Acarbose Protects Glucolipotoxicity-Induced Diabetic Nephropathy by Inhibiting Ras Expression in High-Fat Diet-Fed db/db Mice
Abstract
:1. Introduction
2. Results
2.1. Effects of acarbose on Blood Glucose Level and Body Weight of db/db Mice
2.2. Effects of Acarbose on the Serum Biochemical Parameters of db/db Mice
2.3. Effects of Acarbose on Renal Histological CHANGES in Experimental Animals
2.4. Effects of acarbose Treatment on Renal Ras Expression in Diabetic Mice
2.5. Acarbose Inhibits Renal Fibrosis-Related Pathways in Mice
3. Discussion
4. Materials and Methods
4.1. Preparation of Drug
4.2. Animal Experiments
4.3. Animal Grouping and Drug Administration
4.4. Serum Biochemical Measurements
4.5. Renal Morphology Assessment and Immunohistochemistry Analysis
4.6. Immunohistochemistry
4.7. Western Blot Analysis
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wolf, G.; Ziyadeh, F.N. Cellular and molecular mechanisms of proteinuria in diabetic nephropathy. Nephron Physiol. 2007, 106, 26–31. [Google Scholar] [CrossRef]
- Dronavalli, S.; Duka, I.; Bakris, G.L. The pathogenesis of diabetic nephropathy. Nat. Clin. Pract. Endocrinol. Metab. 2008, 4, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Hovind, P.; Rossing, P.; Tarnow, L.; Smidt, U.M.; Parving, H.-H. Progression of diabetic nephropathy. Kidney Int. 2001, 59, 702–709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leehey, D.J.; Singh, A.K.; Alavi, N.; Singh, R. Role of angiotensin II in diabetic nephropathy. Kidney Int. 2000, 58, S93–S98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, C.; Sun, L.; Xiao, L.; Han, Y.; Fu, X.; Xiong, X.; Xu, X.; Liu, Y.; Yang, S.; Liu, F. Insights into the mechanisms involved in the expression and regulation of extracellular matrix proteins in diabetic nephropathy. Curr. Med. Chem 2015, 22, 2858–2870. [Google Scholar] [CrossRef] [Green Version]
- Kanwar, Y.S.; Sun, L.; Xie, P.; Liu, F.-y.; Chen, S. A glimpse of various pathogenetic mechanisms of diabetic nephropathy. Annu. Rev. Pathol. 2011, 6, 395. [Google Scholar] [CrossRef] [Green Version]
- Clotet, S.; Riera, M.; Pascual, J.; Soler, M.J. RAS and sex differences in diabetic nephropathy. Am. J. Physiol.-Ren. Physiol. 2016, 310, F945–F957. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Peng, F.; Gao, B.; Ingram, A.J.; Krepinsky, J.C. Mechanical strain-induced RhoA activation requires NADPH oxidase-mediated ROS generation in caveolae. Antioxid. Redox Signal. 2010, 13, 959–973. [Google Scholar] [CrossRef]
- Rao, V.; Rao, L.V.; Tan, S.H.; Candasamy, M.; Bhattamisra, S.K. Diabetic nephropathy: An update on pathogenesis and drug development. Diabetes Metab. Syndr. Clin. Res. Rev. 2019, 13, 754–762. [Google Scholar]
- Dash, R.P.; Babu, R.J.; Srinivas, N.R. Reappraisal and perspectives of clinical drug–drug interaction potential of α-glucosidase inhibitors such as acarbose, voglibose and miglitol in the treatment of type 2 diabetes mellitus. Xenobiotica 2018, 48, 89–108. [Google Scholar] [CrossRef]
