Gault, J.; Hopkins, J.; Logel, J.; Vianzon, R.; Short, M.; Drebing, C.; Berger, R.; Venn, D.; Sirota, P.; et al. Association of promoter variants in the alpha7 nicotinic acetylcholine receptor subunit gene with an inhibitory deficit found in schizophrenia. Arch. Gen. Psychiatry 2002, 59, 1085–1096. [Google Scholar] [CrossRef] [Green Version]
- Bacchelli, E.; Battaglia, A.; Cameli, C.; Lomartire, S.; Tancredi, R.; Thomson, S.; Sutcliffe, J.S.; Maestrini, E. Analysis of CHRNA7 rare variants in autism spectrum disorder susceptibility. Am. J. Med. Genet. A 2015, 167A, 715–723. [Google Scholar] [CrossRef]
- Damiano, J.A.; Mullen, S.A.; Hildebrand, M.S.; Bellows, S.T.; Lawrence, K.M.; Arsov, T.; Dibbens, L.; Major, H.; Dahl, H.H.; Mefford, H.C.; et al. Evaluation of multiple putative risk alleles within the 15q13.3 region for genetic generalized epilepsy. Epilepsy Res. 2015, 117, 70–73. [Google Scholar] [CrossRef]
- Masurel-Paulet, A.; Andrieux, J.; Callier, P.; Cuisset, J.M.; Le Caignec, C.; Holder, M.; Thauvin-Robinet, C.; Doray, B.; Flori, E.; Alex-Cordier, M.P.; et al. Delineation of 15q13.3 microdeletions. Clin. Genet. 2010, 78, 149–161. [Google Scholar] [CrossRef]
- Williams, N.M.; Franke, B.; Mick, E.; Anney, R.J.; Freitag, C.M.; Gill, M.; Thapar, A.; O’Donovan, M.C.; Owen, M.J.; Holmans, P.; et al. Genome-wide analysis of copy number variants in attention deficit hyperactivity disorder: The role of rare variants and duplications at 15q13.3. Am. J. Psychiatry 2012, 169, 195–204. [Google Scholar] [CrossRef] [Green Version]
- Deutsch, S.I.; Burket, J.A.; Benson, A.D. Targeting the α7 nicotinic acetylcholine receptor to prevent progressive dementia and improve cognition in adults with Down’s syndrome. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 54, 131–139. [Google Scholar] [CrossRef]
- Quik, M.; Zhang, D.; McGregor, M.; Bordia, T. Alpha7 nicotinic receptors as therapeutic targets for Parkinson’s disease. Biochem. Pharmacol. 2015, 97, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Ma, K.G.; Qian, Y.H. Alpha 7 nicotinic acetylcholine receptor and its effects on Alzheimer’s disease. Neuropeptides 2019, 73, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Tropea, M.R.; Li Puma, D.D.; Melone, M.; Gulisano, W.; Arancio, O.; Grassi, C.; Conti, F.; Puzzo, D. Genetic deletion of α7 nicotinic acetylcholine receptors induces an age-dependent Alzheimer’s disease-like pathology. Prog. Neurobiol. 2021, 206, 102154. [Google Scholar] [CrossRef] [PubMed]
- Mucchietto, V.; Fasoli, F.; Pucci, S.; Moretti, M.; Benfante, R.; Maroli, A.; Di Lascio, S.; Bolchi, C.; Pallavicini, M.; Dowell, C.; et al. α9- and α7-containing receptors mediate the pro-proliferative effects of nicotine in the A549 adenocarcinoma cell line. Br. J. Pharmacol. 2018, 175, 1957–1972. [Google Scholar] [CrossRef]
- Pucci, S.; Fasoli, F.; Moretti, M.; Benfante, R.; Di Lascio, S.; Viani, P.; Daga, A.; Gordon, T.J.; McIntosh, M.; Zoli, M.; et al. Choline and nicotine increase glioblastoma cell proliferation by binding and activating α7- and α9- containing nicotinic receptors. Pharmacol. Res. 2021, 163, 105336. [Google Scholar] [CrossRef] [PubMed]
- Bordas, A.; Cedillo, J.L.; Arnalich, F.; Esteban-Rodriguez, I.; Guerra-Pastrián, L.; de Castro, J.; Martín-Sánchez, C.; Atienza, G.; Fernández-Capitan, C.; Rios, J.J.; et al. Expression patterns for nicotinic acetylcholine receptor subunit genes in smoking-related lung cancers. Oncotarget 2017, 8, 67878–67890. [Google Scholar] [CrossRef] [Green Version]
- Hajiasgharzadeh, K.; Somi, M.H.; Sadigh-Eteghad, S.; Mokhtarzadeh, A.; Shanehbandi, D.; Mansoori, B.; Mohammadi, A.; Doustvandi, M.A.; Baradaran, B. The dual role of alpha7 nicotinic acetylcholine receptor in inflammation-associated gastrointestinal cancers. Heliyon 2020, 6, e03611. [Google Scholar] [CrossRef]
- Vieira-Alves, I.; Coimbra-Campos, L.M.C.; Sancho, M.; da Silva, R.F.; Cortes, S.F.; Lemos, V.S. Role of the α7 Nicotinic Acetylcholine Receptor in the Pathophysiology of Atherosclerosis. Front. Physiol. 2020, 11, 621769. [Google Scholar] [CrossRef]
- Zoli, M.; Pucci, S.; Vilella, A.; Gotti, C. Neuronal and extraneuronal nicotinic acetylcholine receptors. Curr. Neuropharmacol. 2018, 16, 338–349. [Google Scholar] [CrossRef]
- Maroli, A.; Di Lascio, S.; Drufuca, L.; Cardani, S.; Setten, E.; Locati, M.; Fornasari, D.; Benfante, R. Effect of donepezil on the expression and responsiveness to LPS of CHRNA7 and CHRFAM7A in macrophages: A possible link to the cholinergic anti-inflammatory pathway. J. Neuroimmunol. 2019, 332, 155–166. [Google Scholar] [CrossRef]
- de Lucas-Cerrillo, A.M.; Maldifassi, M.C.; Arnalich, F.; Renart, J.; Atienza, G.; Serantes, R.; Cruces, J.; Sánchez-Pacheco, A.; Andrés-Mateos, E.; Montiel, C. Function of partially duplicated human α77 nicotinic receptor subunit CHRFAM7A gene: Potential implications for the cholinergic anti-inflammatory response. J. Biol. Chem. 2011, 286, 594–606. [Google Scholar] [CrossRef] [Green Version]
- Araud, T.; Graw, S.; Berger, R.; Lee, M.; Neveu, E.; Bertrand, D.; Leonard, S. The chimeric gene CHRFAM7A, a partial duplication of the CHRNA7 gene, is a dominant negative regulator of α7*nAChR function. Biochem. Pharmacol. 2011, 82, 904–914. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Xiao, C.; Indersmitten, T.; Freedman, R.; Leonard, S.; Lester, H.A. The duplicated α7 subunits assemble and form functional nicotinic receptors with the full-length α7. J. Biol. Chem. 2014, 289, 26451–26463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benfante, R.; Antonini, R.A.; De Pizzol, M.; Gotti, C.; Clementi, F.; Locati, M.; Fornasari, D. Expression of the α7 nAChR subunit duplicate form (CHRFAM7A) is down-regulated in the monocytic cell line THP-1 on treatment with LPS. J. Neuroimmunol. 2011, 230, 74–84. [Google Scholar] [CrossRef] [PubMed]
- Costantini, T.W.; Dang, X.; Yurchyshyna, M.V.; Coimbra, R.; Eliceiri, B.P.; Baird, A. A human-specific α7-nicotinic acetylcholine receptor gene in human leukocytes: Identification, regulation and the consequences of CHRFAM7A expression. Mol. Med. 2015, 21, 323–336. [Google Scholar] [CrossRef]
- Kunii, Y.; Zhang, W.; Xu, Q.; Hyde, T.M.; McFadden, W.; Shin, J.H.; Deep-Soboslay, A.; Ye, T.; Li, C.; Kleinman, J.E.; et al. CHRNA7 and CHRFAM7A mRNAs: Co-localized and their expression levels altered in the postmortem dorsolateral prefrontal cortex in major psychiatric disorders. Am. J. Psychiatry 2015, 172, 1122–1130. [Google Scholar] [CrossRef]
