Regulation of the Emissions of the Greenhouse Gas Nitrous Oxide by the Soybean Endosymbiont Bradyrhizobium diazoefficiens
Abstract
:1. Introduction
2. Results
2.1. N2O Emissions by B. diazoefficiens 110spc4 Depend on the FixK2 and NnrR Regulatory Proteins
2.2. N2O Reduction by B. diazoefficiens 110spc4 Relies on the FixK2 and NnrR Regulatory Proteins in a Nitrogen-Oxides-Independent Manner
2.3. Acidic and Alkaline pHs Impair N2O Reduction by B. diazoefficiens 110spc4
3. Discussion
4. Materials and Methods
4.1. Bacterial Strains and Growth Conditions
4.2. Gas Measurements
4.3. Determination of Bacterial Growth and NO3− and NO2− Concentrations
4.4. Kinetic Analysis from Aerobic and Anaerobic Respiration
4.5. Determination β-Galactosidase Activity
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Simon, J.; van Spanning, R.J.M.; Richardson, D.J. The organisation of proton motive and non-proton motive redox loops in prokaryotic respiratory systems. Biochim. Biophys. Acta-Bioenerg. 2008, 1777, 1480–1490. [Google Scholar] [CrossRef] [PubMed]
- Zumft, W.G. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 1997, 61, 533–616. [Google Scholar] [PubMed]
- Torres, M.J.; Simon, J.; Rowley, G.; Bedmar, E.J.; Richardson, D.J.; Gates, A.J.; Delgado, M.J. Nitrous Oxide Metabolism in Nitrate-Reducing Bacteria: Physiology and Regulatory Mechanisms. Adv. Microb. Physiol. 2016, 68, 353–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Spanning, R.J.M.; Richardson, D.J.; Ferguson, S.J. Introduction to the biochemistry and molecular biology of denitrification. In Biology of the Nitrogen Cycle, 1st ed.; Bothe, H., Ferguson, S.J., Newton, W.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; pp. 3–20. [Google Scholar]
- Conrad, R. Metabolism of Nitric Oxide in Soil and Soil Microorganisms and Regulation of Flux into the Atmosphere. Microbiol. Atmos. Trace Gases 1996, 60, 167–203. [Google Scholar] [CrossRef]
- Zumft, W.G.; Kroneck, P.M.H. Respiratory transformation of nitrous oxide (N2O) to dinitrogen by Bacteria and Archaea. Adv. Microb. Physiol. 2007, 52, 107–227. [Google Scholar] [CrossRef]
- Richardson, D.; Felgate, H.; Watmough, N.; Thomson, A.; Baggs, E. Mitigating release of the potent greenhouse gas N2O from the nitrogen cycle-could enzymic regulation hold the key? Trends Biotechnol. 2009, 27, 388–397. [Google Scholar] [CrossRef]
- Lazcano, C.; Zhu-Barker, X.; Decock, C. Effects of organic fertilizers on the soil microorganisms responsible for N2O emissions: A review. Microorganisms 2021, 9, 983. [Google Scholar] [CrossRef]
- Butterbach-Bahl, K.; Baggs, E.M.; Dannenmann, M.; Kiese, R.; Zechmeister-Boltenstern, S. Nitrous oxide emissions from soils: How well do we understand the processes and their controls? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 1621. [Google Scholar] [CrossRef]
- Inaba, S.; Ikenishi, F.; Itakura, M.; Kikuchi, M.; Eda, S.; Chiba, N.; Katsuyama, C.; Suwa, Y.; Mitsui, H.; Minamisawa, K. N2O emission from degraded soybean nodules depends on denitrification by Bradyrhizobium japonicum and other microbes in the rhizosphere. Microbes Environ. 2012, 27, 470–476. [Google Scholar] [CrossRef] [Green Version]
