Expression Patterns and Gonadotropin Regulation of the TGF-β II Receptor (Bmpr2) during Ovarian Development in the Ricefield Eel Monopterus albus
Abstract
:1. Introduction
2. Results
2.1. Cloning Sequence Analysis of Ricefield Eel Bmpr2
2.2. Tissue Distribution of bmpr2 mRNA
2.3. Localization and Expression Levels of Bmpr2 in Developing Ovaries
2.4. Colocalization of Ricefield Eel Bmpr2 and Gdf9 in Ovaries
2.5. Expression of bmpr2 and gdf9 in Ovarian Tissue of Ricefield Eel after FSH and hCG Incubation In Vitro
3. Discussion
4. Materials and Methods
4.1. Experimental Fish
4.2. Isolation of Total RNA and Transcribed into cDNA
4.3. Gene Cloning and RT-qPCR
4.4. Analysis of bmpr2 Sequence Characteristics
4.5. Western Blot Analysis
4.6. Immunohistochemistry Analysis
4.7. Immunohistochemical Colocalization Analysis
4.8. Effect of hCG and FSH on bmpr2 and gdf9 Expression
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knight, P.G.; Glister, C. TGF-beta superfamily members and ovarian follicle development. Reproduction 2006, 132, 191–206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, M.Y.; Hill, C.S. Tgf-beta superfamily signaling in embryonic development and homeostasis. Dev. Cell 2009, 16, 329–343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmierer, B.; Hill, C.S. TGFbeta-SMAD signal transduction: Molecular specificity and functional flexibility. Nat. Rev. Mol. Cell Biol. 2007, 8, 970–982. [Google Scholar] [CrossRef] [PubMed]
- Mazerbourg, S.; Hsueh, A.J. Growth differentiation factor-9 signaling in the ovary. Mol. Cell. Endocrinol. 2003, 202, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Kristensen, S.G.; Andersen, K.; Clement, C.A.; Franks, S.; Hardy, K.; Andersen, C.Y. Expression of TGF-beta superfamily growth factors, their receptors, the associated SMADs and antagonists in five isolated size-matched populations of pre-antral follicles from normal human ovaries. Mol. Hum. Reprod. 2014, 20, 293–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tominaga, K.; Suzuki, H.I. TGF-β Signaling in Cellular Senescence and Aging-Related Pathology. Int. J. Mol. Sci. 2019, 20, 5002. [Google Scholar] [CrossRef] [Green Version]
- Abir, R.; Ben-Haroush, A.; Melamed, N.; Felz, C.; Krissi, H.; Fisch, B. Expression of bone morphogenetic proteins 4 and 7 and their receptors IA, IB, and II in human ovaries from fetuses and adults. Fertil. Steril. 2008, 89 (Suppl. 5), 1430–1440. [Google Scholar] [CrossRef]
- Khalaf, M.; Morera, J.; Bourret, A.; Reznik, Y.; Denoual, C.; Herlicoviez, M.; Mittre, H.; Benhaim, A. BMP system expression in GCs from polycystic ovary syndrome women and the in vitro effects of BMP4, BMP6, and BMP7 on GC steroidogenesis. Eur. J. Endocrinol. 2013, 168, 437–444. [Google Scholar] [CrossRef] [Green Version]
- Feary, E.S.; Juengel, J.L.; Smith, P.; French, M.C.; O’Connell, A.R.; Lawrence, S.B.; Galloway, S.M.; Davis, G.H.; McNatty, K.P. Patterns of expression of messenger RNAs encoding GDF9, BMP15, TGFBR1, BMPR1B, and BMPR2 during follicular development and characterization of ovarian follicular populations in ewes carrying the Woodlands FecX2W mutation. Biol. Reprod. 2007, 77, 990–998. [Google Scholar] [CrossRef]
