Precise Sn-Doping Modulation for Optimizing CdWO4 Nanorod Photoluminescence
Abstract
1. Introduction
2. Results and Discussion
3. Methods and Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Yue, D.; Li, Q.F.; Lu, W.; Wang, Q.; Wang, M.N.; Li, C.Y.; Jin, L.; Shi, Y.R.; Wang, Z.L.; Hao, J.H. Multi-color luminescence of uniform CdWO4 nanorods through Eu3+ ion doping. J. Mater. Chem. C 2015, 3, 2865–2871. [Google Scholar] [CrossRef]
- Li, D.; Bai, X.J.; Xu, J.; Ma, X.G.; Zhu, Y.F. Synthesis of CdWO4 nanorods and investigation of the photocatalytic activity. Phys. Chem. Chem. Phys. 2014, 16, 212–218. [Google Scholar] [CrossRef]
- Shad, N.A.; Sajid, M.M.; Amin, N.; Javed, Y.; Akhtar, K.; Ahmad, G.; Hassan, S.; Ikram, M. Photocatalytic degradation performance of cadmium tungstate (CdWO4) nanosheets-assembly and their hydrogen storage features. Ceram. Int. 2019, 45, 19015–19021. [Google Scholar] [CrossRef]
- Mikhailik, V.B.; Kraus, H.; Miller, G.; Mykhaylyk, M.S.; Wahl, D. Luminescence of CaWO4, CaMoO4, and ZnWO4 scintillating crystals under different excitations. J. Appl. Phys. 2005, 97, 083523. [Google Scholar] [CrossRef]
- Dai, Q.L.; Song, H.W.; Pan, G.H.; Bai, X.; Zhang, H.; Qin, R.F.; Hu, L.Y.; Zhao, H.F.; Lu, S.Z.; Ren, X.G. Surface defects and their influence on structural and photoluminescence properties of CdWO4: Eu3+ nanocrystals. J. Appl. Phys. 2007, 102, 054311. [Google Scholar] [CrossRef]
- Zhai, Y.; Wang, M.; Zhao, Q.; Yu, J.; Li, X. Fabrication and Luminescent properties of ZnWO4:Eu3+, Dy3+ white light-emitting phosphors. J. Lumin. 2016, 172, 161. [Google Scholar] [CrossRef]
- Hao-Yang, H.; Hai-Ping, X.; Jian-Xu, H.; Yue-Pin, Z.; Hao-Chuan, J.; Hong-Bing, C. Fluorescence properties of divalent and trivalent europium ions in CdWO4 single crystals grown by the Bridgman method. Chin. Phys. B 2013, 22, 027804. [Google Scholar]
- Hojamberdiev, M.; Kanakala, R.; Ruzimuradov, O.; Yan, Y.; Zhu, G.; Xu, Y. Besom-like CdWO4 structures composed of single-crystalline nanorods grown under a simple hydrothermal process in ultra-wide pH range. Opt. Mater. 2012, 34, 1954. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, T.; Wang, B.; Li, L.; Zou, L.; Gan, S. PEG-assisted hydrothermal synthesis and photoluminescence of CdMoO4:Tb3+ green phosphor. J. Phys. Chem. Solids 2015, 79, 14. [Google Scholar] [CrossRef]
- Lotem, H.; Burshtein, Z. Method for complete determination of a refractive-index tensor by bireflectance: Application to CdWO4. Opt. Lett. 1987, 12, 561–563. [Google Scholar] [CrossRef]
- Wang, Y.; Guan, X.; Li, L.; Lin, H.; Wang, X.; Li, G. Solvent-driven polymorphic control of CdWO4 nanocrystal for photocatalytic performances. New J. Chem. 2012, 36, 1852–1858. [Google Scholar] [CrossRef]
- Saito, N.; Sonoyama, N.; Sakata, T. Analysis of the Excitation and Emission Spectra of Tungstates and Molybdate. Bull. Chem. Soc. Jpn. 1996, 69, 2191. [Google Scholar] [CrossRef]
- Jia, R.; Zhang, G.; Wu, Q.; Yaping, D. Preparation, structures and photoluminescent enhancement of CdWO4-TiO2 composite nanofilms. Appl. Surf. Sci. 2006, 253, 2038–2042. [Google Scholar] [CrossRef]
- Lou, Z.D.; Hao, J.H.; Cocivera, M. Luminescence of ZnWO4 and CdWO4 thin films prepared by spray pyrolysis. J. Lumin. 2002, 99, 349. [Google Scholar] [CrossRef]