- Baggs, E.; Rees, R.; Smith, K.; Vinten, A.J. Crop Residues. Biomass Energ. 1983, 163–236. [Google Scholar] [CrossRef]
- Bedmar, E.J.; Robles, E.F.; Delgado, M.J. The complete denitrification pathway of the symbiotic, nitrogen-fixing bacterium Bradyrhizobium japonicum. Biochem. Soc. Trans. 2005, 33, 141–144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Delgado, M.J.; Casella, S.; Bedmar, E.J. Denitrification in rhizobia-legume symbiosis. In Biology of the Nitrogen Cycle; Bothe, H., Ferguson, S.J., Newton, W.E., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 1, pp. 83–93. [Google Scholar] [CrossRef]
- Itakura, M.; Uchida, Y.; Akiyama, H.; Hoshino, Y.T.; Shimomura, Y.; Morimoto, S.; Tago, K.; Wang, Y.; Hayakawa, C.; Uetake, Y.; et al. Mitigation of nitrous oxide emissions from soils by Bradyrhizobium japonicum inoculation. Nat. Clim. Chang. 2013, 3, 208–212. [Google Scholar] [CrossRef]
- Akiyama, H.; Hoshino, Y.T.; Itakura, M.; Shimomura, Y.; Wang, Y.; Yamamoto, A.; Tago, K.; Nakajima, Y.; Minamisawa, K.; Hayatsu, M. Mitigation of soil N2O emission by inoculation with a mixed culture of indigenous Bradyrhizobium diazoefficiens. Sci. Rep. 2016, 6, 32869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedmar, E.; Bueno, E.; Correa, D.; Torres, M.; Delgado, M.; Mesa, S. Ecology of Denitrification in Soils and Plant-Associated Bacteria. Benef. Plant-Microb. Interact. Ecol. Appl. 2013, 146–182. [Google Scholar] [CrossRef]
- Delgado, M.J.; Bonnard, N.; Tresierra-Ayala, A.; Bedmar, E.J.; Müller, P. The Bradyrhizobium japonicum napEDABC genes encoding the periplasmic nitrate reductase are essential for nitrate respiration. Microbiology 2003, 149, 3395–3403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mesa, S.; Ucurum, Z.; Hennecke, H.; Fischer, H.M. Transcription activation in vitro by the Bradyrhizobium japonicum regulatory protein FixK2. J. Bacteriol. 2005, 187, 3329–3338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres, M.J.; Bueno, E.; Jiménez-Leiva, A.; Cabrera, J.J.; Bedmar, E.J.; Mesa, S.; Delgado, M.J. FixK2 is the main transcriptional activator of Bradyrhizobium diazoefficiens nosRZDYFLX genes in response to low oxygen. Front. Microbiol. 2017, 8, 1621. [Google Scholar] [CrossRef] [Green Version]
- Bueno, E.; Robles, E.F.; Torres, M.J.; Krell, T.; Bedmar, E.J.; Delgado, M.J.; Mesa, S. Disparate response to microoxia and nitrogen oxides of the Bradyrhizobium japonicum napEDABC, nirK and norCBQD denitrification genes. Nitric Oxide-Biol. Chem. 2017, 68, 137–149. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Mao, Y.; Bergaust, L.; Bakken, L.R.; Frostegård, Å. Strains in the genus Thauera exhibit remarkably different denitrification regulatory phenotypes. Environ. Microbiol. 2013, 15, 2816–2828. [Google Scholar] [CrossRef]
- Koo, B.J.; Adriano, D.C.; Bolan, N.S.; Barton, C.D. Root exudates and microorganisms. Encycl. Soils Environ. 2005, 421–428. [Google Scholar] [CrossRef]