- AG, H.B.B. Pharmacology of α-glucosidase inhibition. Eur. J. Clin. Investig. 1994, 24, 3–10. [Google Scholar] [CrossRef]
- Shi, R.; Niu, Z.; Wu, B.; Zhang, T.; Cai, D.; Sun, H.; Hu, Y.; Mo, R.; Hu, F. Nomogram for the risk of diabetic nephropathy or diabetic Retinopathy among patients with type 2 diabetes mellitus based on questionnaire and biochemical indicators: A cross-sectional study. Diabetes Metab. Syndr. Obes. Targets Ther. 2020, 13, 1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, A.; Rosenmann, E. Acarbose treatment and diabetic nephropathy in the Cohen diabetic rat. Horm. Metab. Res. 1990, 22, 511–515. [Google Scholar] [CrossRef] [PubMed]
- Song, L.; Kong, X.; Yang, Z.; Zhang, J.; Yang, W.; Zhang, B.; Chen, X.; Wang, X. Acarbose Reduces Low-Grade Albuminuria Compared to Metformin in Chinese Patients with Newly Diagnosed Type 2 Diabetes. Diabetes Metab. Syndr. Obes. Targets Ther. 2021, 14, 4451. [Google Scholar] [CrossRef]
- Wu, C.-C.; Hung, C.-N.; Shin, Y.-C.; Wang, C.-J.; Huang, H.-P. Myrciaria cauliflora extracts attenuate diabetic nephropathy involving the Ras signaling pathway in streptozotocin/nicotinamide mice on a high fat diet. J. Food Drug Anal. 2016, 24, 136–146. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-L.; Wang, F.-S.; Kuo, Y.-R.; Huang, Y.-T.; Huang, H.-C.; Sun, Y.-C.; Kuo, Y.-H. Ras modulation of superoxide activates ERK-dependent fibronectin expression in diabetes-induced renal injuries. Kidney Int. 2006, 69, 1593–1600. [Google Scholar] [CrossRef] [Green Version]
- Daniels Gatward, L.F.; Kennard, M.R.; Smith, L.I.; King, A.J. The use of mice in diabetes research: The impact of physiological characteristics, choice of model and husbandry practices. Diabet. Med. 2021, 38, e14711. [Google Scholar] [CrossRef]
- Kitada, M.; Ogura, Y.; Koya, D. Rodent models of diabetic nephropathy: Their utility and limitations. Int. J. Nephrol. Renov. Dis. 2016, 9, 279. [Google Scholar] [CrossRef] [Green Version]
- Azuma, K.; Toyofuku, Y.; Iesaki, T.; Otsuka, A.; Tanaka, A.; Mita, T.; Hirose, T.; Tanaka, Y.; Daida, H.; Kawamori, R. Acarbose, an α-glucosidase inhibitor, improves endothelial dysfunction in Goto-Kakizaki rats exhibiting repetitive blood glucose fluctuation. Biochem. Biophys. Res. Commun. 2006, 345, 688–693. [Google Scholar] [CrossRef]
- Derosa, G.; Maffioli, P.; Ferrari, I.; Fogari, E.; D’Angelo, A.; Palumbo, I.; Randazzo, S.; Bianchi, L.; Cicero, A.F. Acarbose actions on insulin resistance and inflammatory parameters during an oral fat load. Eur. J. Pharm. 2011, 651, 240–250. [Google Scholar] [CrossRef]
- Chao, C.-T.; Wang, J.; Huang, J.-W.; Chien, K.-L. Acarbose use and liver injury in diabetic patients with severe renal insufficiency and hepatic diseases: A propensity score-matched cohort study. Front. Pharm. 2018, 9, 860. [Google Scholar] [CrossRef] [PubMed]
