Amyloid β-Peptide Causes the Permanent Activation of CaMKIIα through Its Oxidation
Abstract
:1. Introduction
2. Results
2.1. Oxidation Induces Autonomous CaMKIIα Activity
2.2. Aβ Triggers CaMKIIα Oxidation
2.3. In Silico Modelling of ox-CaMKIIα
2.4. Pathophysiological Effects of ox-CaMKIIα
3. Discussion
4. Material and Methods
4.1. Cell Lines
4.2. Primary Cultures of Mouse Hippocampal Neurons
4.3. Human Cortical Brain Samples
4.4. Mouse Cortical Brain Samples
4.5. Aβ Preparation
4.6. Aβ Oligomerization
4.7. CaMKIIα Kinase Assay
4.8. Reactive Oxygen Species (ROS) Production Assay
4.9. MTT Reduction Assay
4.10. Study of CaMKIIα Oxidation by WB in Neuroblastoma Cells
4.11. Study of CaMKIIα Oxidation by Immunofluorescence in Neuroblastoma Cells
4.12. Study of CaMKIIα Oxidation by Proximity Ligation Assay
4.13. Immunoprecipitation and Study of CaMKIIα Phosphorylation and Oxidation
4.14. Structural In Silico Modelling of CaMKIIα Oxidation
4.15. Study of CaMKIIα Oxidation by Immunofluorescence in Human Samples
4.16. Study of CREB Phosphorylation by Immunofluorescence in Murine Samples
4.17. Study of CREB Phosphorylation in Primary Hippocampal Neurons
4.18. Real Time PCR Analysis of Gene Transcription Due to CREB Phosphorylation
4.19. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Nichols, E.; Vos, T. The estimation of the global prevalence of dementia from 1990-2019 and forecasted prevalence through 2050: An analysis for the Global Burden of Disease (GBD) study 2019. Alzheimer’s Dement. 2021, 17, e051496. [Google Scholar] [CrossRef]
- Alzheimer, A.; Stelzmann, R.A.; Norman Schnitzlein, H.; Reed Murtagh, F. An English translation of Alzheimer’s 1907 paper, “Uber eine eigenartige Erkankung der Hirnrinde”. Clin. Anat. 1995, 8, 429–431. [Google Scholar] [PubMed]
- Todorov, A.B.; Go, R.C.P.; Constantinidis, J.; Elston, R.C. Specificity of the clinical diagnosis of dementia. J. Neurol. Sci. 1975, 26, 81–98. [Google Scholar] [CrossRef] [PubMed]
- Westerman, M.A.; Cooper-Blacketer, D.; Mariash, A.; Kotilinek, L.; Kawarabayashi, T.; Younkin, L.H.; Carlson, G.A.; Younkin, S.G.; Ashe, K.H. The relationship between Abeta and memory in the Tg2576 mouse model of Alzheimer’s disease. J. Neurosci. 2002, 22, 1858–1867. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, S.J.; Grimwood, P.D.; Morris, R.G.M. Synaptic Plasticity and Memory: An Evaluation of the Hypothesis. Annu. Rev. Neurosci. 2003, 23, 649–711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whitlock, J.R.; Heynen, A.J.; Shuler, M.G.; Bear, M.F. Learning induces long-term potentiation in the hippocampus. Science 2006, 313, 1093–1097. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Giese, K.P. The role of CaMKII autophosphorylation for NMDA receptor-dependent synaptic potentiation. Neuropharmacology 2021, 193, 108616. [Google Scholar] [CrossRef] [PubMed]
- Takeda, H.; Kitaoka, Y.; Hayashi, Y.; Kumai, T.; Munemasa, Y.; Fujino, H.; Kobayashi, S.; Ueno, S. Calcium/calmodulin-dependent protein kinase II regulates the phosphorylation of CREB in NMDA-induced retinal neurotoxicity. Brain Res. 2007, 1184, 306–315. [Google Scholar] [CrossRef]
- Coultrap, S.J.; Bayer, K.U. CaMKII regulation in information processing and storage. Trends Neurosci. 2012, 35, 607–618. [Google Scholar] [CrossRef] [Green Version]
- Erickson, J.R.; Joiner, M.; Ling, A.; Guan, X.; Kutschke, W.; Yang, J.; Oddis, C.V.; Bartlett, R.K.; Lowe, J.S.; O’Donnell, S.E.; et al. A Dynamic Pathway for Calcium-Independent Activation of CaMKII by Methionine Oxidation. Cell 2008, 133, 462–474. [Google Scholar] [CrossRef]
