Principal Component Analysis to Assess the Changes of Yield and Quality in Pinellia ternata at Different Stages after Brassinolide Treatments
Abstract
:1. Introduction
2. Results
2.1. Effects of BR Treatment on Yield of P. ternata at Different Stages
2.2. Extraction of Principal Components
2.3. PC1-PC2 Loading and Scores for Different Stage after BR Treatments
2.4. PC3-PC4 Loading and Score for Different Stage after BR Treatments
2.5. Effect of BR Treatments on PAL and GS Activity of P. ternata at Different Stages
3. Discussion
4. Materials and Methods
4.1. Plant Material and Experimental Design
4.2. Brassinolide Treatment
4.3. Tuber Yield
4.4. Soluble Protein, Free Amino Acids and Soluble Sugar
4.5. Ascorbic Acid and DPPH Radical Scavenging
4.6. Phenylalanine Ammonia-Lyase (PAL) Activity
4.7. Glutamine Synthetase (GS) Activity
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ji, X.; Huang, B.; Wang, G.; Zhang, C. The ethnobotanical, phytochemical and pharmacological profile of the genus Pinellia. Fitoterapia 2014, 93, 1–17. [Google Scholar] [CrossRef]
- Maki, T.; Takahashi, K.; Shibata, S. An anti-emetic principle of Pinellia ternata tuber. Planta Med. 1987, 53, 410–414. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Wang, J.N.; Kong, L.D.; Jiang, Q.G.; Tan, R.X. Antidepressant effects of Banxia Houpu decoction, a traditional Chinese medicinal empirical formula. J. Ethnopharmacol. 2000, 73, 277–281. [Google Scholar] [CrossRef]
- Nagai, T.; Arai, Y.; Emori, M.; Nunome, S.-Y.; Yabe, T.; Takeda, T.; Yamada, H. Anti-allergic activity of a Kampo (Japanese herbal) medicine “Sho-seiryu-to (Xiao-Qing-Long-Tang)” on airway inflammation in a mouse model. Int. Immunopharmacol. 2004, 4, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- Xue, T.; Yue, E.-K.; Chao, E.-K.; Su, Y.; Zhang, W.-J.; Zhu, Y.-F.; Teng, J.-T.; Xue, J.-P. Identification and expression of ga-related genes associated with in vitro micro-tubers formation in Pinellia ternata. Acta Sci. Pol. Hortorum Cultus 2018, 17, 85–94. [Google Scholar] [CrossRef]
- Zhang, Y.-N.; He, P.; Xue, J.-P.; Guo, Q.; Zhu, X.-Y.; Fang, L.-P.; Li, J.-B. Insecticidal activities and biochemical properties of Pinellia ternata extracts against the beet armyworm Spodoptera exigua. J. Asia-Pac. Entomol. 2017, 20, 469–476. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Y.; Guo, Q.; Zhu, G.; Wang, C.; Liu, Z. Growth, physiological responses and secondary metabolite production in Pinellia ternata under different light intensities. Pak. J. Bot. 2017, 49, 1709–1716. [Google Scholar]
- Eguchi, T.; Tanaka, H.; Yoshida, S.; Matsuoka, K. Temperature effects on the yield and quality of the medicinal plant Pinellia ternate Breit. Environ. Control. Biol. 2019, 57, 83–85. [Google Scholar] [CrossRef] [Green Version]
- Gruszka, D. Genetic and molecular bases of brassinosteroid metabolism and interactions with other phytohormones. In Brassinosteroids: Plant Growth and Development; Springer: Singapore, 2019; pp. 219–249. [Google Scholar]
- Talaat, N.B.; Shawky, B.T. 24-Epibrassinolide ameliorates the saline stress and improves the productivity of wheat (Triticum aestivum L.). Environ. Exp. Bot. 2012, 82, 80–88. [Google Scholar] [CrossRef]
- Mandava, N.B. Plant growth-promoting brassinosteroids. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1988, 39, 23–52. [Google Scholar] [CrossRef]
- Tanveer, M.; Shahzad, B.; Sharma, A.; Biju, S.; Bhardwaj, R. 24-Epibrassinolide; an active brassinolide and its role in salt stress tolerance in plants: A review. Plant Physiol. Biochem. 2018, 130, 69–79. [Google Scholar] [CrossRef]