- Dang, X.; Eliceiri, B.P.; Baird, A.; Costantini, T.W. CHRFAM7A: A human-specific α7-nicotinic acetylcholine receptor gene shows differential responsiveness of human intestinal epithelial cells to LPS. FASEB J. 2015, 29, 2292–2302. [Google Scholar] [CrossRef] [Green Version]
- Villiger, Y.; Szanto, I.; Jaconi, S.; Blanchet, C.; Buisson, B.; Krause, K.H.; Bertrand, D.; Romand, J.A. Expression of an alpha7 duplicate nicotinic acetylcholine receptor-related protein in human leukocytes. J. Neuroimmunol. 2002, 126, 86–98. [Google Scholar] [CrossRef]
- Martín-Sánchez, C.; Alés, E.; Balseiro-Gómez, S.; Atienza, G.; Arnalich, F.; Bordas, A.; Cedillo, J.L.; Extremera, M.; Chávez-Reyes, A.; Montiel, C. The human-specific duplicated α7 gene inhibits the ancestral α7, negatively regulating nicotinic acetylcholine receptor-mediated transmitter release. J. Biol. Chem. 2021, 296, 100341. [Google Scholar] [CrossRef]
- De Luca, V.; Likhodi, O.; Van Tol, H.H.; Kennedy, J.L.; Wong, A.H. Regulation of alpha7-nicotinic receptor subunit and alpha7-like gene expression in the prefrontal cortex of patients with bipolar disorder and schizophrenia. Acta Psychiatr. Scand. 2006, 114, 211–215. [Google Scholar] [CrossRef]
- Yasui, D.H.; Scoles, H.A.; Horike, S.; Meguro-Horike, M.; Dunaway, K.W.; Schroeder, D.I.; Lasalle, J.M. 15q11.2-13.3 chromatin analysis reveals epigenetic regulation of CHRNA7 with deficiencies in Rett and autism brain. Hum. Mol. Genet. 2011, 20, 4311–4323. [Google Scholar] [CrossRef]
- Ramos, F.M.; Delgado-Vélez, M.; Ortiz, Á.; Báez-Pagán, C.A.; Quesada, O.; Lasalde-Dominicci, J.A. Expression of CHRFAM7A and CHRNA7 in neuronal cells and postmortem brain of HIV-infected patients: Considerations for HIV-associated neurocognitive disorder. J. Neurovirol. 2016, 22, 327–335. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Maanen, M.A.; Stoof, S.P.; van der Zanden, E.P.; de Jonge, W.J.; Janssen, R.A.; Fischer, D.F.; Vandeghinste, N.; Brys, R.; Vervoordeldonk, M.J.; Tak, P.P. The alpha7 nicotinic acetylcholine receptor on fibroblast-like synoviocytes and in synovial tissue from rheumatoid arthritis patients: A possible role for a key neurotransmitter in synovial inflammation. Arthritis Rheum. 2009, 60, 1272–1281. [Google Scholar] [CrossRef] [PubMed]
- Lasala, M.; Corradi, J.; Bruzzone, A.; Esandi, M.D.C.; Bouzat, C. A human-specific, truncated alpha7 nicotinic receptor subunit assembles with full-length alpha7 and forms functional receptors with different stoichiometries. J. Biol. Chem. 2018, 293, 10707–10717. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maldifassi, M.C.; Martín-Sánchez, C.; Atienza, G.; Cedillo, J.L.; Arnalich, F.; Bordas, A.; Zafra, F.; Giménez, C.; Extremera, M.; Renart, J.; et al. Interaction of the α7-nicotinic subunit with its human-specific duplicated dupα7 isoform in mammalian cells: Relevance in human inflammatory responses. J. Biol. Chem. 2018, 293, 13874–13888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.Y.; Sine, S.M. Principal pathway coupling agonist binding to channel gating in nicotinic receptors. Nature 2005, 438, 243–247. [Google Scholar] [CrossRef] [PubMed]
- Bouzat, C.; Gumilar, F.; Spitzmaul, G.; Wang, H.L.; Rayes, D.; Hansen, S.B.; Taylor, P.; Sine, S.M. Coupling of agonist binding to channel gating in an ACh-binding protein linked to an ion channel. Nature 2004, 430, 896–900. [Google Scholar] [CrossRef]
- Cameli, C.; Bacchelli, E.; De Paola, M.; Giucastro, G.; Cifiello, S.; Collo, G.; Cainazzo, M.M.; Pini, L.A.; Maestrini, E.; Zoli, M. Genetic variation in CHRNA7 and CHRFAM7A is associated with nicotine dependence and response to varenicline treatment. Eur. J. Hum. Genet. 2018, 26, 1824–1831. [Google Scholar] [CrossRef]
- Andersen, N.; Corradi, J.; Sine, S.M.; Bouzat, C. Stoichiometry for activation of neuronal α7 nicotinic receptors. Proc. Natl. Acad. Sci. USA 2013, 110, 20819–20824. [Google Scholar] [CrossRef] [Green Version]
- Liu, D.; de Souza, J.V.; Ahmad, A.; Bronowska, A.K. Structure, dynamics, and ligand recognition of human-specific CHRFAM7A (Dupα7) nicotinic receptor linked to neuropsychiatric disorders. Int. J. Mol. Sci. 2021, 22, 5466. [Google Scholar] [CrossRef]
- Chan, T.; Williams, E.; Cohen, O.; Eliceiri, B.P.; Baird, A.; Costantini, T.W. CHRFAM7A alters binding to the neuronal alpha-7 nicotinic acetylcholine receptor. Neurosci. Lett. 2019, 690, 126–131. [Google Scholar] [CrossRef]
- Jiang, Y.; Yuan, H.; Huang, L.; Hou, X.; Zhou, R.; Dang, X. Global proteomic profiling of the uniquely human CHRFAM7A gene in transgenic mouse brain. Gene 2019, 714, 143996. [Google Scholar] [CrossRef] [PubMed]
- Stefansson, H.; Rujescu, D.; Cichon, S.; Pietiläinen, O.P.; Ingason, A.; Steinberg, S.; Fossdal, R.; Sigurdsson, E.; Sigmundsson, T.; Buizer-Voskamp, J.E.; et al. Large recurrent microdeletions associated with schizophrenia. Nature 2008, 455, 232–236. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.L.; O’Donovan, M.C.; Gurling, H.; Kirov, G.K.; Blackwood, D.H.R.; Corvin, A.; Craddock, N.J.; Gill, M.; Hultman, C.M.; Lichtenstein, P.; et al. Rare chromosomal deletions and duplications increase risk of schizophrenia. Nature 2008, 455, 237–241. [Google Scholar] [CrossRef] [Green Version]
- Leonard, S.; Freedman, R. Genetics of chromosome 15q13-q14 in schizophrenia. Biol. Psychiatry 2006, 60, 115–122. [Google Scholar] [CrossRef] [PubMed]
- Elmslie, F.V.; Rees, M.; Williamson, M.P.; Kerr, M.; Kjeldsen, M.J.; Pang, K.A.; Sundqvist, A.; Friis, M.L.; Chadwick, D.; Richens, A.; et al. Genetic mapping of a major susceptibility locus for juvenile myoclonic epilepsy on chromosome 15q. Hum. Mol. Genet. 1997, 6, 1329–1334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neubauer, B.A.; Fiedler, B.; Himmelein, B.; Kämpfer, F.; Lässker, U.; Schwabe, G.; Spanier, I.; Tams, D.; Bretscher, C.; Moldenhauer, K.; et al. Centrotemporal spikes in families with rolandic epilepsy: Linkage to chromosome 15q14. Neurology 1998, 51, 1608–1612. [Google Scholar] [CrossRef]
- Joo, E.J.; Lee, K.Y.; Kim, H.S.; Kim, S.H.; Ahn, Y.M.; Kim, Y.S. Genetic association study of the alpha 7 nicotinic receptor (CHRNA7) with the development of schizophrenia and bipolar disorder in korean population. Psychiatry Investig. 2010, 7, 196–201. [Google Scholar] [CrossRef] [Green Version]
- Lai, I.C.; Hong, C.J.; Tsai, S.J. Association study of nicotinic-receptor variants and major depressive disorder. J. Affect. Disord. 2001, 66, 79–82. [Google Scholar] [CrossRef]
- Stassen, H.H.; Bridler, R.; Hägele, S.; Hergersberg, M.; Mehmann, B.; Schinzel, A.; Weisbrod, M.; Scharfetter, C. Schizophrenia and smoking: Evidence for a common neurobiological basis? Am. J. Med. Genet. 2000, 96, 173–177. [Google Scholar] [CrossRef]