- Rajesh, G.; Mishra, S.R.; Paul, A.; Punetha, M.; Vidyalakshmi, G.M.; Narayanan, K.; Bag, S.; Bhure, S.K.; Singh Chouhan, V.; Maurya, V.P.; et al. Transcriptional and translational abundance of Bone morphogenetic protein (BMP) 2, 4, 6, 7 and their receptors BMPR1A, 1B and BMPR2 in buffalo ovarian follicle and the role of BMP4 and BMP7 on estrogen production and survival of cultured granulosa cells. Res. Vet. Sci. 2018, 118, 371–388. [Google Scholar] [CrossRef]
- Quinn, R.L.; Shuttleworth, G.; Hunter, M.G. Immunohistochemical localization of the bone morphogenetic protein receptors in the porcine ovary. J. Anat. 2004, 205, 15–23. [Google Scholar] [CrossRef]
- Zhu, G.; Guo, B.; Pan, D.; Mu, Y.; Feng, S. Expression of bone morphogenetic proteins and receptors in porcine cumulus-oocyte complexes during in vitro maturation. Anim. Reprod. Sci. 2008, 104, 275–283. [Google Scholar] [CrossRef]
- Paradis, F.; Novak, S.; Murdoch, G.K.; Dyck, M.K.; Dixon, W.T.; Foxcroft, G.R. Temporal regulation of BMP2, BMP6, BMP15, GDF9, BMPR1A, BMPR1B, BMPR2 and TGFBR1 mRNA expression in the oocyte, granulosa and theca cells of developing preovulatory follicles in the pig. Reproduction 2009, 138, 115–129. [Google Scholar] [CrossRef]
- Stephens, C.S.; Johnson, P.A. Bone morphogenetic protein 15 may promote follicle selection in the hen. Gen. Comp. Endocrinol. 2016, 235, 170–176. [Google Scholar] [CrossRef] [Green Version]
- Yan, T.; Zhang, S.; Cai, Y.; Ma, Z.; He, J.; Zhang, Q.; Deng, F.; Ye, L.; Chen, H.; He, L.; et al. Estradiol Upregulates the Expression of the TGF-β Receptor ALK5 and BMPR2 during the Gonadal Development of Schizothorax prenanti. Animals 2021, 11, 1365. [Google Scholar] [CrossRef]
- Li, C.W.; Ge, W. Spatiotemporal expression of bone morphogenetic protein family ligands and receptors in the zebrafish ovary: A potential paracrine-signaling mechanism for oocyte-follicle cell communication. Biol. Reprod. 2011, 85, 977–986. [Google Scholar] [CrossRef] [Green Version]
- Duan, G.Q.; Jiang, H.; Hu, W.; Pan, T.S.; Hu, Y.T.; Ling, J. The Comparison of Individual Fecundity of Monopterus albus from Different Sources. Prog. Fish. Sci. 2016, 37, 84–90. [Google Scholar]
- He, Z.; Wu, Y.; Xie, J.; Wang, T.; Zhang, L.; Zhang, W. Growth differentiation factor 9 (Gdf9) was localized in the female as well as male germ cells in a protogynous hermaphroditic teleost fish, ricefield eel Monopterus albus. Gen. Comp. Endocrinol. 2012, 178, 355–362. [Google Scholar] [CrossRef]
- Norris, D.O.; Jones, R.E.; Cohen, D.C. Effects of mammalian gonadotropins (LH, FSH, hCG) and gonadal steroids on TSH-induced metamorphosis of Ambystoma tigrinum (Amphibia: Caudata). Gen. Comp. Endocrinol. 1973, 20, 467–473. [Google Scholar] [CrossRef]
- Nowosad, J.; Kucharczyk, D.; Łuczyńska, J.; Targońska, K.; Czarkowski, T.K.; Biłas, M.; Krejszeff, S.; Horváth, L.; Müller, T. Changes in European eel ovary development and body and ovary chemistry during stimulated maturation under controlled conditions: Preliminary data. Aquac. Int. 2015, 23, 13–27. [Google Scholar] [CrossRef] [Green Version]
- Kucharczyk, D.; Malinovskyi, O.; Nowosad, J.; Kowalska, A.; Cejko, B.I. Comparison of responses to artificial spawning of ruffe (Gymnocephalus cernua) specimens captured from their natural habitat to those produced in cultured conditions. Anim. Reprod. Sci. 2021, 225, 106684. [Google Scholar] [CrossRef] [PubMed]
