COVID-19 Pandemic: Escape of Pathogenic Variants and MHC Evolution
Abstract
:1. Introduction: Understanding of the Mechanisms That Lead to MHC Polymorphism
2. Revisiting the Pathogen-Based Hypothesis to Explain MHC Polymorphism/Diversity
2.1. Establishing the Naive TCR Repertoire: Genetic and Stochastic Parameters
2.2. Genetic Parameters
2.2.1. MHC Allomorph Polymorphism/Self-Peptidome Variability and their Role on Thymic Selection
Thymic Selection and MHC Allomorph Polymorphism
2.2.2. Thymic Selection and Self-Immunopeptidome Variability
2.2.3. Thymic Selection and Germline TCR Loci Diversity
2.3. Stochastic Determinants and the TCR Repertoire
2.4. Correlation with Data: Individuals with the Same MHC Recognize Different Antigenic Peptides
3. Hypotheses
3.1. Naive T Cell Repertoire HLA Dependency Could Explain MHC Polymorphism
3.2. Pathogen Variant Escaping Memory T Cells as a Motor of MHC Evolution
3.3. Naive Repertoire, Memory Repertoire Pathogen, and HLA Allomorph Frequencies
4. Testing the Hypotheses
4.1. Testing the Hypothesis: The Escape of Pathogenic Variants to Memory T Cells as a Driver of MHC Evolution
4.2. Testing the Hypothesis: An HLA-Dependent Naive T Cell Repertoire Could Explain MHC Polymorphism
4.3. Experimental Design to Test the Change in the Allelic Frequency of an HLA Allomorph after an Outbreak
5. Concluding Remarks
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bodmer, W.F. Evolutionary significance of the HL-A system. Nature 1972, 237, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Zinkernagel, R.M.; Doherty, P.C. Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 1974, 248, 701–702. [Google Scholar] [CrossRef] [PubMed]
- Hedrick, P.W.; Thomson, G. Evidence for balancing selection at HLA. Genetics 1983, 104, 449–456. [Google Scholar] [CrossRef] [PubMed]
- Hedrick, S.M.; Cohen, D.I.; Nielsen, E.A.; Davis, M.M. Isolation of cDNA clones encoding T cell-specific membrane-associated proteins. Nature 1984, 308, 149–153. [Google Scholar] [CrossRef]
- Hedrick, S.M.; Nielsen, E.A.; Kavaler, J.; Cohen, D.I.; Davis, M.M. Sequence relationships between putative T-cell receptor polypeptides and immunoglobulins. Nature 1984, 308, 153–158. [Google Scholar] [CrossRef]
- Weiss, A. Discovering the TCR beta-chain by subtraction. J. Immunol. 2005, 175, 2769–2770. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nathenson, S.G.; Uehara, H.; Ewenstein, B.M.; Kindt, T.J.; Coligan, J.E. Primary structural: Analysis of the transplantation antigens of the murine H-2 major histocompatibility complex. Annu. Rev. Biochem. 1981, 50, 1025–1052. [Google Scholar] [CrossRef]
- Bjorkman, P.J.; Saper, M.A.; Samraoui, B.; Bennett, W.S.; Strominger, J.L.; Wiley, D.C. Structure of the human class I histocompatibility antigen, HLA-A2. Nature 1987, 329, 506–512. [Google Scholar] [CrossRef]
- Bjorkman, P.J.; Saper, M.A.; Samraoui, B.; Bennett, W.S.; Strominger, J.L.; Wiley, D.C. The foreign antigen binding site and T cell recognition regions of class I histocompatibility antigens. Nature 1987, 329, 512–518. [Google Scholar] [CrossRef]
- Hughes, A.L.; Nei, M. Nucleotide substitution at major histocompatibility complex class II loci: Evidence for overdominant selection. Proc. Natl. Acad. Sci. USA 1989, 86, 958–962. [Google Scholar] [CrossRef] [Green Version]
- Falk, K.; Rotzschke, O.; Stevanovic, S.; Jung, G.; Rammensee, H.G. Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 1991, 351, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Parham, P. Function and polymorphism of human leukocyte antigen-A,B,C molecules. Am. J. Med. 1988, 85, 2–5. [Google Scholar] [CrossRef]