- Cooper, G.M.; Coe, B.P.; Girirajan, S.; Rosenfeld, J.A.; Vu, T.H.; Baker, C.; Williams, C.; Stalker, H.; Hamid, R.; Hannig, V.; et al. A copy number variation morbidity map of developmental delay. Nat. Genet. 2011, 43, 838–846. [Google Scholar] [CrossRef] [Green Version]
- Kaminsky, E.B.; Kaul, V.; Paschall, J.; Church, D.M.; Bunke, B.; Kunig, D.; Moreno-De-Luca, D.; Moreno-De-Luca, A.; Mulle, J.G.; Warren, S.T.; et al. An evidence-based approach to establish the functional and clinical significance of copy number variants in intellectual and developmental disabilities. Genet. Med. 2011, 13, 777–784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marshall, C.R.; Noor, A.; Vincent, J.B.; Lionel, A.C.; Feuk, L.; Skaug, J.; Shago, M.; Moessner, R.; Pinto, D.; Ren, Y.; et al. Structural variation of chromosomes in autism spectrum disorder. Am. J. Hum. Genet. 2008, 82, 477–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Curtis, L.; Blouin, J.L.; Radhakrishna, U.; Gehrig, C.; Lasseter, V.K.; Wolyniec, P.; Nestadt, G.; Dombroski, B.; Kazazian, H.H.; Pulver, A.E.; et al. No evidence for linkage between schizophrenia and markers at chromosome 15q13-14. Am. J. Med. Genet. 1999, 88, 109–112. [Google Scholar] [CrossRef]
- Iwata, Y.; Nakajima, M.; Yamada, K.; Nakamura, K.; Sekine, Y.; Tsuchiya, K.J.; Sugihara, G.; Matsuzaki, H.; Suda, S.; Suzuki, K.; et al. Linkage disequilibrium analysis of the CHRNA7 gene and its partially duplicated region in schizophrenia. Neurosci. Res. 2007, 57, 194–202. [Google Scholar] [CrossRef] [PubMed]
- Neves-Pereira, M.; Bassett, A.S.; Honer, W.G.; Lang, D.; King, N.A.; Kennedy, J.L. No evidence for linkage of the CHRNA7 gene region in Canadian schizophrenia families. Am. J. Med. Genet. 1998, 81, 361–363. [Google Scholar] [CrossRef]
- Sanders, A.R.; Duan, J.; Levinson, D.F.; Shi, J.; He, D.; Hou, C.; Burrell, G.J.; Rice, J.P.; Nertney, D.A.; Olincy, A.; et al. No significant association of 14 candidate genes with schizophrenia in a large European ancestry sample: Implications for psychiatric genetics. Am. J. Psychiatry 2008, 165, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Tsuang, D.W.; Skol, A.D.; Faraone, S.V.; Bingham, S.; Young, K.A.; Prabhudesai, S.; Haverstock, S.L.; Mena, F.; Menon, A.S.; Bisset, D.; et al. Examination of genetic linkage of chromosome 15 to schizophrenia in a large Veterans Affairs Cooperative Study sample. Am. J. Med. Genet. 2001, 105, 662–668. [Google Scholar] [CrossRef]
- Tsuang, M.T.; Stone, W.S.; Faraone, S.V. Schizophrenia: A review of genetic studies. Harv. Rev. Psychiatry 1999, 7, 185–207. [Google Scholar] [CrossRef]
- Freedman, R.; Coon, H.; Myles-Worsley, M.; Orr-Urtreger, A.; Olincy, A.; Davis, A.; Polymeropoulos, M.; Holik, J.; Hopkins, J.; Hoff, M.; et al. Linkage of a neurophysiological deficit in schizophrenia to a chromosome 15 locus. Proc. Natl. Acad. Sci. USA 1997, 94, 587–592. [Google Scholar] [CrossRef] [Green Version]
- Freedman, R.; Olincy, A.; Ross, R.G.; Waldo, M.C.; Stevens, K.E.; Adler, L.E.; Leonard, S. The genetics of sensory gating deficits in schizophrenia. Curr. Psychiatry Rep. 2003, 5, 155–161. [Google Scholar] [CrossRef]
- Leonard, S.; Adler, L.E.; Benhammou, K.; Berger, R.; Breese, C.R.; Drebing, C.; Gault, J.; Lee, M.J.; Logel, J.; Olincy, A.; et al. Smoking and mental illness. Pharmacol. Biochem. Behav. 2001, 70, 561–570. [Google Scholar] [CrossRef]
- Glassman, A.H. Cigarette smoking: Implications for psychiatric illness. Am. J. Psychiatry 1993, 150, 546–553. [Google Scholar] [CrossRef] [PubMed]
- Stephens, S.H.; Franks, A.; Berger, R.; Palionyte, M.; Fingerlin, T.E.; Wagner, B.; Logel, J.; Olincy, A.; Ross, R.G.; Freedman, R.; et al. Multiple genes in the 15q13-q14 chromosomal region are associated with schizophrenia. Psychiatr. Genet. 2012, 22, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leonard, S.; Mexal, S.; Freedman, R. Smoking, genetics and schizophrenia: Evidence for self medication. J. Dual. Diagn. 2007, 3, 43–59. [Google Scholar] [CrossRef] [Green Version]
- Koike, K.; Hashimoto, K.; Takai, N.; Shimizu, E.; Komatsu, N.; Watanabe, H.; Nakazato, M.; Okamura, N.; Stevens, K.E.; Freedman, R.; et al. Tropisetron improves deficits in auditory P50 suppression in schizophrenia. Schizophr. Res. 2005, 76, 67–72. [Google Scholar] [CrossRef]
- Toyohara, J.; Hashimoto, K. α7 Nicotinic receptor agonists: Potential therapeutic drugs for treatment of cognitive impairments in schizophrenia and alzheimer’s disease. Open Med. Chem. J. 2010, 4, 37–56. [Google Scholar] [CrossRef] [Green Version]
- Mackowick, K.M.; Barr, M.S.; Wing, V.C.; Rabin, R.A.; Ouellet-Plamondon, C.; George, T.P. Neurocognitive endophenotypes in schizophrenia: Modulation by nicotinic receptor systems. Prog. Neuropsychopharmacol. Biol. Psychiatry 2014, 52, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Parikh, V.; Kutlu, M.G.; Gould, T.J. nAChR dysfunction as a common substrate for schizophrenia and comorbid nicotine addiction: Current trends and perspectives. Schizophr. Res. 2016, 171, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Severance, E.G.; Dickerson, F.B.; Stallings, C.R.; Origoni, A.E.; Sullens, A.; Monson, E.T.; Yolken, R.H. Differentiating nicotine- versus schizophrenia-associated decreases of the alpha7 nicotinic acetylcholine receptor transcript, CHRFAM7A, in peripheral blood lymphocytes. J. Neural Transm. 2009, 116, 213–220. [Google Scholar] [CrossRef]
- Kalmady, S.V.; Agrawal, R.; Venugopal, D.; Shivakumar, V.; Amaresha, A.C.; Agarwal, S.M.; Subbanna, M.; Rajasekaran, A.; Narayanaswamy, J.C.; Debnath, M.; et al. CHRFAM7A gene expression in schizophrenia: Clinical correlates and the effect of antipsychotic treatment. J. Neural Transm. 2018, 125, 741–748. [Google Scholar] [CrossRef]
- Bencherif, M.; Stachowiak, M.K.; Kucinski, A.J.; Lippiello, P.M. Alpha7 nicotinic cholinergic neuromodulation may reconcile multiple neurotransmitter hypotheses of schizophrenia. Med. Hypotheses 2012, 78, 594–600. [Google Scholar] [CrossRef] [PubMed]
- Freedman, R.; Hall, M.; Adler, L.E.; Leonard, S. Evidence in postmortem brain tissue for decreased numbers of hippocampal nicotinic receptors in schizophrenia. Biol. Psychiatry 1995, 38, 22–33. [Google Scholar] [CrossRef]
- Guan, Z.Z.; Zhang, X.; Blennow, K.; Nordberg, A. Decreased protein level of nicotinic receptor alpha7 subunit in the frontal cortex from schizophrenic brain. Neuroreport 1999, 10, 1779–1782. [Google Scholar] [CrossRef] [PubMed]