- Kucharczyk, D.; Nowosad, J.; Wyszomirska, E.; Cejko, B.I.; Arciuch-Rutkowska, M.; Juchno, D.; Boron, A. Comparison of artificial spawning effectiveness of hCG, CPH and GnRHa in combination with dopamine inhibitors in a wild strain of ide Leuciscus idus (L.) in hatchery conditions. Anim. Reprod. Sci. 2020, 221, 106543. [Google Scholar] [CrossRef]
- Kim, M.J.; Park, S.Y.; Chang, H.R.; Jung, E.Y.; Munkhjargal, A.; Lim, J.S.; Lee, M.S.; Kim, Y. Clinical significance linked to functional defects in bone morphogenetic protein type 2 receptor, BMPR2. BMB Rep. 2017, 50, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Sieber, C.; Kopf, J.; Hiepen, C.; Knaus, P. Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev. 2009, 20, 343–355. [Google Scholar] [CrossRef] [PubMed]
- Falahati, A.; Ozaki, Y.; Damsteegt, E.L.; Zadmajid, V.; Freeman, K.J.; Lokman, P.M. Spatiotemporal expression of activin receptor-like kinase-5 and bone morphogenetic protein receptor type II in the ovary of shortfinned eel, Anguilla australis. Comp. Biochem. Physiol. Part B Biochem. Mol. Biol. 2021, 251, 110509. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, R.; van Dinther, M.; Bakkers, J.; Wilkinson, R.; Patient, R.; ten Dijke, P.; Mummery, C. Two novel type II receptors mediate BMP signalling and are required to establish left-right asymmetry in zebrafish. Dev. Biol. 2008, 315, 355–371. [Google Scholar] [CrossRef] [Green Version]
- Erickson, G.F.; Shimasaki, S. The spatiotemporal expression pattern of the bone morphogenetic protein family in rat ovary cell types during the estrous cycle. Reprod. Biol. Endocrinol. RB&E 2003, 1, 9. [Google Scholar]
- Souza, C.J.; Campbell, B.K.; McNeilly, A.S.; Baird, D.T. Effect of bone morphogenetic protein 2 (BMP2) on oestradiol and inhibin A production by sheep granulosa cells, and localization of BMP receptors in the ovary by immunohistochemistry. Reproduction 2002, 123, 363–369. [Google Scholar] [CrossRef]
- Sun, R.Z.; Lei, L.; Cheng, L.; Jin, Z.F.; Zu, S.J.; Shan, Z.Y.; Wang, Z.D.; Zhang, J.X.; Liu, Z.H. Expression of GDF-9, BMP-15 and their receptors in mammalian ovary follicles. J. Mol. Histol. 2010, 41, 325–332. [Google Scholar] [CrossRef]
- Jayawardana, B.C.; Shimizu, T.; Nishimoto, H.; Kaneko, E.; Tetsuka, M.; Miyamoto, A. Hormonal regulation of expression of growth differentiation factor-9 receptor type I and II genes in the bovine ovarian follicle. Reproduction 2006, 131, 545–553. [Google Scholar] [CrossRef]
- Hunt, P.A.; Hassold, T.J. Human female meiosis: What makes a good egg go bad? Trends Genet. TIG 2008, 24, 86–93. [Google Scholar] [CrossRef]
- Edson, M.A.; Nagaraja, A.K.; Matzuk, M.M. The mammalian ovary from genesis to revelation. Endocr. Rev. 2009, 30, 624–712. [Google Scholar] [CrossRef]
- Sánchez, F.; Smitz, J. Molecular control of oogenesis. Biochim. Biophys. Acta 2012, 1822, 1896–1912. [Google Scholar] [CrossRef] [Green Version]
- McKenzie, L.J.; Pangas, S.A.; Carson, S.A.; Kovanci, E.; Cisneros, P.; Buster, J.E.; Amato, P.; Matzuk, M.M. Human cumulus granulosa cell gene expression: A predictor of fertilization and embryo selection in women undergoing IVF. Hum. Reprod. 2004, 19, 2869–2874. [Google Scholar] [CrossRef] [Green Version]
- Gilchrist, R.B.; Ritter, L.J.; Cranfield, M.; Jeffery, L.A.; Amato, F.; Scott, S.J.; Myllymaa, S.; Kaivo-Oja, N.; Lankinen, H.; Mottershead, D.G.; et al. Immunoneutralization of growth differentiation factor 9 reveals it partially accounts for mouse oocyte mitogenic activity. Biol. Reprod. 2004, 71, 732–739. [Google Scholar] [CrossRef]