- Tortosa, G.; Pacheco, P.J.; Hidalgo-García, A.; Granados, A.; Delgado, A.; Mesa, S.; Bedmar, E.J.; Delgado, M.J. Copper modulates nitrous oxide emissions from soybean root nodules. Environ. Exp. Bot. 2020, 180, 104262. [Google Scholar] [CrossRef]
- Tortosa, G.; Hidalgo, A.; Salas, A.; Bedmar, E.J.; Mesa, S.; Delgado, M.J. Nitrate and flooding induce N2O emissions from soybean nodules. Symbiosis 2015, 67, 125–133. [Google Scholar] [CrossRef]
- Jiménez-Leiva, A.; Cabrera, J.J.; Bueno, E.; Torres, M.J.; Salazar, S.; Bedmar, E.J.; Delgado, M.J.; Mesa, S. Expanding the regulon of the Bradyrhizobium diazoefficiens NnrR transcription factor: New insights into the denitrification pathway. Front. Microbiol. 2019, 10, 1926. [Google Scholar] [CrossRef] [Green Version]
- Bergaust, L.; Shapleigh, J.; Frostegård, Å.; Bakken, L. Transcription and activities of NOx reductases in Agrobacterium tumefaciens: The influence of nitrate, nitrite and oxygen availability. Environ. Microbiol. 2008, 10, 3070–3081. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, S.; Dörsch, P.; Bakken, L.R. Autoxidation and acetylene-accelerated oxidation of NO in a 2-phase system: Implications for the expression of denitrification in ex situ experiments. Soil Biol. Biochem. 2013, 57, 606–614. [Google Scholar] [CrossRef] [Green Version]
- Mania, D.; Woliy, K.; Degefu, T.; Frostegård, Å. A common mechanism for efficient N2O reduction in diverse isolates of nodule-forming bradyrhizobia. Environ. Microbiol. 2020, 22, 17–31. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Mania, D.; Mousavi, S.A.; Lycus, P.; Arntzen, M.; Woliy, K.; Lindström, K.; Shapleigh, J.P.; Bakken, L.R.; Frostegård, Å. Competition for electrons favours N2O reduction in denitrifying Bradyrhizobium isolates. Environ. Microbiol. 2021, 23, 2244–2259. [Google Scholar] [CrossRef]
- Stern, A.M.; Zhu, J. An Introduction to nitric oxide sensing and response in bacteria. Adv. Appl. Microbiol. 2014, 87, 187–220. [Google Scholar] [CrossRef]
- Toledo, J.C.; Augusto, O. Connecting the chemical and biological properties of nitric oxide. Chem. Res. Toxicol. 2012, 25, 975–989. [Google Scholar] [CrossRef]
- Möller, M.N.; Rios, N.; Trujillo, M.; Radi, R.; Denicola, A.; Alvarez, B. Detection and quantification of nitric oxide-derived oxidants in biological systems. J. Biol. Chem. 2019, 294, 14776–14802. [Google Scholar] [CrossRef] [Green Version]
- Bergaust, L.; Mao, Y.; Bakken, L.R.; Frostegård, Å. Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrogen oxide reductase in Paracoccus denitrificans. Appl. Environ. Microbiol. 2010, 76, 6387–6396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shimoda, Y.; Nagata, M.; Suzuki, A.; Abe, M.; Sato, S.; Kato, T.; Tabata, S.; Higashi, S.; Uchiumi, T. Symbiotic rhizobium and nitric oxide induce gene expression of non-symbiotic hemoglobin in Lotus japonicus. Plant Cell Physiol. 2005, 46, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Ferrarini, A.; De Stefano, M.; Baudouin, E.; Pucciariello, C.; Polverari, A.; Puppo, A.; Delledonne, M. Expression of Medicago truncatula genes responsive to nitric oxide in pathogenic and symbiotic conditions. Mol. Plant-Microbe Interact. 2008, 21, 781–790. [Google Scholar] [CrossRef] [Green Version]