- Greskovich, C.D.; Cusano, D.; Hoffman, D.; Riedner, R.J. Ceramic scintillators for advanced, medical X-ray detectors. Am. Ceram. Soc. Bull. 1992, 71, 1120. [Google Scholar]
- Nagornaya, L.; Burachas, S.; Vostretrou, Y.; Martynov, V.; Ryzhikov, V.J. Studies of ways to reduce defects in CdWO4 single crystals. Cryst. Growth 1998, 198, 877. [Google Scholar] [CrossRef]
- Oishi, S.; Hirao, M. Effect of starting compositions on the growth of calcium tungstate crystals from sodium tungstate flux. Bull. Chem. Soc. Jpn. 1990, 63, 984. [Google Scholar] [CrossRef]
- Liao, H.-W.; Wang, Y.-F.; Liu, X.-M.; Li, Y.-D.; Qian, Y.-T. Hydrothermal Preparation and Characterization of Luminescent CdWO4 Nanorods. Chem. Mater. 2000, 12, 2819–2821. [Google Scholar] [CrossRef]
- Tanaka, K.; Sonobe, D. Synthesis of CdWO4 thin films showing photoluminescence at room temperature by pulsed laser ablation using photoluminescenceless CdO/WO3 mixed oxide targets: Effect of plume forming condition and target-substrate distance. Appl. Surf. Sci. 1999, 140, 138. [Google Scholar] [CrossRef]
- Blasse, G.; Brixner, L.H. Ultraviolet emission from ABO4-type niobates, tantalates and tungstates. Chem. Phys. Lett. 1990, 173, 409. [Google Scholar] [CrossRef]
- Cho, W.; Yashima, M.; Kakihana, M.; Kuso, A.; Sakata, T.; Yoshimura, M. Room-temperature preparation of the highly crystallized luminescent CaWO4 film by an electrochemical method. Appl. Phys. Lett. 1995, 66, 1027. [Google Scholar] [CrossRef]
- Srinivas, M.; Modi, D.; Patel, N.; Verma, V.; Murthy, K.V.R. Photoluminescence Studies and Core–Shell Model Approach for Rare Earth doped CdWO4 Nano Phosphor. J. Inorg. Organomet. Polym. 2014, 24, 988. [Google Scholar] [CrossRef]
- Premjit Singh, N.; Premananda Singh, N.; Rajmuhon Singh, N.; Mohondas Singh, N. Photoluminescence studies of CdWO4:Sm3+ phosphor: Concentration and annealing effect. Optik 2017, 144, 490. [Google Scholar] [CrossRef]
- Ye, D.; Li, D.Z.; Chen, W.; Shao, Y.; Xiao, G.C.; Sun, M.; Fu, X.Z. Characterization and properties of Eu3+-doped CdWO4 prepared by a hydrothermal method. Res. Chem. Intermed. 2009, 35, 675–683. [Google Scholar] [CrossRef]
- Narsimha, K.; Anuradha, N.; Sudarshan, K.; Gandhi, A.C.; Raju, A.K.; Reddy, P.M.; Mone, R.; Upender, G.; Kumar, B.V. One-pot hydrothermal preparation and defect-enhanced photocatalytic activity of Bi-doped CdWO4 nanostructures. Phys. Chem. Chem. Phys. 2022, 24, 8775–8786. [Google Scholar] [CrossRef]
- Narsimha, K.; Babu, M.S.; Anuradha, N.; Guda, S.; Kumar, B.K.; Mallesh, D.; Upender, G.; Reddy, P.M.; Kumar, B.V. Preparation and characterization of CdWO4:Cu nanorods with enhanced photocatalytic performance under sunlight irradiation. New J. Chem. 2020, 44, 2380–2388. [Google Scholar] [CrossRef]
- Stephen, S.K.; Varghese, T. Structural modifications and extended spectral response of nanocrystalline Ba1−xCuxWO4 samples. Mater. Chem. Phys. 2021, 258, 123901. [Google Scholar] [CrossRef]
- Tri, N.L.M.; Duc, D.S.; Van Thuan, D.; Tahtamouni, T.A.; Pham, T.-D.; Tran, D.T.; Thi Phuong Le Chi, N.; Nguyen, V.N. Superior photocatalytic activity of Cu doped NiWO4 for efficient degradation of benzene in air even under visible radiation. Chem. Phys. 2019, 525, 110411. [Google Scholar] [CrossRef]