- McGrath, S.A.; Esquela, A.F.; Lee, S.J. Oocyte-specific expression of growth/differentiation factor-9. Mol. Endocrinol. 1995, 9, 131–136. [Google Scholar]
- Hosoe, M.; Kaneyama, K.; Ushizawa, K.; Hayashi, K.G.; Takahashi, T. Quantitative analysis of bone morphogenetic protein 15 (BMP15) and growth differentiation factor 9 (GDF9) gene expression in calf and adult bovine ovaries. Reprod. Biol. Endocrinol. RB&E 2011, 9, 33. [Google Scholar]
- Abadjieva, D.; Kistanova, E. Tribulus terrestris Alters the Expression of Growth Differentiation Factor 9 and Bone Morphogenetic Protein 15 in Rabbit Ovaries of Mothers and F1 Female Offspring. PLoS ONE 2016, 11, e0150400. [Google Scholar] [CrossRef]
- Juengel, J.L.; Hudson, N.L.; Heath, D.A.; Smith, P.; Reader, K.L.; Lawrence, S.B.; O’Connell, A.R.; Laitinen, M.P.; Cranfield, M.; Groome, N.P.; et al. Growth differentiation factor 9 and bone morphogenetic protein 15 are essential for ovarian follicular development in sheep. Biol. Reprod. 2002, 67, 1777–1789. [Google Scholar] [CrossRef] [Green Version]
- Johnson, P.A.; Stephens, C.S.; Giles, J.R. The domestic chicken: Causes and consequences of an egg a day. Poult. Sci. 2015, 94, 816–820. [Google Scholar] [CrossRef]
- Liu, L.; Ge, W. Growth differentiation factor 9 and its spatiotemporal expression and regulation in the zebrafish ovary. Biol. Reprod. 2007, 76, 294–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, J.; Albertini, D.F.; Nishimori, K.; Kumar, T.R.; Lu, N.; Matzuk, M.M. Growth differentiation factor-9 is required during early ovarian folliculogenesis. Nature 1996, 383, 531–535. [Google Scholar] [CrossRef] [PubMed]
- Silva, J.R.; van den Hurk, R.; van Tol, H.T.; Roelen, B.A.; Figueiredo, J.R. Expression of growth differentiation factor 9 (GDF9), bone morphogenetic protein 15 (BMP15), and BMP receptors in the ovaries of goats. Mol. Reprod. Dev. 2005, 70, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Lau, M.T.; Ge, W. Cloning of Smad2, Smad3, Smad4, and Smad7 from the goldfish pituitary and evidence for their involvement in activin regulation of goldfish FSHbeta promoter activity. Gen. Comp. Endocrinol. 2005, 141, 22–38. [Google Scholar] [CrossRef] [PubMed]
- Child, T.J.; Abdul-Jalil, A.K.; Gulekli, B.; Tan, S.L. In vitro maturation and fertilization of oocytes from unstimulated normal ovaries, polycystic ovaries, and women with polycystic ovary syndrome. Fertil. Steril. 2001, 76, 936–942. [Google Scholar] [CrossRef]
- Gloaguen, P.; Crépieux, P.; Heitzler, D.; Poupon, A.; Reiter, E. Mapping the follicle-stimulating hormone-induced signaling networks. Front. Endocrinol. 2011, 2, 45. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, F.; Yamamoto, S.; Erickson, G.F.; Shimasaki, S. Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J. Biol. Chem. 2001, 276, 11387–11392. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.L.; Xu, Y.R.; Yang, W.X.; Sun, Y. The role of FSH and TGF-β superfamily in follicle atresia. Aging 2018, 10, 305–321. [Google Scholar] [CrossRef]