- Pii, Y.; Crimi, M.; Cremonese, G.; Spena, A.; Pandolfini, T. Auxin and nitric oxide control indeterminate nodule formation. BMC Plant Biol. 2007, 7, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez, C.; Gates, A.J.; Meakin, G.E.; Uchiumi, T.; Girard, L.; Richardson, D.J.; Bedmar, E.J.; Delgado, M.J. Production of nitric oxide and nitrosylleghemoglobin complexes in soybean nodules in response to flooding. Mol. Plant-Microbe Interact. 2010, 23, 702–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergaust, L.; van Spanning, R.J.M.; Frostegård, Å.; Bakken, L.R. Expression of nitrous oxide reductase in Paracoccus denitrificans is regulated by oxygen and nitric oxide through FnrP and NNR. Microbiology 2012, 158, 826–834. [Google Scholar] [CrossRef] [Green Version]
- Bueno, E.; Mania, D.; Frostegard, Å.; Bedmar, E.J.; Bakken, L.R.; Delgado, M.J. Anoxic growth of Ensifer meliloti 1021 by N2O-reduction, a potential mitigation strategy. Front. Microbiol. 2015, 6, 537. [Google Scholar] [CrossRef] [Green Version]
- Veldman, R.; Reijnders, W.N.M.; Van Spanning, R.J.M. Specificity of FNR-type regulators in Paracoccus denitrificans. Biochem. Soc. Trans. 2006, 34, 94–96. [Google Scholar] [CrossRef]
- Bouchal, P.; Struhárová, I.; Budinská, E.; Šedo, O.; Vyhlídalová, T.; Zdráhal, Z.; van Spanning, R.; Kučera, I. Unraveling an FNR based regulatory circuit in Paracoccus denitrificans using a proteomics-based approach. Biochim. Biophys. Acta-Proteins Proteom. 2010, 1804, 1350–1358. [Google Scholar] [CrossRef]
- Liu, B.; Frostegård, Å.; Bakken, L. Impaired Reduction of N2O to N2 in acid soils is due to a posttranscriptional interference with the expression of nosZ. mBio 2014, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Murray, P.J.; Hatch, D.J.; Dixon, E.R.; Stevens, R.J.; Laughlin, R.J.; Jarvis, S.C. Denitrification potential in a grassland subsoil: Effect of carbon substrates. Soil Biol. Biochem. 2004, 36, 545–547. [Google Scholar] [CrossRef]
- Carreira, C.; Nunes, R.F.; Mestre, O.; Moura, I.; Pauleta, S.R. The effect of pH on Marinobacter hydrocarbonoclasticus denitrification pathway and nitrous oxide reductase. J. Biol. Inorg. Chem. 2020, 25, 927–940. [Google Scholar] [CrossRef] [PubMed]
- Regensburger, B.; Hennecke, H. RNA polymerase from Rhizobium japonicum. Arch. Microbiol. 1983, 135, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Mesa, S.; Hauser, F.; Friberg, M.; Malaguti, E.; Fischer, H.M.; Hennecke, H. Comprehensive assessment of the regulons con-trolled by the FixLJ-FixK2-FixK1 cascade in Bradyrhizobium japonicum. J. Bacteriol. 2008, 190, 6568–6579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergersen, F.J. A Treatise on Dinitrogen Fixation. In Biology, Section III; Hardy, R.W., Silver, W., Eds.; Willey: New York, NY, USA, 1977. [Google Scholar]