- Kurt, H.; Ozbayer, C.; Degirmenci, I.; Ustuner, M.C.; Ozden, H.; Civi, K.; Gunes, H.V. Comparative therapeutic potentials of acarbose and a formulated herbal extract on type 2 diabetic rats. Afr. J. Pharm. Pharm. 2012, 6, 2194–2204. [Google Scholar]
- Zhao, J.-H. Mesangial cells and renal fibrosis. Adv. Exp. Med. Biol. 2019, 165–194. [Google Scholar]
- Li, H.; Rong, P.; Ma, X.; Nie, W.; Chen, Y.; Zhang, J.; Dong, Q.; Yang, M.; Wang, W. Mouse umbilical cord mesenchymal stem cell paracrine alleviates renal fibrosis in diabetic nephropathy by reducing myofibroblast transdifferentiation and cell proliferation and upregulating MMPs in mesangial cells. J. Diabetes 2020, 2020, 3847171. [Google Scholar]
- Ma, T.-T.; Meng, X.-M. TGF-β/Smad and renal fibrosis. Adv. Exp. Med. Biol. 2019, 347–364. [Google Scholar] [CrossRef]
- Yuan, Q.; Tan, R.J.; Liu, Y. Myofibroblast in kidney fibrosis: Origin, activation, and regulation. Adv. Exp. Med. Biol. 2019, 253–283. [Google Scholar]
- Cepas, V.; Collino, M.; Mayo, J.C.; Sainz, R.M. Redox signaling and advanced glycation endproducts (AGEs) in diet-related diseases. Antioxidants 2020, 9, 142. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Zheng, Z.; Guo, H.; Lian, X.; Rane, M.J.; Cai, L.; Kim, K.S.; Kim, K.T.; Zhang, Z.; Bi, L. 4-O-methylhonokiol ameliorates type 2 diabetes-induced nephropathy in mice likely by activation of AMPK-mediated fatty acid oxidation and Nrf2-mediated anti-oxidative stress. Toxicol. Appl. Pharm. 2019, 370, 93–105. [Google Scholar] [CrossRef]
- Aghadavoud, E.; Nasri, H.; Amiri, M. Molecular signaling pathways of diabetic kidney disease; new concepts. J. Epidemiol. 2017, 2, e09. [Google Scholar]
- Xu, J.; Lamouille, S.; Derynck, R. TGF-β-induced epithelial to mesenchymal transition. Cell Res. 2009, 19, 156–172. [Google Scholar] [CrossRef]
- Muñoz-Félix, J.M.; Martínez-Salgado, C. Dissecting the Involvement of Ras GTPases in Kidney Fibrosis. Genes 2021, 12, 800. [Google Scholar] [CrossRef] [PubMed]
- Barros, J.; da Silva Santos, R.; da Silva Reis, A.A. Implication of the MAPK signalling pathway in the pathogenesis of diabetic nephropathy. Diabetes 2019. [Google Scholar]
- Lee, A.-T.; Yang, M.-Y.; Lee, Y.-J.; Yang, T.-W.; Wang, C.-C.; Wang, C.-J. Gallic Acid Improves Diabetic Steatosis by Downregulating MicroRNA-34a-5p through Targeting NFE2L2 Expression in High-Fat Diet-Fed db/db Mice. Antioxidants 2021, 11, 92. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Deng, Y.; Yu, J.; Sun, Y.; Ren, G.; Cai, J.; Zhu, J.; Jiang, G. Acarbose accelerates wound healing via Akt/eNOS signaling in db/db mice. Oxidative Med. Cell. Longev. 2017, 2017, 7809581. [Google Scholar] [CrossRef] [Green Version]