- Dal Canto, M.; Brambillasca, F.; Mignini Renzini, M.; Coticchio, G.; Merola, M.; Lain, M.; De Ponti, E.; Fadini, R. Cumulus cell-oocyte complexes retrieved from antral follicles in IVM cycles: Relationship between COCs morphology, gonadotropin priming and clinical outcome. J. Assist. Reprod. Genet. 2012, 29, 513–519. [Google Scholar] [CrossRef] [Green Version]
- Orisaka, M.; Orisaka, S.; Jiang, J.Y.; Craig, J.; Wang, Y.; Kotsuji, F.; Tsang, B.K. Growth differentiation factor 9 is antiapoptotic during follicular development from preantral to early antral stage. Mol. Endocrinol. 2006, 20, 2456–2468. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, N.; Orisaka, M.; Cao, M.; Kotsuji, F.; Leader, A.; Sakuragi, N.; Tsang, B.K. Growth differentiation factor-9 mediates follicle-stimulating hormone-thyroid hormone interaction in the regulation of rat preantral follicular development. Endocrinology 2009, 150, 5566–5574. [Google Scholar] [CrossRef]
- Choi, S.G.; Wang, Q.; Jia, J.; Pincas, H.; Turgeon, J.L.; Sealfon, S.C. Growth differentiation factor 9 (GDF9) forms an incoherent feed-forward loop modulating follicle-stimulating hormone β-subunit (FSHβ) gene expression. J. Biol. Chem. 2014, 289, 16164–16175. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Roy, S.K. Growth differentiation factor-9 and stem cell factor promote primordial follicle formation in the hamster: Modulation by follicle-stimulating hormone. Biol. Reprod. 2004, 70, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Kidder, G.M.; Vanderhyden, B.C. Bidirectional communication between oocytes and follicle cells: Ensuring oocyte developmental competence. Can. J. Physiol. Pharmacol. 2010, 88, 399–413. [Google Scholar] [CrossRef]
- Chen, A.Q.; Yu, S.D.; Wang, Z.G.; Xu, Z.R.; Yang, Z.G. Stage-specific expression of bone morphogenetic protein type I and type II receptor genes: Effects of follicle-stimulating hormone on ovine antral follicles. Anim. Reprod. Sci. 2009, 111, 391–399. [Google Scholar] [CrossRef]
- Austin, E.D.; Hamid, R.; Hemnes, A.R.; Loyd, J.E.; Blackwell, T.; Yu, C.; Iii, J.A.P.; Gaddipati, R.; Gladson, S.; Gu, E.; et al. BMPR2 expression is suppressed by signaling through the estrogen receptor. Biol. Sex Differ. 2012, 3, 6. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.S.; Ijiri, S.; Trant, J.M. Molecular biology of channel catfish gonadotropin receptors: 1. Cloning of a functional luteinizing hormone receptor and preovulatory induction of gene expression. Biol. Reprod. 2001, 64, 1010–1018. [Google Scholar] [CrossRef] [Green Version]
- Van der Kraak, G. Role of calcium in the control of steroidogenesis in preovulatory ovarian follicles of the goldfish. Gen. Comp. Endocrinol. 1991, 81, 268–275. [Google Scholar] [CrossRef]
- Pang, Y.; Ge, W. Gonadotropin regulation of activin betaA and activin type IIA receptor expression in the ovarian follicle cells of the zebrafish, Danio rerio. Mol. Cell. Endocrinol. 2002, 188, 195–205. [Google Scholar] [CrossRef]
- Yu, H.; Wang, Y.; Wang, M.; Liu, Y.; Cheng, J.; Zhang, Q. Growth differentiation factor 9 (gdf9) and bone morphogenetic protein 15 (bmp15) are potential intraovarian regulators of steroidogenesis in Japanese flounder (Paralichthys olivaceus). Gen. Comp. Endocrinol. 2020, 297, 113547. [Google Scholar] [CrossRef]