- Garboczi, D.N.; Utz, U.; Ghosh, P.; Seth, A.; Kim, J.; VanTienhoven, E.A.; Biddison, W.E.; Wiley, D.C. Assembly, specific binding, and crystallization of a human TCR-alphabeta with an antigenic Tax peptide from human T lymphotropic virus type 1 and the class I MHC molecule HLA-A2. J. Immunol. 1996, 157, 5403–5410. [Google Scholar] [PubMed]
- Garcia, K.C.; Degano, M.; Stanfield, R.L.; Brunmark, A.; Jackson, M.R.; Peterson, P.A.; Teyton, L.; Wilson, I.A. An alphabeta T cell receptor structure at 2.5 A and its orientation in the TCR-MHC complex. Science 1996, 274, 209–219. [Google Scholar] [CrossRef] [PubMed]
- Vita, R.; Mahajan, S.; Overton, J.A.; Dhanda, S.K.; Martini, S.; Cantrell, J.R.; Wheeler, D.K.; Sette, A.; Peters, B. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 2019, 47, D339–D343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Radwan, J.; Babik, W.; Kaufman, J.; Lenz, T.L.; Winternitz, J. Advances in the Evolutionary Understanding of MHC Polymorphism. Trends Genet. 2020, 36, 298–311. [Google Scholar] [CrossRef] [Green Version]
- Ozer, O.; Lenz, T.L. Unique Pathogen Peptidomes Facilitate Pathogen-Specific Selection and Specialization of MHC Alleles. Mol. Biol. Evol. 2021, 38, 4376–4387. [Google Scholar] [CrossRef]
- Hill, A.V. HLA associations with malaria in Africa: Some implications for MHC evolution. In Molecular Evolution of the Major Histocompatibility Complex; Springer: Cham, Switzerland, 1991; pp. 403–420. [Google Scholar]
- Kappler, J.W.; Roehm, N.; Marrack, P. T cell tolerance by clonal elimination in the thymus. Cell 1987, 49, 273–280. [Google Scholar] [CrossRef]
- Inglesfield, S.; Cosway, E.J.; Jenkinson, W.E.; Anderson, G. Rethinking Thymic Tolerance: Lessons from Mice. Trends Immunol. 2019, 40, 279–291. [Google Scholar] [CrossRef] [Green Version]
- Pontarotti, P.; Abi-Rached, L.; Yeh, J.H.; Paganini, J. Self-Peptidome Variation Shapes Individual Immune Responses. Trends Genet. TIG 2021, 37, 414–420. [Google Scholar] [CrossRef]
- Omer, A.; Peres, A.; Rodriguez, O.L.; Watson, C.T.; Lees, W.; Polak, P.; Collins, A.M.; Yaari, G. T Cell Receptor Beta (TRB) Germline Variability is Revealed by Inference From Repertoire Data. bioRxiv 2021. [Google Scholar] [CrossRef]
- Tanno, H.; Gould, T.M.; McDaniel, J.R.; Cao, W.; Tanno, Y.; Durrett, R.E.; Park, D.; Cate, S.J.; Hildebrand, W.H.; Dekker, C.L.; et al. Determinants governing T cell receptor alpha/beta-chain pairing in repertoire formation of identical twins. Proc. Natl. Acad. Sci. USA 2020, 117, 532–540. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Mariuzza, R.A. Structural basis for recognition of cellular and viral ligands by NK cell receptors. Front. Immunol. 2014, 5, 123. [Google Scholar] [CrossRef] [Green Version]
- Das, J.; Khakoo, S.I. NK cells: Tuned by peptide? Immunol. Rev. 2015, 267, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Naiyer, M.M.; Cassidy, S.A.; Magri, A.; Cowton, V.; Chen, K.; Mansour, S.; Kranidioti, H.; Mbiribindi, B.; Rettman, P.; Harris, S.; et al. KIR2DS2 recognizes conserved peptides derived from viral helicases in the context of HLA-C. Sci. Immunol. 2017, 2, eaal5296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Z.; Zhen, J.; Harrison, G.F.; Zhang, G.; Chen, R.; Sun, G.; Yu, Q.; Nemat-Gorgani, N.; Guethlein, L.A.; He, L.; et al. Adaptive Admixture of HLA Class I Allotypes Enhanced Genetically Determined Strength of Natural Killer Cells in East Asians. Mol. Biol. Evol. 2021, 38, 2582–2596. [Google Scholar] [CrossRef]