- Ahammed, G.J.; He, B.B.; Qian, X.J.; Zhou, Y.H.; Shi, K.; Zhou, J.; Yu, J.Q.; Xia, X.J. 24-Epibrassinolide alleviates organic pollutants-retarded root elongation by promoting redox homeostasis and secondary metabolism in Cucumis sativus L. Environ. Pollut. 2017, 229, 922–931. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zheng, P.; Meng, J.; Xi, Z. Effect of exogenous 24-epibrassinolide on chlorophyll fluorescence, leaf surface morphology and cellular ultrastructure of grape seedlings (Vitis vinifera L.) under water stress. Acta Physiol. Plant. 2014, 37, 1729. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, W.; Yu, H. Effects of exogenous epibrassinolide on photosynthetic characteristics in tomato (Lycopersicon esculentum Mill) seedlings under weak light stress. J. Agric. Food Chem. 2010, 58, 3642–3645. [Google Scholar] [CrossRef]
- Kaur, N.; Pati, P.K. Harnessing the potential of brassinosteroids in abiotic stress tolerance in plants. In Brassinosteroids: Plant Growth and Developmen; Springer: Berlin/Heidelberg, Germany, 2019; pp. 407–423. [Google Scholar]
- Jung, J.; Rademacher, W. Plant growth regulating chemicals—Cereal grains. In Plant Growth Regulating Chemicals; CRC Press: Boca Raton, FL, USA, 2018; pp. 253–271. [Google Scholar]
- Malíková, J.; Swaczynová, J.; Kolář, Z.; Strnad, M. Anticancer and antiproliferative activity of natural brassinosteroids. Phytochemistry 2008, 69, 418–426. [Google Scholar] [CrossRef]
- Gao, Z.; Liang, X.-G.; Zhang, L.; Lin, S.; Zhao, X.; Zhou, L.-L.; Shen, S.; Zhou, S.-L. Spraying exogenous 6-benzyladenine and brassinolide at tasseling increases maize yield by enhancing source and sink capacity. Field Crops Res. 2017, 211, 1–9. [Google Scholar] [CrossRef]
- Pourasadollahi, A.; Si-o-Semardeh, A.; Hosseinpanahi, F.; Sohrabi, Y. Effects of different irrigation methods and hormone application on water use efficiency, yield, and leaf biochemical traits in potato. Plant Physiol. 2019, 9, 2943–2953. [Google Scholar]
- Ramraj, V.; Vyas, B.; Godrej, N.; Mistry, K.; Swami, B.; Singh, N. Effects of 28-homobrassinolide on yields of wheat, rice, groundnut, mustard, potato and cotton. J. Agric. Sci. 1997, 128, 405–413. [Google Scholar] [CrossRef]
- Serna, M.; Hernández, F.; Coll, F.; Coll, Y.; Amorós, A. Brassinosteroid analogues effects on the yield and quality parameters of greenhouse-grown pepper (Capsicum annuum L.). Plant Growth Regul. 2012, 68, 333–342. [Google Scholar] [CrossRef]
- Gomes, M.d.M.A.; Campostrini, E.; Leal, N.R.; Viana, A.P.; Ferraz, T.M.; Siqueira, L.d.N.; Rosa, R.C.C.; Netto, A.T.; Nuñez-Vázquez, M.; Zullo, M.A.T. Brassinosteroid analogue effects on the yield of yellow passion fruit plants (Passiflora edulis f. flavicarpa). Sci. Hortic. 2006, 110, 235–240. [Google Scholar] [CrossRef]
- Peng, J.; Tang, X.; Feng, H. Effects of brassinolide on the physiological properties of litchi pericarp (Litchi chinensis cv. nuomoci). Sci. Hortic. 2004, 101, 407–416. [Google Scholar] [CrossRef]
- Hu, Y.-J.; Shi, L.-X.; Sun, W.; Guo, J.-X. Effects of abscisic acid and brassinolide on photosynthetic characteristics of Leymus chinensis from Songnen Plain grassland in Northeast China. Bot. Stud. 2013, 54, 42. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, Y.; Liu, Y.; Liu, H.; Shang, Y. Evaluating effects of ellagic acid on the quality of kumquat fruits during storage. Sci. Hortic. 2018, 227, 244–254. [Google Scholar] [CrossRef]