- Ney, V.; Venkataraman, V.; Wilhelm, F.; Rogalev, A.; Ney, A. Structural and magnetic properties of Cu-doped ZnO epitaxial films at the coalescence limit—A superparamagnetic CuO-ZnO nanocomposite. J. Appl. Phys. 2019, 126, 143904. [Google Scholar] [CrossRef]
- Kumar, C.M.N.; Xiao, Y.; Lunkenheimer, P.; Loidl, A.; Ohl, M. Crystal structure, incommensurate magnetic order, and ferroelectricity in Mn1−xCuxWO4 (0 ≤ x ≤ 0.19). Phys. Rev. B 2015, 91, 235149. [Google Scholar] [CrossRef]
- Choudhury, B.; Choudhury, A.; Borah, D. Interplay of dopants and defects in making Cu doped TiO2 nanoparticle a ferromagnetic semiconductor. J. Alloys Compd. 2015, 646, 692–698. [Google Scholar] [CrossRef]
- Gandhi, A.C.; Chiu, H.H.; Ho, M.K.; Hsu, T.E.; Li, T.Y.; Wu, Y.H.; Vijaya Kumar, B.; Muralidhar Reddy, P.; Lin, B.H.; Cheng, C.L.; et al. Modulation of Magnetic and Luminescence Properties via Control Cu-Doped in CdWO4 Nanorods for Photocatalytic Applications. ACS Appl. Nano Mater. 2022, 5, 14811–14823. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, X.; Zhao, Y.; Zhang, Q.; Dai, Q.; Lu, L.; Zhang, L. CdWO4:Eu3+ Nanostructures for Luminescent Applications. ACS Appl. Nano Mater. 2019, 2, 7095–7102. [Google Scholar] [CrossRef]
- Nobre, F.X.; Nogueira, I.C.; Souza, G.D.S.; Matos, J.M.E.D.; Couceiro, P.R.D.C.; Brito, W.R.; de la Cruz, J.P.; Leyet Ruiz, Y. Structural and Optical Properties of Ca0.99Cu0.01WO4 Solid Solution Synthesized by Sonochemistry Method at Room Temperature. Inorg. Chem. 2020, 59, 6039–6046. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.F.; Su, W.; Hu, X.H.; Liu, H.H.; Sheng, M.Q.; Zhou, Q.Y. Synthesis and characterization of Fe-doped CdWO4 nanoparticles with enhanced photocatalytic activity. Mater. Res. Express 2019, 6, 035507. [Google Scholar] [CrossRef]
- Hao, C.T.; Zhou, Y.Z.; Dang, Y.; Chai, S.N.; Han, G.P.; Li, Z.L.; Zhang, H.Z.; Zhang, Y.C. The partial substitution of Cd by La ions in CdWO4 nanocrystal for the efficiently enhanced electrochemical sensing of BPA. Electrochim. Acta 2019, 318, 581–589. [Google Scholar] [CrossRef]
- Wang, F.; Han, Y.; Lim, C.S.; Lu, Y.; Wang, J.; Xu, J.; Chen, H.; Zhang, C.; Hong, M.; Liu, X. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 2010, 463, 1061–1065. [Google Scholar] [CrossRef]
- Mingjiang, Y.; Xun, J.; Zhangn, Z.; Zhou, Y. Eu3+-doped CdWO4 phosphor forred-lightemission: Hydrothermal preparation and blue light excitation. Ceram. Int. 2014, 40, 16189–16194. [Google Scholar]
- Singh, N.P.; Singh, N.R.; Singh, N.R.; Singh, N.M. Effect of doping ion concentration on the photoluminescence behavior of CdWO4:Tb3+ phosphor synthesized via co-precipitation method. Indian J. Phys. 2018, 92, 1461–1466. [Google Scholar] [CrossRef]
- Bish, D.L.; Howard, S.A. Quantitative phase analysis using the Rietveld method. J. Appl. Cryst. 1988, 21, 86–91. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, C.; Geng, L.; Chen, S. Unexpected formation of scheelite-structured Ca1−xCdxWO4 (0 ≤ x ≤ 1) continuous solid solutions with tunable photoluminescent and electronic properties. Phys. Chem. Chem. Phys. 2017, 19, 23204–23212. [Google Scholar] [CrossRef] [PubMed]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 2016, 32, 751. [Google Scholar] [CrossRef]