- Hedrick, P.W. Female choice and variation in the major histocompatibility complex. Genetics 1992, 132, 575–581. [Google Scholar] [CrossRef] [PubMed]
- Milinski, M. The Major Histocompatibility Complex, Sexual Selection, and Mate Choice. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 159–186. [Google Scholar] [CrossRef]
- Debebe, B.J.; Boelen, L.; Lee, J.C.; Investigators, I.P.C.; Thio, C.L.; Astemborski, J.; Kirk, G.; Khakoo, S.I.; Donfield, S.M.; Goedert, J.J.; et al. Identifying the immune interactions underlying HLA class I disease associations. eLife 2020, 9, e54558. [Google Scholar] [CrossRef] [Green Version]
- Popper, K. Conjectures and Refutations: The Growth of Scientific Knowledge; Routledge: London, UK, 2014. [Google Scholar]
- La Gruta, N.L.; Gras, S.; Daley, S.R.; Thomas, P.G.; Rossjohn, J. Understanding the drivers of MHC restriction of T cell receptors. Nat. Rev. Immunol. 2018, 18, 467–478. [Google Scholar] [CrossRef]
- Robinson, J.; Barker, D.J.; Georgiou, X.; Cooper, M.A.; Flicek, P.; Marsh, S.G.E. IPD-IMGT/HLA Database. Nucleic Acids Res. 2020, 48, D948–D955. [Google Scholar] [CrossRef] [PubMed]
- Gfeller, D.; Bassani-Sternberg, M. Predicting Antigen Presentation-What Could We Learn From a Million Peptides? Front. Immunol. 2018, 9, 1716. [Google Scholar] [CrossRef] [PubMed]
- Granados, D.P.; Sriranganadane, D.; Daouda, T.; Zieger, A.; Laumont, C.M.; Caron-Lizotte, O.; Boucher, G.; Hardy, M.P.; Gendron, P.; Cote, C.; et al. Impact of genomic polymorphisms on the repertoire of human MHC class I-associated peptides. Nat. Commun. 2014, 5, 3600. [Google Scholar] [CrossRef] [PubMed]
- Ebert, P.; Audano, P.A.; Zhu, Q.; Rodriguez-Martin, B.; Porubsky, D.; Bonder, M.J.; Sulovari, A.; Ebler, J.; Zhou, W.; Serra Mari, R.; et al. Haplotype-resolved diverse human genomes and integrated analysis of structural variation. Science 2021, 372, eabf7117. [Google Scholar] [CrossRef] [PubMed]
- Laumont, C.M.; Daouda, T.; Laverdure, J.P.; Bonneil, E.; Caron-Lizotte, O.; Hardy, M.P.; Granados, D.P.; Durette, C.; Lemieux, S.; Thibault, P.; et al. Global proteogenomic analysis of human MHC class I-associated peptides derived from non-canonical reading frames. Nat. Commun. 2016, 7, 10238. [Google Scholar] [CrossRef] [PubMed]
- Ruiz Cuevas, M.V.; Hardy, M.P.; Holly, J.; Bonneil, E.; Durette, C.; Courcelles, M.; Lanoix, J.; Cote, C.; Staudt, L.M.; Lemieux, S.; et al. Most non-canonical proteins uniquely populate the proteome or immunopeptidome. Cell Rep. 2021, 34, 108815. [Google Scholar] [CrossRef]
- Chong, C.; Muller, M.; Pak, H.; Harnett, D.; Huber, F.; Grun, D.; Leleu, M.; Auger, A.; Arnaud, M.; Stevenson, B.J.; et al. Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes. Nat. Commun. 2020, 11, 1293. [Google Scholar] [CrossRef] [Green Version]
- Peng, K.; Safonova, Y.; Shugay, M.; Popejoy, A.B.; Rodriguez, O.L.; Breden, F.; Brodin, P.; Burkhardt, A.M.; Bustamante, C.; Cao-Lormeau, V.M.; et al. Diversity in immunogenomics: The value and the challenge. Nat. Methods 2021, 18, 588–591. [Google Scholar] [CrossRef]