- Huang, C.-N.; Wang, C.-J.; Lin, C.-L.; Yen, A.-T.; Li, H.-H.; Peng, C.-H. Abelmoschus esculentus subfractions attenuate beta amyloid-induced neuron apoptosis by regulating DPP-4 with improving insulin resistance signals. PLoS ONE 2019, 14, e0217400. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.-W.; Yang, M.-Y.; Hung, T.-W.; Chang, Y.-C.; Wang, C.-J. Nelumbo nucifera leaves extract attenuate the pathological progression of diabetic nephropathy in high-fat diet-fed and streptozotocin-induced diabetic rats. J. Food Drug. Anal. 2019, 27, 736–748. [Google Scholar] [CrossRef]
- Festing, M.F.; Altman, D.G. Guidelines for the design and statistical analysis of experiments using laboratory animals. ILAR J. 2002, 43, 244–258. [Google Scholar] [CrossRef]
Control | db/db | db/db + HFD | db/db + HFD +Ab | |
---|---|---|---|---|
HbA1c(%) | 4.00 ± 0.10 | 8.90 ± 0.57 # | 9.30 ± 0.56 # | 8.03 ± 1.03 |
Insulin (pg/L) | 1.02 ± 0.03 | 5.1 ± 0.12 # | 7.97 ± 0.54 # | 5.40 ± 0.33 * |
HOMA-IR | 0.25 ± 0.02 | 5.55 ± 0.29 # | 11.6 ± 0.30 # | 7.44 ± 0.25 * |
Cholesterol (mg/dL) | 78.33 ± 7.22 | 219.00 ± 4.51 # | 450.00 ± 18.52 # | 335.00 ± 22.85 * |
TG (mg/dL) | 86.67 ± 2.73 | 150.33 ± 2.67 # | 357.67 ± 18.77 # | 175.33 ± 18.70 * |
HDL-C (mg/dL) | 46.00 ± 4.73 | 114.67 ± 1.67 # | 144.00 ± 5.86 # | 119.33 ± 7.26 * |
LDL-C (mg/dL) | 15.33 ± 2.03 | 23.00 ± 5.51 # | 167.00 ± 2.65 # | 66.33 ± 11.26 * |
Cholesterol/HDL-C | 1.70 | 1.91 | 3.13 | 2.81 |
BUN (mg/dL) | 16.40 ± 1.72 | 22.90 ± 0.47 # | 30.07 ± 0.38 # | 20.10 ± 0.91 * |
CRE (mg/dL) | 0.43 ± 0.03 | 0.63 ± 0.03 # | 0.87 ± 0.03 # | 0.60 ± 0.06 * |
UA (mg/dL) | 3.07 ± 0.09 | 5.03 ± 0.19 # | 9.87 ± 0.19 | 4.93 ± 0.20 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hung, T.-W.; Yu, M.-H.; Yang, T.-Y.; Yang, M.-Y.; Chen, J.-Y.; Chan, K.-C.; Wang, C.-J. Acarbose Protects Glucolipotoxicity-Induced Diabetic Nephropathy by Inhibiting Ras Expression in High-Fat Diet-Fed db/db Mice. Int. J. Mol. Sci. 2022, 23, 15312. https://doi.org/10.3390/ijms232315312
Hung T-W, Yu M-H, Yang T-Y, Yang M-Y, Chen J-Y, Chan K-C, Wang C-J. Acarbose Protects Glucolipotoxicity-Induced Diabetic Nephropathy by Inhibiting Ras Expression in High-Fat Diet-Fed db/db Mice. International Journal of Molecular Sciences. 2022; 23(23):15312. https://doi.org/10.3390/ijms232315312
Chicago/Turabian StyleHung, Tung-Wei, Meng-Hsun Yu, Tsung-Yuan Yang, Mon-Yuan Yang, Jia-Yu Chen, Kuei-Chuan Chan, and Chau-Jong Wang. 2022. "Acarbose Protects Glucolipotoxicity-Induced Diabetic Nephropathy by Inhibiting Ras Expression in High-Fat Diet-Fed db/db Mice" International Journal of Molecular Sciences 23, no. 23: 15312. https://doi.org/10.3390/ijms232315312
APA StyleHung, T.-W., Yu, M.-H., Yang, T.-Y., Yang, M.-Y., Chen, J.-Y., Chan, K.-C., & Wang, C.-J. (2022). Acarbose Protects Glucolipotoxicity-Induced Diabetic Nephropathy by Inhibiting Ras Expression in High-Fat Diet-Fed db/db Mice. International Journal of Molecular Sciences, 23(23), 15312. https://doi.org/10.3390/ijms232315312