- Braun, P.; Wild, A. The influence of brassinosteroid on growth and parameters of photosynthesis of wheat and mustard plants. J. Plant Physiol. 1984, 116, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, M.; Fariduddin, Q.; Khan, T.A.; Hayat, S. Epibrassinolide reverses the stress generated by combination of excess aluminum and salt in two wheat cultivars through altered proline metabolism and antioxidants. S. Afr. J. Bot. 2017, 112, 391–398. [Google Scholar] [CrossRef]
- Özdemir, F.; Bor, M.; Demiral, T.; Türkan, İ. Effects of 24-epibrassinolide on seed germination, seedling growth, lipid peroxidation, proline content and antioxidative system of rice (Oryza sativa L.) under salinity stress. Plant Growth Regul. 2004, 42, 203–211. [Google Scholar] [CrossRef]
- Sharma, I.; Ching, E.; Saini, S.; Bhardwaj, R.; Pati, P.K. Exogenous application of brassinosteroid offers tolerance to salinity by altering stress responses in rice variety Pusa Basmati-1. Plant Physiol. Biochem. 2013, 69, 17–26. [Google Scholar] [CrossRef]
- Slathia, S.; Sharma, A.; Choudhary, S.P. Influence of exogenously applied epibrassinolide and putrescine on protein content, antioxidant enzymes and lipid peroxidation in lipid peroxidation in Lycopersicon esculentum under salinity stress. Am. J. Plant Sci. 2012, 03, 714–720. [Google Scholar] [CrossRef] [Green Version]
- Bajguz, A. Effect of brassinosteroids on nucleic acids and protein content in cultured cells of Chlorella vulgaris. Plant Physiol. Biochem. 2000, 38, 209–215. [Google Scholar] [CrossRef]
- Mussig, C.; Fischer, S.; Altmann, T. Brassinosteroid-regulated gene expression. Plant Physiol. 2002, 129, 1241–1251. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, S.P.; Kanwar, M.; Bhardwaj, R.; Gupta, B.D.; Gupta, R.K. Epibrassinolide ameliorates Cr (VI) stress via influencing the levels of indole-3-acetic acid, abscisic acid, polyamines and antioxidant system of radish seedlings. Chemosphere 2011, 84, 592–600. [Google Scholar] [CrossRef]
- Ahanger, M.A.; Mir, R.A.; Alyemeni, M.N.; Ahmad, P. Combined effects of brassinosteroid and kinetin mitigates salinity stress in tomato through the modulation of antioxidant and osmolyte metabolism. Plant Physiol. Biochem. 2020, 147, 31–42. [Google Scholar] [CrossRef]
- Gurkok, T.; Turktas, M.; Parmaksiz, I.; Unver, T. Transcriptome profiling of alkaloid biosynthesis in elicitor induced ppium poppy. Plant Mol. Biol. Rep. 2014, 33, 673–688. [Google Scholar] [CrossRef]
- Rudell, D.R.; Buchanan, D.A.; Leisso, R.S.; Whitaker, B.D.; Mattheis, J.P.; Zhu, Y.; Varanasi, V. Ripening, storage temperature, ethylene action, and oxidative stress alter apple peel phytosterol metabolism. Phytochemistry 2011, 72, 1328–1340. [Google Scholar] [CrossRef] [PubMed]
- Wei, L.J.; Deng, X.G.; Zhu, T.; Zheng, T.; Li, P.X.; Wu, J.Q.; Zhang, D.W.; Lin, H.H. Ethylene is involved in brassinosteroids induced alternative respiratory pathway in Cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Front. Plant Sci. 2015, 6, 982. [Google Scholar] [CrossRef] [Green Version]
- Ahammed, G.J.; Zhou, Y.H.; Xia, X.J.; Mao, W.H.; Shi, K.; Yu, J.Q. Brassinosteroid regulates secondary metabolism in tomato towards enhanced tolerance to phenanthrene. Biol. Plantarum 2012, 57, 154–158. [Google Scholar] [CrossRef]
- Ghassemi-Golezani, K.; Hassanzadeh, N.; Shakiba, M.-R.; Esmaeilpour, B. Exogenous salicylic acid and 24-epi-brassinolide improve antioxidant capacity and secondary metabolites of Brassica nigra. Biocatal. Agric. Biotechnol. 2020, 26, 101636. [Google Scholar] [CrossRef]