- Guillozet-Bongaarts, A.L.; Hyde, T.M.; Dalley, R.A.; Hawrylycz, M.J.; Henry, A.; Hof, P.R.; Hohmann, J.; Jones, A.R.; Kuan, C.L.; Royall, J.; et al. Altered gene expression in the dorsolateral prefrontal cortex of individuals with schizophrenia. Mol. Psychiatry 2014, 19, 478–485. [Google Scholar] [CrossRef] [Green Version]
- Marutle, A.; Zhang, X.; Court, J.; Piggott, M.; Johnson, M.; Perry, R.; Perry, E.; Nordberg, A. Laminar distribution of nicotinic receptor subtypes in cortical regions in schizophrenia. J. Chem. Neuroanat. 2001, 22, 115–126. [Google Scholar] [CrossRef]
- Court, J.; Spurden, D.; Lloyd, S.; McKeith, I.; Ballard, C.; Cairns, N.; Kerwin, R.; Perry, R.; Perry, E. Neuronal nicotinic receptors in dementia with Lewy bodies and schizophrenia: Alpha-bungarotoxin and nicotine binding in the thalamus. J. Neurochem. 1999, 73, 1590–1597. [Google Scholar] [CrossRef]
- Stephens, S.H.; Logel, J.; Barton, A.; Franks, A.; Schultz, J.; Short, M.; Dickenson, J.; James, B.; Fingerlin, T.E.; Wagner, B.; et al. Association of the 5′-upstream regulatory region of the alpha7 nicotinic acetylcholine receptor subunit gene (CHRNA7) with schizophrenia. Schizophr. Res. 2009, 109, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Bertelsen, B.; Oranje, B.; Melchior, L.; Fagerlund, B.; Werge, T.M.; Mikkelsen, J.D.; Tümer, Z.; Glenthøj, B.Y. Association study of CHRNA7 promoter variants with sensory and sensorimotor gating in schizophrenia patients and healthy controls: A danish case-control study. Neuromolecular. Med. 2015, 17, 423–430. [Google Scholar] [CrossRef]
- Gault, J.; Hopkins, J.; Berger, R.; Drebing, C.; Logel, J.; Walton, C.; Short, M.; Vianzon, R.; Olincy, A.; Ross, R.G.; et al. Comparison of polymorphisms in the alpha7 nicotinic receptor gene and its partial duplication in schizophrenic and control subjects. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2003, 123B, 39–49. [Google Scholar] [CrossRef]
- Zhou, D.; Gochman, P.; Broadnax, D.D.; Rapoport, J.L.; Ahn, K. 15q13.3 duplication in two patients with childhood-onset schizophrenia. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2016, 171, 777–783. [Google Scholar] [CrossRef] [Green Version]
- Perl, O.; Strous, R.D.; Dranikov, A.; Chen, R.; Fuchs, S. Low levels of alpha7-nicotinic acetylcholine receptor mRNA on peripheral blood lymphocytes in schizophrenia and its association with illness severity. Neuropsychobiology 2006, 53, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Perl, O.; Ilani, T.; Strous, R.D.; Lapidus, R.; Fuchs, S. The alpha7 nicotinic acetylcholine receptor in schizophrenia: Decreased mRNA levels in peripheral blood lymphocytes. FASEB J. 2003, 17, 1948–1950. [Google Scholar] [CrossRef] [PubMed]
- Raux, G.; Bonnet-Brilhault, F.; Louchart, S.; Houy, E.; Gantier, R.; Levillain, D.; Allio, G.; Haouzir, S.; Petit, M.; Martinez, M.; et al. The -2 bp deletion in exon 6 of the ‘alpha 7-like’ nicotinic receptor subunit gene is a risk factor for the P50 sensory gating deficit. Mol. Psychiatry 2002, 7, 1006–1011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hong, C.J.; Lai, I.C.; Liou, L.L.; Tsai, S.J. Association study of the human partially duplicated alpha7 nicotinic acetylcholine receptor genetic variant with bipolar disorder. Neurosci. Lett. 2004, 355, 69–72. [Google Scholar] [CrossRef]
- Flomen, R.H.; Collier, D.A.; Osborne, S.; Munro, J.; Breen, G.; St Clair, D.; Makoff, A.J. Association study of CHRFAM7A copy number and 2 bp deletion polymorphisms with schizophrenia and bipolar affective disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2006, 141B, 571–575. [Google Scholar] [CrossRef]
- Dempster, E.L.; Toulopoulou, T.; McDonald, C.; Bramon, E.; Walshe, M.; Wickham, H.; Sham, P.C.; Murray, R.M.; Collier, D.A. Episodic memory performance predicted by the 2bp deletion in exon 6 of the “alpha 7-like” nicotinic receptor subunit gene. Am. J. Psychiatry 2006, 163, 1832–1834. [Google Scholar] [CrossRef]
- Flomen, R.H.; Shaikh, M.; Walshe, M.; Schulze, K.; Hall, M.H.; Picchioni, M.; Rijsdijk, F.; Toulopoulou, T.; Kravariti, E.; Murray, R.M.; et al. Association between the 2-bp deletion polymorphism in the duplicated version of the alpha7 nicotinic receptor gene and P50 sensory gating. Eur. J. Hum. Genet. 2013, 21, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Lai, I.C.; Hong, C.J.; Tsai, S.J. Association study of a nicotinic receptor variant with schizophrenic disorders. Neuropsychobiology 2001, 43, 15–18. [Google Scholar] [CrossRef]
- Petrovsky, N.; Schmechtig, A.; Flomen, R.H.; Kumari, V.; Collier, D.; Makoff, A.; Wagner, M.; Ettinger, U. CHRFAM7A copy number and 2-bp deletion polymorphisms and antisaccade performance. Int. J. Neuropsychopharmacol. 2009, 12, 267–273. [Google Scholar] [CrossRef] [Green Version]
- Rozycka, A.; Dorszewska, J.; Steinborn, B.; Lianeri, M.; Winczewska-Wiktor, A.; Sniezawska, A.; Wisniewska, K.; Jagodzinski, P.P. Association study of the 2-bp deletion polymorphism in exon 6 of the CHRFAM7A gene with idiopathic generalized epilepsy. DNA Cell Biol. 2013, 32, 640–647. [Google Scholar] [CrossRef] [Green Version]
- Helbig, I.; Mefford, H.C.; Sharp, A.J.; Guipponi, M.; Fichera, M.; Franke, A.; Muhle, H.; de Kovel, C.; Baker, C.; von Spiczak, S.; et al. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat. Genet. 2009, 41, 160–162. [Google Scholar] [CrossRef] [PubMed]
- Mullen, S.A.; Carvill, G.L.; Bellows, S.; Bayly, M.A.; Trucks, H.; Lal, D.; Sander, T.; Berkovic, S.F.; Dibbens, L.M.; Scheffer, I.E.; et al. Copy number variants are frequent in genetic generalized epilepsy with intellectual disability. Neurology 2013, 81, 1507–1514. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mefford, H.C.; Muhle, H.; Ostertag, P.; von Spiczak, S.; Buysse, K.; Baker, C.; Franke, A.; Malafosse, A.; Genton, P.; Thomas, P.; et al. Genome-wide copy number variation in epilepsy: Novel susceptibility loci in idiopathic generalized and focal epilepsies. PLoS Genet. 2010, 6, e1000962. [Google Scholar] [CrossRef] [PubMed]
- Dibbens, L.M.; Mullen, S.; Helbig, I.; Mefford, H.C.; Bayly, M.A.; Bellows, S.; Leu, C.; Trucks, H.; Obermeier, T.; Wittig, M.; et al. Familial and sporadic 15q13.3 microdeletions in idiopathic generalized epilepsy: Precedent for disorders with complex inheritance. Hum. Mol. Genet. 2009, 18, 3626–3631. [Google Scholar] [CrossRef] [PubMed]
- Muhle, H.; Mefford, H.C.; Obermeier, T.; von Spiczak, S.; Eichler, E.E.; Stephani, U.; Sander, T.; Helbig, I. Absence seizures with intellectual disability as a phenotype of the 15q13.3 microdeletion syndrome. Epilepsia 2011, 52, e194–e198. [Google Scholar] [CrossRef] [PubMed]