- Luo, S.; Yu, J.A.; Li, H.; Song, Y.S. Worldwide genetic variation of the IGHV and TRBV immune receptor gene families in humans. Life Sci. Alliance 2019, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Seboun, E.; Robinson, M.A.; Kindt, T.J.; Hauser, S.L. Insertion/deletion-related polymorphisms in the human T cell receptor beta gene complex. J. Exp. Med. 1989, 170, 1263–1270. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.Y.; Roberts, H.; Flores, D.S.C.; Cutler, A.J.; Brown, A.C.; Whalley, J.P.; Mielczarek, O.; Buck, D.; Lockstone, H.; Xella, B.; et al. Using de novo assembly to identify structural variation of eight complex immune system gene regions. PLoS Comput. Biol. 2021, 17, e1009254. [Google Scholar] [CrossRef] [PubMed]
- Scaviner, D.; Lefranc, M.P. The human T cell receptor alpha variable (TRAV) genes. Exp. Clin. Immunogenet. 2000, 17, 83–96. [Google Scholar] [CrossRef] [Green Version]
- Gras, S.; Chen, Z.; Miles, J.J.; Liu, Y.C.; Bell, M.J.; Sullivan, L.C.; Kjer-Nielsen, L.; Brennan, R.M.; Burrows, J.M.; Neller, M.A.; et al. Allelic polymorphism in the T cell receptor and its impact on immune responses. J. Exp. Med. 2010, 207, 1555–1567. [Google Scholar] [CrossRef] [PubMed]
- Heikkila, N.; Vanhanen, R.; Yohannes, D.A.; Saavalainen, P.; Meri, S.; Jokiranta, T.S.; Jarva, H.; Mattila, I.P.; Hamm, D.; Sormunen, S.; et al. Identifying the inheritable component of human thymic T cell repertoire generation in monozygous twins. Eur. J. Immunol. 2020, 50, 748–751. [Google Scholar] [CrossRef] [PubMed]
- Robins, H.S.; Srivastava, S.K.; Campregher, P.V.; Turtle, C.J.; Andriesen, J.; Riddell, S.R.; Carlson, C.S.; Warren, E.H. Overlap and effective size of the human CD8+ T cell receptor repertoire. Sci. Transl. Med. 2010, 2, 47ra64. [Google Scholar] [CrossRef] [Green Version]
- Tarke, A.; Sidney, J.; Kidd, C.K.; Dan, J.M.; Ramirez, S.I.; Yu, E.D.; Mateus, J.; da Silva Antunes, R.; Moore, E.; Rubiro, P.; et al. Comprehensive analysis of T cell immunodominance and immunoprevalence of SARS-CoV-2 epitopes in COVID-19 cases. bioRxiv 2020. [Google Scholar] [CrossRef]
- La Gruta, N.L.; Rothwell, W.T.; Cukalac, T.; Swan, N.G.; Valkenburg, S.A.; Kedzierska, K.; Thomas, P.G.; Doherty, P.C.; Turner, S.J. Primary CTL response magnitude in mice is determined by the extent of naive T cell recruitment and subsequent clonal expansion. J. Clin. Investig. 2010, 120, 1885–1894. [Google Scholar] [CrossRef]
- Barquera, R.; Collen, E.; Di, D.; Buhler, S.; Teixeira, J.; Llamas, B.; Nunes, J.M.; Sanchez-Mazas, A. Binding affinities of 438 HLA proteins to complete proteomes of seven pandemic viruses and distributions of strongest and weakest HLA peptide binders in populations worldwide. Hla 2020, 96, 277–298. [Google Scholar] [CrossRef]
- Nguyen, A.; David, J.K.; Maden, S.K.; Wood, M.A.; Weeder, B.R.; Nellore, A.; Thompson, R.F. Human Leukocyte Antigen Susceptibility Map for Severe Acute Respiratory Syndrome Coronavirus 2. J. Virol. 2020, 94, e00510-20. [Google Scholar] [CrossRef] [Green Version]
- Matzaraki, V.; Kumar, V.; Wijmenga, C.; Zhernakova, A. The MHC locus and genetic susceptibility to autoimmune and infectious diseases. Genome Biol. 2017, 18, 76. [Google Scholar] [CrossRef]
- Agerer, B.; Koblischke, M.; Gudipati, V.; Montano-Gutierrez, L.F.; Smyth, M.; Popa, A.; Genger, J.W.; Endler, L.; Florian, D.M.; Muhlgrabner, V.; et al. SARS-CoV-2 mutations in MHC-I-restricted epitopes evade CD8+ T cell responses. Sci. Immunol. 2021, 6, eabg6461. [Google Scholar] [CrossRef] [PubMed]