- Vitt, U.A.; Mazerbourg, S.; Klein, C.; Hsueh, A.J. Bone morphogenetic protein receptor type II is a receptor for growth differentiation factor-9. Biol. Reprod. 2002, 67, 473–480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nio-Kobayashi, J.; Trendell, J.; Giakoumelou, S.; Boswell, L.; Nicol, L.; Kudo, M.; Sakuragi, N.; Iwanaga, T.; Duncan, W.C. Bone morphogenetic proteins are mediators of luteolysis in the human corpus luteum. Endocrinology 2015, 156, 1494–1503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, Q.; Guo, W.; Gao, Y.; Tang, R.; Li, D. Reference gene selection for real-time RT-PCR normalization in rice field eel (Monopterus albus) during gonad development. Fish Physiol. Biochem. 2014, 40, 1721–1730. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Deng, F.; Xiong, S.; Cai, Y.; He, Z.; Wang, X.; Li, S.; Yang, D.; Yan, T. Expression and regulation of Smad2 by gonadotropins in the protogynous hermaphroditic ricefield eel (Monopterus albus). Fish Physiol. Biochem. 2020, 46, 1155–1165. [Google Scholar] [CrossRef]
- Letunic, I.; Khedkar, S.; Bork, P. SMART: Recent updates, new developments and status in 2020. Nucleic Acids Res. 2021, 49, D458–D460. [Google Scholar] [CrossRef]
- Tamura, K.; Stecher, G.; Kumar, S. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 2021, 38, 3022–3027. [Google Scholar] [CrossRef]
Primer | Sequences (5′–3′) | Primer | Sequences (5′–3′) |
---|---|---|---|
bmpr2F1 | AAAGAAGGGGACCAGAAGAA | bmpr2R1 | CATGCGGTAAGCAAAGAAAG |
bmpr2F2 | TGACCAACCTCCCTCCGCAG | bmpr2R2 | GATTGTCCCCACCTCACTTA |
bmpr2F3 | AAGGGATGGTCTGTGTACGT | bmpr2R3 | ACGTACACAGACCATCCCTT |
bmpr2F4 | GAGACGATGGAGGACTGTTG | bmpr2R4 | AGTGGTGGTTGTAGTGGAGG |
bmpr2F5 | TCCAAGAGACACGTCATCGA | bmpr2R5 | GCCCAACAGACCAGACACAA |
bmpr2qF1 | AGGCAGGGAACCACCCA | bmpr2qR1 | GGAGCGAACCGCCAAAC |
gdf9qF1 | AGAAGGTGGAGAGGGAATC | gdf9qR1 | GAAGTCATACAAGGCACATCA |
ef1αqF1 | CGCTGCTGTTTCCTTCGTCC | ef1αqR1 | TTGCGTTCAATCTTCCATCCC |
rpl17qF1 | GTTGTAGCGACGGAAAGGGAC | rpl17qR1 | GACTAAATCATGCAAGTCGAGGG |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Zheng, L.; Chen, Q.; Xiong, S.; He, Z.; Hu, J.; Ma, Z.; Zhang, Q.; He, J.; Ye, L.; et al. Expression Patterns and Gonadotropin Regulation of the TGF-β II Receptor (Bmpr2) during Ovarian Development in the Ricefield Eel Monopterus albus. Int. J. Mol. Sci. 2022, 23, 15349. https://doi.org/10.3390/ijms232315349
He Z, Zheng L, Chen Q, Xiong S, He Z, Hu J, Ma Z, Zhang Q, He J, Ye L, et al. Expression Patterns and Gonadotropin Regulation of the TGF-β II Receptor (Bmpr2) during Ovarian Development in the Ricefield Eel Monopterus albus. International Journal of Molecular Sciences. 2022; 23(23):15349. https://doi.org/10.3390/ijms232315349
Chicago/Turabian StyleHe, Zhi, Li Zheng, Qiqi Chen, Sen Xiong, Zhide He, Jiaxiang Hu, Zhijun Ma, Qian Zhang, Jiayang He, Lijuan Ye, and et al. 2022. "Expression Patterns and Gonadotropin Regulation of the TGF-β II Receptor (Bmpr2) during Ovarian Development in the Ricefield Eel Monopterus albus" International Journal of Molecular Sciences 23, no. 23: 15349. https://doi.org/10.3390/ijms232315349
APA StyleHe, Z., Zheng, L., Chen, Q., Xiong, S., He, Z., Hu, J., Ma, Z., Zhang, Q., He, J., Ye, L., He, L., Luo, J., Gu, X., Zhang, M., Tang, Z., Jiao, Y., Pu, Y., Xiong, J., Gao, K., ... Yan, T. (2022). Expression Patterns and Gonadotropin Regulation of the TGF-β II Receptor (Bmpr2) during Ovarian Development in the Ricefield Eel Monopterus albus. International Journal of Molecular Sciences, 23(23), 15349. https://doi.org/10.3390/ijms232315349