- Melchior, L.; Bertelsen, B.; Debes, N.M.; Groth, C.; Skov, L.; Mikkelsen, J.D.; Brøndum-Nielsen, K.; Tümer, Z. Microduplication of 15q13.3 and Xq21.31 in a family with Tourette syndrome and comorbidities. Am. J. Med. Genet. B Neuropsychiatr. Genet. 2013, 162B, 825–831. [Google Scholar] [CrossRef]
- Hogart, A.; Leung, K.N.; Wang, N.J.; Wu, D.J.; Driscoll, J.; Vallero, R.O.; Schanen, N.C.; LaSalle, J.M. Chromosome 15q11-13 duplication syndrome brain reveals epiGenet.ic alterations in gene expression not predicted from copy number. J. Med. Genet. 2009, 46, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Meguro-Horike, M.; Yasui, D.H.; Powell, W.; Schroeder, D.I.; Oshimura, M.; Lasalle, J.M.; Horike, S. Neuron-specific impairment of inter-chromosomal pairing and transcription in a novel model of human 15q-duplication syndrome. Hum. Mol. Genet. 2011, 20, 3798–3810. [Google Scholar] [CrossRef] [Green Version]
- Good, K.V.; Vincent, J.B.; Ausió, J. MeCP2: The Genet.ic driver of rett syndrome epiGenet.ics. Front. Genet. 2021, 12, 620859. [Google Scholar] [CrossRef]
- Nagarajan, R.P.; Hogart, A.R.; Gwye, Y.; Martin, M.R.; LaSalle, J.M. Reduced MeCP2 expression is frequent in autism frontal cortex and correlates with aberrant MECP2 promoter methylation. EpiGenetics 2006, 1, e1–e11. [Google Scholar] [CrossRef] [Green Version]
- Rozycka, A.; Dorszewska, J.; Steinborn, B.; Kempisty, B.; Lianeri, M.; Wisniewska, K.; Jagodzinski, P.P. A transcript coding for a partially duplicated form of α7 nicotinic acetylcholine receptor is absent from the CD4+ T-lymphocytes of patients with autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE). Folia Neuropathol. 2013, 51, 65–75. [Google Scholar] [CrossRef]
- Tracey, K.J. The inflammatory reflex. Nature 2002, 420, 853. [Google Scholar] [CrossRef] [PubMed]
- Reardon, C.; Murray, K.; Lomax, A.E. Neuroimmune communication in health and disease. Physiol. Rev. 2018, 98, 2287–2316. [Google Scholar] [CrossRef] [PubMed]
- Borovikova, L.V.; Ivanova, S.; Zhang, M.; Yang, H.; Botchkina, G.I.; Watkins, L.R.; Wang, H.; Abumrad, N.; Eaton, J.W.; Tracey, K.J. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 2000, 405, 458–462. [Google Scholar] [CrossRef] [PubMed]
- Eduardo, C.C.; Alejandra, T.G.; Guadalupe, D.K.J.; Herminia, V.G.; Lenin, P.; Enrique, B.V.; Evandro, B.M.; Oscar, B.; Iván, G.M. Modulation of the extraneuronal cholinergic system on main innate response leukocytes. J. Neuroimmunol. 2019, 327, 22–35. [Google Scholar] [CrossRef] [PubMed]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- van der Poll, T.; Shankar-Hari, M.; Wiersinga, W.J. The immunology of sepsis. Immunity 2021, 54, 2450–2464. [Google Scholar] [CrossRef]
- Cedillo, J.L.; Arnalich, F.; Martín-Sánchez, C.; Quesada, A.; Rios, J.J.; Maldifassi, M.C.; Atienza, G.; Renart, J.; Fernández-Capitán, C.; García-Rio, F.; et al. Usefulness of α7 nicotinic receptor messenger RNA levels in peripheral blood mononuclear cells as a marker for cholinergic antiinflammatory pathway activity in septic patients: Results of a pilot study. J. Infect. Dis. 2015, 211, 146–155. [Google Scholar] [CrossRef] [Green Version]
- Baird, A.; Coimbra, R.; Dang, X.; Eliceiri, B.P.; Costantini, T.W. Up-regulation of the human-specific CHRFAM7A gene in inflammatory bowel disease. BBA Clin. 2016, 5, 66–71. [Google Scholar] [CrossRef] [Green Version]
- van Maanen, M.A.; Lebre, M.C.; van der Poll, T.; LaRosa, G.J.; Elbaum, D.; Vervoordeldonk, M.J.; Tak, P.P. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis Rheum. 2009, 60, 114–122. [Google Scholar] [CrossRef]
- Cao, X.; Wang, Y.; Gao, L. CHRFAM7A Overexpression attenuates cerebral ischemia-reperfusion injury via inhibiting microglia pyroptosis mediated by the NLRP3/Caspase-1 pathway. Inflammation 2021, 44, 1023–1034. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Yu, S.; Chen, X.; Ye, R.; Zhu, W.; Liu, X. NLRP3 is involved in ischemia/reperfusion injury. CNS Neurol. Disord. Drug Targets 2016, 15, 699–712. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Chen, W.; Zhang, Q.; Deng, C. Human-specific gene CHRFAM7A mediates M2 macrophage polarization via the Notch pathway to ameliorate hypertrophic scar formation. Biomed. Pharmacother. 2020, 131, 110611. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qian, J.; Ren, H.; Meng, F.; Ma, R.; Xu, B. Human-specific CHRFAM7A protects against radiotherapy-induced lacrimal gland injury by inhibiting the p38/JNK signalling pathway and oxidative stress. Int. J. Clin. Exp. Pathol. 2017, 10, 9001–9011. [Google Scholar]
- Mehta, P.; McAuley, D.F.; Brown, M.; Sanchez, E.; Tattersall, R.S.; Manson, J.J.; HLH Across Speciality Collaboration, UK. COVID-19: Consider cytokine storm syndromes and immunosuppression. Lancet 2020, 395, 1033–1034. [Google Scholar] [CrossRef]
- Changeux, J.P.; Amoura, Z.; Rey, F.A.; Miyara, M. A nicotinic hypothesis for COVID-19 with preventive and therapeutic implications. C. R. Biol. 2020, 343, 33–39. [Google Scholar] [CrossRef]
- Farsalinos, K.; Angelopoulou, A.; Alexandris, N.; Poulas, K. COVID-19 and the nicotinic cholinergic system. Eur. Respir. J. 2020, 56, 2001589. [Google Scholar] [CrossRef]
- Gonzalez-Rubio, J.; Navarro-Lopez, C.; Lopez-Najera, E.; Lopez-Najera, A.; Jimenez-Diaz, L.; Navarro-Lopez, J.D.; Najera, A. Cytokine release syndrome (CRS) and nicotine in COVID-19 patients: Trying to calm the storm. Front. Immunol. 2020, 11, 1359. [Google Scholar] [CrossRef]
- Bonaz, B.; Sinniger, V.; Pellissier, S. Targeting the cholinergic anti-inflammatory pathway with vagus nerve stimulation in patients with COVID-19? Bioelectron. Med. 2020, 6, 15. [Google Scholar] [CrossRef]
- Russo, P.; Bonassi, S.; Giacconi, R.; Malavolta, M.; Tomino, C.; Maggi, F. COVID-19 and smoking: Is nicotine the hidden link? Eur. Respir. J. 2020, 55, 2001116. [Google Scholar] [CrossRef]
- Pohanka, M. Inhibitors of acetylcholinesterase and butyrylcholinesterase meet immunity. Int. J. Mol. Sci. 2014, 15, 9809–9825. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Kabbani, N.; Brannan, T.K.; Lin, M.K.; Theiss, M.M.; Hamilton, J.F.; Ecklund, J.M.; Conley, Y.P.; Vodovotz, Y.; Brienza, D.; et al. Association of a functional polymorphism in the CHRFAM7A gene with inflammatory response mediators and neuropathic pain after spinal cord injury. J. Neurotrauma 2019, 36, 3026–3033. [Google Scholar] [CrossRef]
- Kiguchi, N.; Sakaguchi, H.; Kadowaki, Y.; Saika, F.; Fukazawa, Y.; Matsuzaki, S.; Kishioka, S. Peripheral administration of interleukin-13 reverses inflammatory macrophage and tactile allodynia in mice with partial sciatic nerve ligation. J. Pharmacol. Sci. 2017, 133, 53–56. [Google Scholar] [CrossRef]