- Guivernau, B.; Bonet, J.; Valls-Comamala, V.; Bosch-Morató, M.; Godoy, J.A.; Inestrosa, N.C.; Perálvarez-Marín, A.; Fernández-Busquets, X.; Andreu, D.; Oliva, B.; et al. Amyloid-β peptide nitrotyrosination stabilizes oligomers and enhances NMDAR-mediated toxicity. J. Neurosci. 2016, 36, 11693–11703. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taniguchi, K.; Yamamoto, F.; Amamo, A.; Tamaoka, A.; Sanjo, N.; Yokota, T.; Kametani, F.; Araki, W. Amyloid-β oligomers interact with NMDA receptors containing GluN2B subunits and metabotropic glutamate receptor 1 in primary cortical neurons: Relevance to the synapse pathology of Alzheimer’s disease. Neurosci. Res. 2022, 180, 90–98. [Google Scholar] [CrossRef] [PubMed]
- Texidó, L.; Martín-Satué, M.; Alberdi, E.; Solsona, C.; Matute, C. Amyloid β peptide oligomers directly activate NMDA receptors. Cell Calcium 2011, 49, 184–190. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.H. A Memory Molecule, Ca2+/Calmodulin-Dependent Protein Kinase II and Redox Stress; Key Factors for Arrhythmias in a Diseased Heart. Korean Circ. J. 2013, 43, 145. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miranda, S.; Opazo, C.; Larrondo, L.F.; Muñoz, F.J.; Ruiz, F.; Leighton, F.; Inestrosa, N.C. The role of oxidative stress in the toxicity induced by amyloid β-peptide in Alzheimer’s disease. Prog. Neurobiol. 2000, 62, 633–648. [Google Scholar] [CrossRef]
- Bagchi, S.; Fredriksson, R.; Wallén-Mackenzie, Å. In Situ Proximity Ligation Assay (PLA). Methods Mol. Biol. 2015, 1318, 149–159. [Google Scholar]
- Segura, J.; Oliva, B.; Fernandez-Fuentes, N. CAPS-DB: A structural classification of helix-capping motifs. Nucleic Acids Res. 2012, 40, D479. [Google Scholar] [CrossRef]
- Motaghinejad, M.; Mashayekh, R.; Motevalian, M.; Safari, S. The possible role of CREB-BDNF signaling pathway in neuroprotective effects of minocycline against alcohol-induced neurodegeneration: Molecular and behavioral evidences. Fundam. Clin. Pharmacol. 2021, 35, 113–130. [Google Scholar] [CrossRef]
- Walton, M.; Woodgate, A.M.; Muravlev, A.; Xu, R.; During, M.J.; Dragunow, M. CREB phosphorylation promotes nerve cell survival. J. Neurochem. 1999, 73, 1836–1842. [Google Scholar]
- Talafous, J.; Marcinowski, K.J.; Klopman, G.; Zagorski, M.G. Solution structure of residues 1-28 of the amyloid beta-peptide. Biochemistry 1994, 33, 7788–7796. [Google Scholar] [CrossRef]
- D’Ursi, A.M.; Armenante, M.R.; Guerrini, R.; Salvadori, S.; Sorrentino, G.; Picone, D. Solution Structure of Amyloid β-Peptide (25–35) in Different Media. J. Med. Chem. 2004, 47, 4231–4238. [Google Scholar] [CrossRef] [PubMed]
- Balbach, J.J.; Petkova, A.T.; Oyler, N.A.; Antzutkin, O.N.; Gordon, D.J.; Meredith, S.C.; Tycko, R. Supramolecular structure in full-length Alzheimer’s beta-amyloid fibrils: Evidence for a parallel beta-sheet organization from solid-state nuclear magnetic resonance. Biophys. J. 2002, 83, 1205–1216. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, A.; Min, Z.; Xiong, Y.; Yan, Q.; Zhang, J.; Xu, J.; Zhang, S. Lipoxin A4 inhibits the production of proinflammatory cytokines induced by β-amyloid in vitro and in vivo. Biochem. Biophys. Res. Commun. 2011, 408, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Parajuli, B.; Sonobe, Y.; Horiuchi, H.; Takeuchi, H.; Mizuno, T.; Suzumura, A. Oligomeric amyloid β induces IL-1β processing via production of ROS: Implication in Alzheimer’s disease. Cell Death Dis. 2013, 4, e975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muche, A.; Arendt, T.; Schliebs, R. Oxidative stress affects processing of amyloid precursor protein in vascular endothelial cells. PLoS ONE 2017, 12, e0178127. [Google Scholar] [CrossRef] [Green Version]