- Zhang, G.H.; Jiang, N.H.; Song, W.L.; Ma, C.H.; Yang, S.C.; Chen, J.W. De novo sequencing and transcriptome analysis of Pinellia ternata identify the candidate genes involved in the biosynthesis of benzoic acid and ephedrine. Front. Plant Sci. 2016, 7, 1209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zucker, M. Induction of phenylalanine ammonia-lyase in Xanthium leaf disks. photosynthetic requirement and effect of daylength. Plant Physiol. 1969, 44, 912–922. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.-F.; Chu, J.-Z.; Zhang, Y.-F.; Liu, C.-Q.; Yao, X.-Q. Nutritional and active ingredients of medicinal chrysanthemum flower heads affected by different drying methods. Ind. Crops Prod. 2017, 104, 45–51. [Google Scholar] [CrossRef]
- Yu, C.; Zhang, M.; Wang, Y.; Yu, Q. Determination of the alkaloids in Pinellia ternata (Thunb.) Breit. from varied areas by UV absorption spectroscopy. LiShiZhen Med. Mater. Med. Res. 2002, 2, 73. (In Chinese) [Google Scholar]
- Zhang, S.; Min, L.; Yu, L.; Fan, H.; Zhang, L.; Zhang, Y. Comparison study on contents of β-sitosterol in three kinds of different processed products of Pinellia Ternata. Chin. Arch. Tradit. Chin. Med. 2018, 36, 42–44. [Google Scholar]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Sun, S.-W.; Lin, Y.-C.; Weng, Y.-M.; Chen, M.-J. Efficiency improvements on ninhydrin method for amino acid quantification. J. Food Compos. Anal. 2006, 19, 112–117. [Google Scholar] [CrossRef]
- Luo, X.; Huang, Q. Relationships between leaf and stem soluble sugar content and tuberous root starch accumulation in cassava. J. Agric. Sci. 2011, 3, 64–72. [Google Scholar] [CrossRef]
- Yao, X.; Chu, J.; He, X.; Ma, C.; Han, C.; Shen, H. The changes in quality ingredients of Qi chrysanthemum flowers treated with elevated UV-B radiation at different growth stages. J. Photochem. Photobiol. B 2015, 146, 18–23. [Google Scholar] [CrossRef]
- Zhang, Q.A.; Wang, X.; Song, Y.; Fan, X.H.; Garcia Martin, J.F. Optimization of pyrogallol autoxidation conditions and its application in evaluation of superoxide anion radical scavenging capacity for four antioxidants. J. AOAC Int. 2016, 99, 504–511. [Google Scholar] [CrossRef]
- Yao, X.; Liu, Q. Responses in growth, physiology and nitrogen nutrition of dragon spruce (Picea asperata) seedlings of different ages to enhanced ultraviolet-B. Acta Physiol. Plant. 2007, 29, 217–224. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, C.; Zhang, Y.; Wu, D.; Wang, M.; Du, Y.; Chu, J.; Yao, X. Principal Component Analysis to Assess the Changes of Yield and Quality in Pinellia ternata at Different Stages after Brassinolide Treatments. Int. J. Mol. Sci. 2022, 23, 15375. https://doi.org/10.3390/ijms232315375
Guo C, Zhang Y, Wu D, Wang M, Du Y, Chu J, Yao X. Principal Component Analysis to Assess the Changes of Yield and Quality in Pinellia ternata at Different Stages after Brassinolide Treatments. International Journal of Molecular Sciences. 2022; 23(23):15375. https://doi.org/10.3390/ijms232315375
Chicago/Turabian StyleGuo, Chenchen, Yanfen Zhang, Dengyun Wu, Mengyue Wang, Yu Du, Jianzhou Chu, and Xiaoqin Yao. 2022. "Principal Component Analysis to Assess the Changes of Yield and Quality in Pinellia ternata at Different Stages after Brassinolide Treatments" International Journal of Molecular Sciences 23, no. 23: 15375. https://doi.org/10.3390/ijms232315375
APA StyleGuo, C., Zhang, Y., Wu, D., Wang, M., Du, Y., Chu, J., & Yao, X. (2022). Principal Component Analysis to Assess the Changes of Yield and Quality in Pinellia ternata at Different Stages after Brassinolide Treatments. International Journal of Molecular Sciences, 23(23), 15375. https://doi.org/10.3390/ijms232315375