- Hone, A.J.; McIntosh, J.M. Nicotinic acetylcholine receptors in neuropathic and inflammatory pain. FEBS Lett. 2018, 592, 1045–1062. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.W.; Langness, S.; Cohen, O.; Eliceiri, B.P.; Baird, A.; Costantini, T.W. CHRFAM7A reduces monocyte/macrophage migration and colony formation in vitro. Inflamm. Res. 2020, 69, 631–633. [Google Scholar] [CrossRef]
- Kim, Y.H.; Lee, J.R.; Hahn, M.J. Regulation of inflammatory gene expression in macrophages by epithelial-stromal interaction 1 (Epsti1). Biochem. Biophys. Res. Commun. 2018, 496, 778–783. [Google Scholar] [CrossRef]
- York, M.R.; Nagai, T.; Mangini, A.J.; Lemaire, R.; van Seventer, J.M.; Lafyatis, R. A macrophage marker, Siglec-1, is increased on circulating monocytes in patients with systemic sclerosis and induced by type I interferons and toll-like receptor agonists. Arthritis Rheum. 2007, 56, 1010–1020. [Google Scholar] [CrossRef]
- Kabbani, N.; Nichols, R.A. Beyond the channel: Metabotropic signaling by nicotinic receptors. Trends. Pharmacol. Sci. 2018, 39, 354–366. [Google Scholar] [CrossRef]
- Fratiglioni, L.; Wang, H.X. Smoking and Parkinson’s and Alzheimer’s disease: Review of the epidemiological studies. Behav. Brain Res. 2000, 113, 117–120. [Google Scholar] [CrossRef]
- Schliebs, R.; Arendt, T. The cholinergic system in aging and neuronal degeneration. Behav. Brain Res. 2011, 221, 555–563. [Google Scholar] [CrossRef]
- Park, H.J.; Lee, P.H.; Ahn, Y.W.; Choi, Y.J.; Lee, G.; Lee, D.Y.; Chung, E.S.; Jin, B.K. Neuroprotective effect of nicotine on dopaminergic neurons by anti-inflammatory action. Eur. J. Neurosci. 2007, 26, 79–89. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zeng, X.; Hui, Y.; Zhu, C.; Wu, J.; Taylor, D.H.; Ji, J.; Fan, W.; Huang, Z.; Hu, J. Activation of α7 nicotinic acetylcholine receptors protects astrocytes against oxidative stress-induced apoptosis: Implications for Parkinson’s disease. Neuropharmacology 2015, 91, 87–96. [Google Scholar] [CrossRef] [PubMed]
- Egea, J.; Buendia, I.; Parada, E.; Navarro, E.; León, R.; Lopez, M.G. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochem. Pharmacol. 2015, 97, 463–472. [Google Scholar] [CrossRef] [PubMed]
- King, J.R.; Gillevet, T.C.; Kabbani, N. A G protein-coupled alpha7 nicotinic receptor regulates signaling and TNF-alpha release in microglia. FEBS Open Biol. 2017, 7, 1350–1361. [Google Scholar] [CrossRef] [Green Version]
- De Simone, R.; Ajmone-Cat, M.A.; Carnevale, D.; Minghetti, L. Activation of alpha7 nicotinic acetylcholine receptor by nicotine selectively up-regulates cyclooxygenase-2 and prostaglandin E2 in rat microglial cultures. J. Neuroinflamm. 2005, 2, 4. [Google Scholar] [CrossRef] [Green Version]
- Pavlov, V.A.; Parrish, W.R.; Rosas-Ballina, M.; Ochani, M.; Puerta, M.; Ochani, K.; Chavan, S.; Al-Abed, Y.; Tracey, K.J. Brain acetylcholinesterase activity controls systemic cytokine levels through the cholinergic anti-inflammatory pathway. Brain Behav. Immun. 2009, 23, 41–45. [Google Scholar] [CrossRef] [Green Version]
- Ballinger, E.C.; Ananth, M.; Talmage, D.A.; Role, L.W. Basal forebrain cholinergic circuits and signaling in cognition and cognitive decline. Neuron 2016, 91, 1199–1218. [Google Scholar] [CrossRef] [Green Version]
- Heneka, M.T.; Kummer, M.P.; Latz, E. Innate immune activation in neurodegenerative disease. Nat. Rev. Immunol. 2014, 14, 463–477. [Google Scholar] [CrossRef]
- Kalkman, H.O.; Feuerbach, D. Modulatory effects of α7 nAChRs on the immune system and its relevance for CNS disorders. Cell Mol. Life Sci. 2016, 73, 2511–2530. [Google Scholar] [CrossRef] [Green Version]
- Taylor, P. Development of acetylcholinesterase inhibitors in the therapy of Alzheimer’s disease. Neurology 1998, 51, S30–S35, discussion S65–S67. [Google Scholar] [CrossRef]
- Neri, M.; Bonassi, S.; Russo, P. Genet.ic variations in CHRNA7 or CHRFAM7 and susceptibility to dementia. Curr. Drug Targets 2012, 13, 636–643. [Google Scholar] [CrossRef] [PubMed]
- Carson, R.; Craig, D.; McGuinness, B.; Johnston, J.A.; O’Neill, F.A.; Passmore, A.P.; Ritchie, C.W. Alpha7 nicotinic acetylcholine receptor gene and reduced risk of Alzheimer’s disease. J. Med. Genet. 2008, 45, 244–248. [Google Scholar] [CrossRef] [PubMed]
- Dziewczapolski, G.; Glogowski, C.M.; Masliah, E.; Heinemann, S.F. Deletion of the alpha 7 nicotinic acetylcholine receptor gene improves cognitive deficits and synaptic pathology in a mouse model of Alzheimer’s disease. J. Neurosci. 2009, 29, 8805–8815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quik, M.; Bordia, T.; Zhang, D.; Perez, X.A. Nicotine and nicotinic receptor drugs: Potential for Parkinson’s disease and drug-induced movement disorders. Int. Rev. Neurobiol. 2015, 124, 247–271. [Google Scholar] [CrossRef]
- Oddo, S.; Caccamo, A.; Green, K.N.; Liang, K.; Tran, L.; Chen, Y.; Leslie, F.M.; LaFerla, F.M. Chronic nicotine administration exacerbates tau pathology in a transgenic model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2005, 102, 3046–3051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puzzo, D.; Privitera, L.; Leznik, E.; Fà, M.; Staniszewski, A.; Palmeri, A.; Arancio, O. Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J. Neurosci. 2008, 28, 14537–14545. [Google Scholar] [CrossRef] [PubMed]
- Oz, M.; Lorke, D.E.; Yang, K.H.; Petroianu, G. On the interaction of β-amyloid peptides and α7-nicotinic acetylcholine receptors in Alzheimer’s disease. Curr. Alzheimer Res. 2013, 10, 618–630. [Google Scholar] [CrossRef]
- Lasala, M.; Fabiani, C.; Corradi, J.; Antollini, S.; Bouzat, C. Molecular modulation of human α7 Nicotinic receptor by amyloid-β peptides. Front. Cell Neurosci. 2019, 13, 37. [Google Scholar] [CrossRef]
- Wang, H.Y.; Lee, D.H.; Davis, C.B.; Shank, R.P. Amyloid peptide Abeta(1-42) binds selectively and with picomolar affinity to alpha7 nicotinic acetylcholine receptors. J. Neurochem. 2000, 75, 1155–1161. [Google Scholar] [CrossRef]
- Dineley, K.T.; Westerman, M.; Bui, D.; Bell, K.; Ashe, K.H.; Sweatt, J.D. Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer’s disease. J. Neurosci. 2001, 21, 4125–4133. [Google Scholar] [CrossRef] [Green Version]
- Parri, H.R.; Hernandez, C.M.; Dineley, K.T. Research update: Alpha7 nicotinic acetylcholine receptor mechanisms in Alzheimer’s disease. Biochem. Pharmacol. 2011, 82, 931–942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagele, R.G.; D’Andrea, M.R.; Anderson, W.J.; Wang, H.Y. Intracellular accumulation of beta-amyloid(1-42) in neurons is facilitated by the alpha 7 nicotinic acetylcholine receptor in Alzheimer’s disease. Neuroscience 2002, 110, 199–211. [Google Scholar] [CrossRef]