- Hamelin, D.J.; Fournelle, D.; Grenier, J.-C.; Schockaert, J.; Kovalchik, K.; Kubiniok, P.; Mostefai, F.; Duquette, J.D.; Saab, F.; Sirois, I.; et al. The mutational landscape of SARS-CoV-2 variants diversifies T cell targets in an HLA supertype-dependent manner. bioRxiv 2021. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.J.; Pade, C.; Gibbons, J.M.; Butler, D.K.; Otter, A.D.; Menacho, K.; Fontana, M.; Smit, A.; Sackville-West, J.E.; Cutino-Moguel, T.; et al. Prior SARS-CoV-2 infection rescues B and T cell responses to variants after first vaccine dose. Science 2021, 372, 1418–1423. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, E.; Ritchie, H.; Ortiz-Ospina, E.; Roser, M.; Hasell, J.; Appel, C.; Giattino, C.; Rodes-Guirao, L. A global database of COVID-19 vaccinations. Nat. Hum. Behav. 2021, 5, 947–953. [Google Scholar] [CrossRef] [PubMed]
- Creech, C.B.; Walker, S.C.; Samuels, R.J. SARS-CoV-2 Vaccines. Jama 2021, 325, 1318–1320. [Google Scholar] [CrossRef]
- Reynisson, B.; Alvarez, B.; Paul, S.; Peters, B.; Nielsen, M. NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Res. 2020, 48, W449–W454. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, P.; Aiewsakun, P.; Katzourakis, A. Prisoners of war-host adaptation and its constraints on virus evolution. Nat. Rev. Microbiol. 2019, 17, 321–328. [Google Scholar] [CrossRef]
- Salimi Alizei, E.; Hofmann, M.; Thimme, R.; Neumann-Haefelin, C. Mutational escape from cellular immunity in viral hepatitis: Variations on a theme. Curr. Opin. Virol. 2021, 50, 110–118. [Google Scholar] [CrossRef]
- Lucas, M.; Deshpande, P.; James, I.; Rauch, A.; Pfafferott, K.; Gaylard, E.; Merani, S.; Plauzolles, A.; Lucas, A.; McDonnell, W.; et al. Evidence of CD4+ T cell-mediated immune pressure on the Hepatitis C virus genome. Sci. Rep. 2018, 8, 7224. [Google Scholar] [CrossRef]
- Heininger, U.; Bachtiar, N.S.; Bahri, P.; Dana, A.; Dodoo, A.; Gidudu, J.; Santos, E.M. The concept of vaccination failure. Vaccine 2012, 30, 1265–1268. [Google Scholar] [CrossRef]
- Gelder, C.M.; Lambkin, R.; Hart, K.W.; Fleming, D.; Williams, O.M.; Bunce, M.; Welsh, K.I.; Marshall, S.E.; Oxford, J. Associations between human leukocyte antigens and nonresponsiveness to influenza vaccine. J. Infect. Dis. 2002, 185, 114–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eizaguirre, C.; Lenz, T.L.; Kalbe, M.; Milinski, M. Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. Nat. Commun. 2012, 3, 621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piret, J.; Boivin, G. Pandemics Throughout History. Front. Microbiol. 2020, 11, 631736. [Google Scholar] [CrossRef] [PubMed]
- Immel, A.; Key, F.M.; Szolek, A.; Barquera, R.; Robinson, M.K.; Harrison, G.F.; Palmer, W.H.; Spyrou, M.A.; Susat, J.; Krause-Kyora, B.; et al. Analysis of Genomic DNA from Medieval Plague Victims Suggests Long-Term Effect of Yersinia pestis on Human Immunity Genes. Mol. Biol. Evol. 2021, 38, 4059–4076. [Google Scholar] [CrossRef]
- Bramanti, B.; Wu, Y.; Yang, R.; Cui, Y.; Stenseth, N.C. Assessing the origins of the European Plagues following the Black Death: A synthesis of genomic, historical, and ecological information. Proc. Natl. Acad. Sci. USA 2021, 118, e2101940118. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pontarotti, P.; Paganini, J. COVID-19 Pandemic: Escape of Pathogenic Variants and MHC Evolution. Int. J. Mol. Sci. 2022, 23, 2665. https://doi.org/10.3390/ijms23052665
Pontarotti P, Paganini J. COVID-19 Pandemic: Escape of Pathogenic Variants and MHC Evolution. International Journal of Molecular Sciences. 2022; 23(5):2665. https://doi.org/10.3390/ijms23052665
Chicago/Turabian StylePontarotti, Pierre, and Julien Paganini. 2022. "COVID-19 Pandemic: Escape of Pathogenic Variants and MHC Evolution" International Journal of Molecular Sciences 23, no. 5: 2665. https://doi.org/10.3390/ijms23052665