- Molstad, L.; Dörsch, P.; Bakken, L.R. Robotized incubation system for monitoring gases (O2, NO, N2O N2) in denitrifying cultures. J. Microbiol. Methods 2007, 71, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.H. Experiments in Molecular Genetics; Cold Spring Harbor Laboratory: New York, NY, USA, 1972. [Google Scholar]
A | |||||
---|---|---|---|---|---|
Genotype | Oxic Growth Phase | Anoxic Growth Phase | |||
µox (h−1) | Yieldox (cell pmol− 1 e−) | µanox (h−1) | Yieldanox (cell pmol−1 e−) | ||
110spc4 | 0.10 (±0.03) a | 13.3 (±1.1) a | 0.049 (±0.004) | 5.1 (±0.8) | |
∆fixK2 | 0.055 (±0.008) b | 6.6 (±0.3) b | 0.00 | - | |
∆nnrR | 0.090 (±0.004) a | 13.1 (±0.6) a | 0.00 | - | |
B | |||||
[O2] at Onset of NO3− Reduction (µM O2) | Max [NO] in Liquid (nM) | Fraction of NO3− Reduced to N2 (%) | Final OD600 (oxic) | Final OD600 (anoxic) | |
Genotype | |||||
110spc4 | 5 (±0.3) a | 600 (±400) a | 100 | 0.080 (±0.005) a | 0.40 (±0.05) a |
∆fixK2 | - | - | - | 0.044 (±0.003) b | 0.042 (±0.002) b |
∆nnrR | 3.3 (±2.3) b | 10797 (±1700) b | - | 0.079 (± 0.001) a | 0.061 (±0.004) b |
A | ||||||
---|---|---|---|---|---|---|
Anoxic N2O Respiration −NO3− | Anoxic N2O Respiration +NO3− | |||||
Genotype | µN20 (h−1) | Yield (cell pmol−1 e−) | N2OR (µmol N2 h−1) | µN2O (h−1) | Yield (cell pmol−1 e−) | N2OR (µmol N2 h−1) |
110spc4 | 0.028 (±0.002) | 29 (±8) | 4.6 (±0.5) | 0.046 (±0.003) | 48 (±13) | 8.4 (±0.8) |
∆fixK2 | - | - | - | - | - | - |
∆nnrR | - | - | - | - | - | - |
B | ||||||
−NO3− | ||||||
Genotype | [O2] at Onset of N2O Reduction (µM O2) | Max [NO] in Liquid (nM) | % N2O Reduced to N2 | Final OD600 | ||
110spc4 | 0.66 (±0.05) | - | 100 a | 0.13 (±0.03) a | ||
∆fixK2 | - | - | - | 0.06 (±0.01) b | ||
∆nnrR | - | 32.2 (±8.8) | 8 (±0.5) b | 0.05 (±0.02) b | ||
+NO3− | ||||||
Genotype | [O2] at Onset of N2O Reduction (µM O2) | Max [NO] in Liquid (nM) | % N2O Reduced to N2 | Final OD600 | ||
110spc4 | 0.15 (±0.05) a | 113 (±30) a | 100 a | 0.2 (±0.05) a | ||
∆fixK2 | - | 35 (±6.9) b | - | 0.05 (±0.01) b | ||
∆nnrR | 0.8 (±0.3) b | 2250 (±85) c | 12.5 (±2.1) b | 0.07 (±0.01) b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bueno, E.; Mania, D.; Mesa, S.; Bedmar, E.J.; Frostegård, Å.; Bakken, L.R.; Delgado, M.J. Regulation of the Emissions of the Greenhouse Gas Nitrous Oxide by the Soybean Endosymbiont Bradyrhizobium diazoefficiens. Int. J. Mol. Sci. 2022, 23, 1486. https://doi.org/10.3390/ijms23031486
Bueno E, Mania D, Mesa S, Bedmar EJ, Frostegård Å, Bakken LR, Delgado MJ. Regulation of the Emissions of the Greenhouse Gas Nitrous Oxide by the Soybean Endosymbiont Bradyrhizobium diazoefficiens. International Journal of Molecular Sciences. 2022; 23(3):1486. https://doi.org/10.3390/ijms23031486
Chicago/Turabian StyleBueno, Emilio, Daniel Mania, Socorro Mesa, Eulogio J. Bedmar, Åsa Frostegård, Lars R. Bakken, and María J. Delgado. 2022. "Regulation of the Emissions of the Greenhouse Gas Nitrous Oxide by the Soybean Endosymbiont Bradyrhizobium diazoefficiens" International Journal of Molecular Sciences 23, no. 3: 1486. https://doi.org/10.3390/ijms23031486