- Pundareekam Goud, J.; Mahamoud, S.A.; James Raju, K.C. Structural, dielectric and impedance study of Bi and Li co-substituted Ba0.50Sr0.50TiO3 ceramics for tunable microwave devices applications. J. Mater. Sci. Mater. 2018, 29, 3611–3620. [Google Scholar] [CrossRef]
- Moghadam, M.T.T.; Babamoradi, M.; Azimirad, R. Effect of Hydrothermal Reaction Temperature on the Photocatalytic Properties of CdWO4-RGO Nanocomposites. J. Nanostruct. 2019, 9, 600–609. [Google Scholar]
- Liu, Y.; Li, L.; Wang, R.; Li, J.; Huang, J.; Zhang, W. Multi-mode photocatalytic performances of CdS QDs modified CdIn2S4/CdWO4 nanocomposites with high electron transfer ability. J. Nanopart. Res. 2018, 20, 319. [Google Scholar] [CrossRef]
- Mai, M.; Feldmann, C. Microemulsion-base synthesis and luminescence of nanoparticulate CaWO4, ZnWO4, CaWO4: Tb, and CaWO4: Eu. J. Mater. Sci. 2012, 47, 1427–1435. [Google Scholar] [CrossRef]
- Harshan, H.; Priyanka, K.P.; Sreedevi, A.; Jose, A.; Varghese, T. Structural, optical and magnetic properties of nanophase NiWO4 for potential applications. Eur. Phys. J. B 2018, 91, 287. [Google Scholar] [CrossRef]
- Ross-Medgaarden, E.I.; Wachs, I.E. Structural determination of bulk and surface tungsten oxides with UV-vis diffuse reflectance spectroscopy and Raman spectroscopy. J. Phys. Chem. C 2007, 111, 15089–15099. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, W.; Fu, X.; Liu, M.; Cao, J.; Shao, C.; Chen, S. Metastable scheelite CdWO4:Eu3+ nanophosphors: Solvothermal synthesis, phase transitions and their polymorph-dependent luminescence properties. Dye. Pigm. 2017, 147, 283–290. [Google Scholar] [CrossRef]
- Naiara, A.L.; Lorena, D.S.A.; Siu-Li, M.; Carlos, A.C.F.; Alexandre, M.; Jean-Claude, M.; Maria, I.B.B. NiWO4 powders prepared via polymeric precursor method for application as ceramic luminescent pigments. J. Adv. Ceram. 2020, 9, 55–63. [Google Scholar]
- Dabre, K.V.; Dhoble, S.J. Synthesis and Photoluminescence properties of Eu3+, Sm3+ and Pr3+ doped CaZnWO6 phosphor for phosphor converted LED. J. Lumin. 2014, 150, 55–58. [Google Scholar] [CrossRef]
- Ruiz-Fuertes, J.; Friedrich, A.; Pellicer-Porres, J.; Errandonea, D.; Segura, A.; Morgenroth, W.; Haussühl, E.; Tu, C.Y.; Polian, A. Structure Solution of the High-Pressure Phase of CuWO4 and Evolution of the Jahn–Teller Distortion. Chem. Mater. 2011, 23, 4220–4226. [Google Scholar] [CrossRef]
- Dutta, D.P.; Ningthoujam, R.S.; Tyagi, A.K. Luminescence properties of Sm3+ doped YPO4: Effect of solvent, heat treatment, Ca2+/W6+co-doping and its hyperthermia application. AIP Adv. 2012, 2, 042184. [Google Scholar] [CrossRef]
- Singh, N.S.; Ningthoujam, R.S.; Phaomei, G.; Singh, S.D.; Vinud, A.; Vatsa, R.K. Redispersion and film formation of GdVO4:Ln3+ (Ln3+ = Dy3+, Eu3+, Sm3+, Tm3+) nanoparticles: Particle size and luminescence studies. Dalton Trans. 2012, 41, 4404–4412. [Google Scholar] [CrossRef]
- Klein, P.B.; Nwagwu, U.; Edgar, J.H.; Freitas, J.A. Photoluminescence investigation of the indirect band gap and shallow impurities in icosahedral B12As2. J. Appl. Phys. 2012, 112, 013508. [Google Scholar] [CrossRef]