- Wang, H.Y.; Li, W.; Benedetti, N.J.; Lee, D.H. Alpha 7 nicotinic acetylcholine receptors mediate beta-amyloid peptide-induced tau protein phosphorylation. J. Biol. Chem. 2003, 278, 31547–31553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swaminathan, S.; Shen, L.; Kim, S.; Inlow, M.; West, J.D.; Faber, K.M.; Foroud, T.; Mayeux, R.; Saykin, A.J.; Initiative, A.S.D.N.; et al. Analysis of copy number variation in Alzheimer’s disease: The NIALOAD/ NCRAD family study. Curr. Alzheimer Res. 2012, 9, 801–814. [Google Scholar] [CrossRef]
- Swaminathan, S.; Huentelman, M.J.; Corneveaux, J.J.; Myers, A.J.; Faber, K.M.; Foroud, T.; Mayeux, R.; Shen, L.; Kim, S.; Turk, M.; et al. Analysis of copy number variation in Alzheimer’s disease in a cohort of clinically characterized and neuropathologically verified individuals. PLoS ONE 2012, 7, e50640. [Google Scholar] [CrossRef] [Green Version]
- Swaminathan, S.; Kim, S.; Shen, L.; Risacher, S.L.; Foroud, T.; Pankratz, N.; Potkin, S.G.; Huentelman, M.J.; Craig, D.W.; Weiner, M.W.; et al. Genomic copy number analysis in alzheimer’s disease and mild cognitive impairment: An ADNI study. Int. J. Alzheimers Dis. 2011, 2011, 729478. [Google Scholar] [CrossRef] [Green Version]
- Szigeti, K.; Kellermayer, B.; Lentini, J.M.; Trummer, B.; Lal, D.; Doody, R.S.; Yan, L.; Liu, S.; Ma, C.; Consortium, T.A.R.a.C. Ordered subset analysis of copy number variation association with age at onset of Alzheimer’s disease. J. Alzheimer’s Dis. 2014, 41, 1063–1071. [Google Scholar] [CrossRef] [Green Version]
- Liou, Y.J.; Lai, I.C.; Hong, C.J.; Liu, H.C.; Liu, T.Y.; Tsai, S.J. Association analysis of the partially duplicated alpha7 nicotinic acetylcholine receptor Genet.ic variant and Alzheimer’s disease. Dement. Geriatr. Cogn. Disord. 2001, 12, 301–304. [Google Scholar] [CrossRef]
- Fehér, A.; Juhász, A.; Rimanóczy, A.; Csibri, E.; Kálmán, J.; Janka, Z. Association between a Genet.ic variant of the alpha-7 nicotinic acetylcholine receptor subunit and four types of dementia. Dement. Geriatr. Cogn. Disord. 2009, 28, 56–62. [Google Scholar] [CrossRef]
- Iadecola, C. The pathobiology of vascular dementia. Neuron 2013, 80, 844–866. [Google Scholar] [CrossRef] [Green Version]
- Thomsen, M.S.; Hansen, H.H.; Timmerman, D.B.; Mikkelsen, J.D. Cognitive improvement by activation of alpha7 nicotinic acetylcholine receptors: From animal models to human pathophysiology. Curr. Pharm. Des. 2010, 16, 323–343. [Google Scholar] [CrossRef] [PubMed]
- Ihnatovych, I.; Nayak, T.K.; Ouf, A.; Sule, N.; Birkaya, B.; Chaves, L.; Auerbach, A.; Szigeti, K. iPSC model of CHRFAM7A effect on α7 nicotinic acetylcholine receptor function in the human context. Transl. Psychiatry 2019, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Ihnatovych, I.; Birkaya, B.; Notari, E.; Szigeti, K. iPSC-derived microglia for modeling human-specific DAMP and PAMP responses in the context of alzheimer’s disease. Int. J. Mol. Sci. 2020, 21, 9668. [Google Scholar] [CrossRef] [PubMed]
- Ballester, L.Y.; Capó-Vélez, C.M.; García-Beltrán, W.F.; Ramos, F.M.; Vázquez-Rosa, E.; Ríos, R.; Mercado, J.R.; Meléndez, R.I.; Lasalde-Dominicci, J.A. Up-regulation of the neuronal nicotinic receptor α7 by HIV glycoprotein 120: Potential implications for HIV-associated neurocognitive disorder. J. Biol. Chem. 2012, 287, 3079–3086. [Google Scholar] [CrossRef] [Green Version]
- Cedillo, J.L.; Bordas, A.; Arnalich, F.; Esteban-Rodríguez, I.; Martín-Sánchez, C.; Extremera, M.; Atienza, G.; Rios, J.J.; Arribas, R.L.; Montiel, C. Anti-tumoral activity of the human-specific duplicated form of α7-nicotinic receptor subunit in tobacco-induced lung cancer progression. Lung Cancer 2019, 128, 134–144. [Google Scholar] [CrossRef]
Sample | Alleles | ||
---|---|---|---|
Population | Chromosome Sample Count | - | CA |
EAS | 1008 | 0.66469997 | 0.33530000 |
EUR | 1006 | 0.37770000 | 0.62230003 |
AFR | 1322 | 0.08170000 | 0.91829997 |
AMR | 694 | 0.44090000 | 0.55910003 |
SAS | 978 | 0.48469999 | 0.51530004 |
Disease | Expression Level/Genotype | Biological Effect | Therapeutic Intervention | |
---|---|---|---|---|
CHRNA7 | CHRFAM7A | |||
Schizophrenia and neuropsychiatric disorders | ||||
Postmortem brain sample from schizophrenic and psychiatric patients [55,59,72,73,102,103,104,105,106,109] | ↓ | ↑ | Decreased CHRNA7/CHRFAM7A ratio | |
Childhood-onset schizophrenia [110] | Gene duplication | n.d. | Increased CHRNA7/CHRFAM7A ratio | |
PBMC of schizophrenic patients [100,111,112] | n.d. | ↓ | Positive correlation with illness severity; negative correlation between CHRFAM7A expression and negative psychopathology score (SANS), but not with a positive score (SAPS) | Antipsychotics increase CHRFAM7A expression [100] |
PBMC of schizophrenic patients [99] | und | ↓ | Lower CHRFAM7A expression in smokers, not associated with diagnosis | |
Association studies [9,113,117] | 2 copies [9,113] n.d. [117] | Δ2bp | P50 sensory gating deficit | |
Association studies [55] | = | Δ2bp | No differences in Δ2bp allele frequency between ethnic groups; association with reduced CHRFAM7A expression in patients as well as in control group | |
Major depressive and bipolar disorders, deficit in episodic memory [78,114,116] | n.d. | Δ2bp | SNP associated with listed disorders | |
Antisaccade performance [119] | n.d. | Δ2bp | No association | |
Epilepsy and Neurodevelopmental disorders | ||||
Idiopathic generalized epilepsies (IGEs) [120] | 2 copies | Δ2bp | Frequency of Δ2bp carriers was lower in IGE patients’ cohort versus healthy controls | |
Idiopathic generalized epilepsies (IGEs) [121,123,124,125] | 1.5 Mb microdeletion | n.d. | Role in IGE pathogenesis | |
Genetic generalized epilepsy [36] | Missense mutations | Δ2bp | No association with Δ2bp allele; association with missense mutations in CHRNA7 | |
Attention Deficit Hyperactivity Disorder (ADHD) [38] | 15q13.3 duplication | n.d. | Duplication involves CHRNA7, considered a risk factor | |
Tourette Syndrome, ADHD, and obsessive compulsive disorders (OCD) [126] | Microduplication | CNV and Δ2bp | Phenotypic variation in a family with all the listed disorders; altered CHRNA7/CHRFAM7A ratio | |
Rett syndrome [60] | ↓ | n.d. | It was hypothesized that MeCP2 modulates both CHRNA7 and CHRFAM7A expression by epigenetic modifications | |