- Sakamoto, K.; Karelina, K.; Obrietan, K. CREB: A multifaceted regulator of neuronal plasticity and protection. J. Neurochem. 2011, 116, 1. [Google Scholar] [CrossRef] [Green Version]
- Ill-Raga, G.; Ramos-Fernández, E.; Guix, F.X.; Tajes, M.; Bosch-Morató, M.; Palomer, E.; Godoy, J.; Belmar, S.; Cerpa, W.; Simpkins, J.W.; et al. Amyloid-β peptide fibrils induce nitro-oxidative stress in neuronal cells. J. Alzheimer’s Dis. 2010, 22, 641–652. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.; Yang, Y.; Zhang, Z.; Zhang, L.; Song, J.; Ping, Y.; Du, X.; Song, G.; Liu, Q.; Li, N. Loss of MsrB1 perturbs spatial learning and long-term potentiation/long-term depression in mice. Neurobiol. Learn. Mem. 2019, 166, 107104. [Google Scholar] [CrossRef]
- Coultrap, S.J.; Bayer, K.U. Nitric Oxide Induces Ca2+-independent Activity of the Ca2+/Calmodulin-dependent Protein Kinase II (CaMKII). J. Biol. Chem. 2014, 289, 19458–19465. [Google Scholar] [CrossRef] [Green Version]
- Sun, P.; Enslen, H.; Myung, P.S.; Maurer, R.A. Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev. 1994, 8, 2527–2539. [Google Scholar] [CrossRef] [Green Version]
- Pulimood, N.S.; Contreras, M.; Pruitt, M.E.; Tarasiewicz, A.; Medina, A.E. Phosphorylation of CREB at Serine 142 and 143 Is Essential for Visual Cortex Plasticity. eNeuro 2021, 8, ENEURO.0217-21.2021. [Google Scholar] [CrossRef] [PubMed]
- Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Duarte, J.M.; Dutta, S.; Fayazi, M.; Feng, Z.; et al. RCSB Protein Data Bank: Celebrating 50 years of the PDB with new tools for understanding and visualizing biological macromolecules in 3D. Protein Sci. 2022, 31, 187–208. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Hassabis, D. Protein structure predictions to atomic accuracy with AlphaFold. Nat. Methods 2022, 19, 11–12. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 2016, 2016, 5.6.1–5.6.37. [Google Scholar]
- Buchan, D.W.A.; Jones, D.T. The PSIPRED Protein Analysis Workbench: 20 years on. Nucleic Acids Res. 2019, 47, W402–W407. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Picón-Pagès, P.; Fanlo-Ucar, H.; Herrera-Fernández, V.; Ausellé-Bosch, S.; Galera-López, L.; Gutiérrez, D.A.; Ozaita, A.; Álvarez, A.R.; Oliva, B.; Muñoz, F.J. Amyloid β-Peptide Causes the Permanent Activation of CaMKIIα through Its Oxidation. Int. J. Mol. Sci. 2022, 23, 15169. https://doi.org/10.3390/ijms232315169
Picón-Pagès P, Fanlo-Ucar H, Herrera-Fernández V, Ausellé-Bosch S, Galera-López L, Gutiérrez DA, Ozaita A, Álvarez AR, Oliva B, Muñoz FJ. Amyloid β-Peptide Causes the Permanent Activation of CaMKIIα through Its Oxidation. International Journal of Molecular Sciences. 2022; 23(23):15169. https://doi.org/10.3390/ijms232315169
Chicago/Turabian StylePicón-Pagès, Pol, Hugo Fanlo-Ucar, Víctor Herrera-Fernández, Sira Ausellé-Bosch, Lorena Galera-López, Daniela A. Gutiérrez, Andrés Ozaita, Alejandra R. Álvarez, Baldomero Oliva, and Francisco J. Muñoz. 2022. "Amyloid β-Peptide Causes the Permanent Activation of CaMKIIα through Its Oxidation" International Journal of Molecular Sciences 23, no. 23: 15169. https://doi.org/10.3390/ijms232315169
APA StylePicón-Pagès, P., Fanlo-Ucar, H., Herrera-Fernández, V., Ausellé-Bosch, S., Galera-López, L., Gutiérrez, D. A., Ozaita, A., Álvarez, A. R., Oliva, B., & Muñoz, F. J. (2022). Amyloid β-Peptide Causes the Permanent Activation of CaMKIIα through Its Oxidation. International Journal of Molecular Sciences, 23(23), 15169. https://doi.org/10.3390/ijms232315169