- Gregory, M.K.; Astrid, M.M.; Nathan, S.L.; Harry, A.A. Photoluminescence-based measurements of the energy gap and diffusion length of Zn3P2. Appl. Phys. Lett. 2019, 95, 112103. [Google Scholar]
- Zhang, C.L.; Guo, D.L.; Xu, W.N.; Hu, C.G.; Chen, Y.X. Radiative/Nonradiative Recombination Affected by Defects and Electron-Phone Coupling in CdWO4 Nanorods. J. Phys. Chem. C 2016, 120, 12218–12225. [Google Scholar] [CrossRef]
- Laasner, R. G0W0 band structure of CdWO4. J. Phys. Condens. Matter 2014, 26, 125503. [Google Scholar] [CrossRef]
- Kadhim, A.A.; Baida, M.A.; Madyan, A.K. Influence of Sn doping ratio on the structural and optical properties of CdO films prepared by laser induced plasma. Iraq. J. Phys. 2020, 18, 1–8. [Google Scholar]
- Fang, Y.; Wang, L.; Sun, Q.; Lu, T.; Deng, Z.; Ma, Z.; Jiang, Y.; Jia, H.; Wang, W.; Zhou, J.; et al. Investigation of temperature-dependent photoluminescence in multi-quantum wells. Sci. Rep. 2015, 5, 12718. [Google Scholar] [CrossRef]
- Wang, L.; Moon, B.K.; Park, S.H.; Kim, J.H.; Shi, J.; Kim, K.H.; Jeong, J.H. Synthesis and photoluminescence of Bi3+, Eu3+ doped CdWO4 phosphors: Application of energy level rules of Bi3+ ions. New J. Chem. 2016, 40, 3552. [Google Scholar] [CrossRef]
- Šroubek, Z.; Ždánský, K. Electron Spin Resonance of Cu2+ Ion in CdWO4, ZnWO4, and MgWO4 Single Crystals. J. Chem. Phys. 1966, 44, 3078–3083. [Google Scholar] [CrossRef]
Sn-Doping | Crystallite Size (D) nm | Lattice Parameters (Å) | η (%) | Volume (Å3) | ||
---|---|---|---|---|---|---|
a | b | c | ||||
0 | 62 | 5.0298 | 5.8610 | 5.0753 | 0.01619 | 149.570 |
1% | 40 | 5.0279 | 5.8644 | 5.0778 | 0.02495 | 149.673 |
3% | 39 | 5.0270 | 5.8683 | 5.0794 | 0.02506 | 149.786 |
5% | 38 | 5.0249 | 5.8696 | 5.0792 | 0.02624 | 149.812 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manjunatha, K.; Ho, M.-K.; Hsu, T.-E.; Chiu, H.-H.; Li, T.-Y.; Kumar, B.V.; Reddy, P.M.; Chan, T.S.; Wu, Y.-H.; Lin, B.-H.; et al. Precise Sn-Doping Modulation for Optimizing CdWO4 Nanorod Photoluminescence. Int. J. Mol. Sci. 2022, 23, 15123. https://doi.org/10.3390/ijms232315123
Manjunatha K, Ho M-K, Hsu T-E, Chiu H-H, Li T-Y, Kumar BV, Reddy PM, Chan TS, Wu Y-H, Lin B-H, et al. Precise Sn-Doping Modulation for Optimizing CdWO4 Nanorod Photoluminescence. International Journal of Molecular Sciences. 2022; 23(23):15123. https://doi.org/10.3390/ijms232315123
Chicago/Turabian StyleManjunatha, K., Ming-Kang Ho, Tsu-En Hsu, Hsin-Hao Chiu, Tai-Yue Li, B. Vijaya Kumar, P. Muralidhar Reddy, Ting San Chan, Yu-Hao Wu, Bi-Hsuan Lin, and et al. 2022. "Precise Sn-Doping Modulation for Optimizing CdWO4 Nanorod Photoluminescence" International Journal of Molecular Sciences 23, no. 23: 15123. https://doi.org/10.3390/ijms232315123
APA StyleManjunatha, K., Ho, M.-K., Hsu, T.-E., Chiu, H.-H., Li, T.-Y., Kumar, B. V., Reddy, P. M., Chan, T. S., Wu, Y.-H., Lin, B.-H., Karmenyan, A., Cheng, C.-L., Gandhi, A. C., & Wu, S. Y. (2022). Precise Sn-Doping Modulation for Optimizing CdWO4 Nanorod Photoluminescence. International Journal of Molecular Sciences, 23(23), 15123. https://doi.org/10.3390/ijms232315123