Autosomal dominant nocturnal frontal lobe epilepsy (ADNFLE) [131] | n.d. | Not expressed | CHRFAM7A is expressed in PBMC of healthy individuals but not in ADNFLE patients, suggesting it can be an important factor in ADNFLE pathogenesis | |
Inflammatory diseases | ||||
Sepsis [138] | High | High/low | Altered CHRNA7/CHRFAM7A ratio: high CHRFAM7A/CHRNA7 ratio has a poor prognosis compared with patients expressing higher CHRNA7 levels | prognostic marker |
Inflammatory Bowel Disease (IBD) [139] | ↓ | ↑ | dupα7 down-regulation | |
Osteoarthritis (OA) [27] | = | High/low | CHRFAM7A expression correlates with MMP-3 and MMP-13 mRNA level in human OA chondrocytes | α7 agonists |
Rheumatoid arthritis (RA) [62] | Expressed | Expressed | α7 silencing/α7 agonists reveal a role for CHRNA7 in controlling joint inflammation. Both isoforms are expressed in synovial tissues from RA patients, but no conclusions on the role of CHRFAM7A can be drawn due to the missing healthy controls | |
Cerebral ischemia/reperfusion (I/R) injury [141] | n.d. | ↓ | dupα7 has a protective role; its expression is negatively related to the expression of inflammatory cytokines | dupα7 up-regulation (see OGD/R microglia cells model) |
Hypertrophic scars (HTS) [143] | n.d. | ↓ | Its expression ameliorates HTS formation | See animal model |
Radiotherapy-induced lacrimal gland injury [144] | n.d. | ↑ | Inhibition of the p38/JNK signaling pathway and oxidative stress | |
COVID-19 [14] | und | ↓ | Reduction correlates with disease severity | |
Spinal cord injury (SCI) [13,152] | n.d. | Δ2bp | Its presence may affect clinical outcomes. Positively correlated with high levels of inflammatory molecules in severe SCI | |
Neurodegenerative diseases | ||||
MCI and late-onset AD patients [184,185,186,187] | n.d. | ↓ | dupα7 has a protective role as the increased functional α7nAChR, due to lower CHRFAM7A expression, will sustain enhanced Aβ1-42 internalization and neuronal vulnerability | α7 antagonists dupα7 up-regulation |
AD, DLB and PiD [189] | n.d. | wt allele over-represented | Δ2bp polymorphism as a protective factor | |
AD: association study [12] | 2 copies | 75% carriers 25% non-carriers | No differences between normal aged and AD patients in the CHRFAM7A carriers, thus suggesting that CHRFAM7A is not associated with the disease phenotype. CHRFAM7A influences drug response to AChEi, as non-carriers showed higher response to AChEi over a 7-year follow-up | |
HIV-1 [61,194] | ↑ | ↓ | Increased CHRNA7/CHRFAM7A ratio. dupα7 may play a protective role against the development of HAND | dupα7 up-regulation |
Cancer | ||||
Squamous cell lung tumor [45] | ↑ | ↓ | dupα7 has a protective role, as its down regulation facilitates the oncogenic properties of α7 | dupα7 up-regulation |
Cell and animal models | ||||
LPS stimulated macrophages [49,53] | ↑ | ↓ | Activation of CAIP | |
CHRFAM7A transgenic mice [70,71] | = | Over-expression | Decrease in α7 nAChR ligand binding at the neuromuscular junction | |
CHRFAM7A silencing in SH-SY5Y cells [58] | = | Over-expression | Increased α7 nAChR induced neurotransmitter release | |
LPS stimulated gut epithelial cells [56] | Small changes | ↓ | CHRFAM7A/CHRNA7 ratio increase varies depending on gut epithelial cell line | |
OGD/R-treated microglia human cell lines (model of I/R injury) [141] | n.d. | Over-expression | Attenuation of microglia mediated-inflammatory response by increased cell proliferation, decreased pro-inflammatory cytokines, and promotion of M1 to M2 microglia polarization | |
Human HTS-like SCID mouse model [143] | n.d. | Over-expression | Positive role in the amelioration of HTS formation by decreasing TGF-β and CTFG expression and increasing MMP-1 expression | |
Donepezil-treated human macrophages [49] | ↑ | ↓ | The increased CHRFAM7A expression suggested a role in controlling excessive CAIP activation | |
CHRFAM7A transgenic model of human systemic inflammatory response syndrome (SIRS) [11] | n.d. | Over-expression | Increased HSC reservoir, increased immune cell mobilization, myeloid cell differentiation | |
Monocyte-like cells (THP-1) [54,155] | ↑ | Over-expression | Reduced cell migration and chemotaxis to monocyte chemo-attractant protein (MCP-1); inhibition of anchorage-independent colony formation; increased α-Bgtx binding | |
Medial ganglionic eminence (MGE) neurons derived from iPSCs from AD patients [12,192] | 2 copies | 1 copy | dupα7 mitigates Aβ1–42 uptake at a higher concentration, and a α7-dependent Aβ-induced inflammatory response, suggesting a protective role in AD during the phase of Aβ1–42 accumulation. The absence of CHRFAM7A suggests a risk factor in AD. On the other hand, dupα7 expression affects the response to AChEi | |
AD patients’ iPSC-derived microglial-like cells [193] | 2 copies | 1 copy | dupα7 mitigates Aβ1–42 uptake and induces a high NF-κB-mediated innate immune response, resulting in microglia activation. Nicotine increases the proinflammatory response to LPS in CHRFAM7A carrier cell lines, thus suggesting that the presence of dupα7 antagonizes the homomeric α7 anti-inflammatory role | |
CHRFAM7A transgenic mice brains [71] | = | Over-expression | Modulation of the expression of proteins involved in α7 nAChR signaling pathways, and related to the pathogenesis of neurological and neuropsychiatric disorders, such as PD and AD, including anti-oxidative pathways | |
NSCLC cell lines (A549, SK-MES-1) [195] | = | Over-expression | Blocking nicotine- or NKK-induced tumor progression, in an athymic mouse model implanted with A549dupα7 or A549 xenografts |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Lascio, S.; Fornasari, D.; Benfante, R. The Human-Restricted Isoform of the α7 nAChR, CHRFAM7A: A Double-Edged Sword in Neurological and Inflammatory Disorders. Int. J. Mol. Sci. 2022, 23, 3463. https://doi.org/10.3390/ijms23073463
Di Lascio S, Fornasari D, Benfante R. The Human-Restricted Isoform of the α7 nAChR, CHRFAM7A: A Double-Edged Sword in Neurological and Inflammatory Disorders. International Journal of Molecular Sciences. 2022; 23(7):3463. https://doi.org/10.3390/ijms23073463
Chicago/Turabian StyleDi Lascio, Simona, Diego Fornasari, and Roberta Benfante. 2022. "The Human-Restricted Isoform of the α7 nAChR, CHRFAM7A: A Double-Edged Sword in Neurological and Inflammatory Disorders" International Journal of Molecular Sciences 23, no. 7: 3463. https://doi.org/10.3390/ijms23073463
APA StyleDi Lascio, S., Fornasari, D., & Benfante, R. (2022). The Human-Restricted Isoform of the α7 nAChR, CHRFAM7A: A Double-Edged Sword in Neurological and Inflammatory Disorders. International Journal of Molecular Sciences, 23(7), 3463. https://doi.org/10.3390/ijms23073463