Estimating the Number of Molecules in Molecular Junctions Merely Based on the Low Bias Tunneling Conductance at Variable Temperature
Abstract
:1. Introduction
2. Results and Discussion
2.1. General Results
2.2. Results Illustrating the Temperature Impact on the Charge Transport by Tunneling
2.3. Results for Specific Molecular Junctions
2.4. The Arrhenius-Sommerfeld Thermal Transition: A Possible Approach to Estimate the Number of Molecules in Large Area Tunneling Molecular Junctions
2.5. Workflow for Data Fitting
3. Method
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Salomon, A.; Cahen, D.; Lindsay, S.; Tomfohr, J.; Engelkes, V.; Frisbie, C. Comparison of Electronic Transport Measurements on Organic Molecules. Adv. Mater. 2003, 15, 1881–1890. [Google Scholar] [CrossRef]
- McCreery, R.L.; Bergren, A.J. Progress with Molecular Electronic Junctions: Meeting Experimental Challenges in Design and Fabrication. Adv. Mater. 2009, 21, 4303–4322. [Google Scholar] [CrossRef] [PubMed]
- McCreery, R.L.; Yan, H.; Bergren, A.J. A critical perspective on molecular electronic junctions: There is plenty of room in the middle. Phys. Chem. Chem. Phys. 2013, 15, 1065–1081. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Molecular-Scale Electronics: From Concept to Function. Chem. Rev. 2016, 116, 4318–4440. [Google Scholar] [CrossRef]
- Sangeeth, C.S.S.; Demissie, A.T.; Yuan, L.; Wang, T.; Frisbie, C.D.; Nijhuis, C.A. Comparison of DC and AC Transport in 1.5–7.5 nm Oligophenylene Imine Molecular Wires across Two Junction Platforms: Eutectic Ga-In versus Conducting Probe Atomic Force Microscope Junctions. J. Am. Chem. Soc. 2016, 138, 7305–7314. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Karuppannan, S.K.; Guo, C.; Fereiro, J.A.; Bergren, A.; Mukundan, V.; Qiu, X.; Castaneda Ocampo, O.E.; Chen, X.; Chiechi, R.C.; et al. Solid-State Protein Junctions: Cross-Laboratory Study Shows Preservation of Mechanism at Varying Electronic Coupling. iScience 2020, 23, 101099. [Google Scholar] [CrossRef]
- Reed, M.A.; Zhou, C.; Muller, C.J.; Burgin, T.P.; Tour, J.M. Conductance of a Molecular Junction. Science 1997, 278, 252–254. [Google Scholar] [CrossRef] [Green Version]
- Lörtscher, E.; Weber, H.B.; Riel, H. Statistical Approach to Investigating Transport through Single Molecules. Phys. Rev. Lett. 2007, 98, 176807. [Google Scholar] [CrossRef]
- Reichert, J.; Ochs, R.; Beckmann, D.; Weber, H.B.; Mayor, M.; Löhneysen, H.V. Driving Current through Single Organic Molecules. Phys. Rev. Lett. 2002, 88, 176804. [Google Scholar] [CrossRef] [Green Version]
- Xu, B.; Tao, N.J. Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions. Science 2003, 301, 1221–1223. [Google Scholar] [CrossRef]
- Venkataraman, L.; Klare, J.E.; Nuckolls, C.; Hybertsen, M.S.; Steigerwald, M.L. Dependence of Single-Molecule Junction Conductance on Molecular Conformation. Nature 2006, 442, 904–907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tal, O.; Krieger, M.; Leerink, B.; van Ruitenbeek, J.M. Electron-Vibration Interaction in Single-Molecule Junctions: From Contact to Tunneling Regimes. Phys. Rev. Lett. 2008, 100, 196804. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Song, H.; Kim, Y.; Jang, Y.H.; Jeong, H.; Reed, M.A.; Lee, T. Observation of Molecular Orbital Gating. Nature 2009, 462, 1039–1043. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Reed, M.A.; Lee, T. Single Molecule Electronic Devices. Adv. Mater. 2011, 23, 1583–1608. [Google Scholar] [CrossRef]
- Garrigues, A.R.; Yuan, L.; Wang, L.; Singh, S.; del Barco, E.; Nijhuis, C.A. Temperature Dependent Charge Transport across Tunnel Junctions of Single-Molecules and Self-Assembled Monolayers: A Comparative Study. Dalton Trans. 2016, 45, 17153–17159. [Google Scholar] [CrossRef]
- Wold, D.J.; Frisbie, C.D. Formation of Metal-Molecule-Metal Tunnel Junctions: Microcontacts to Alkanethiol Monolayers with a Conducting AFM Tip. J. Am. Chem. Soc. 2000, 122, 2970–2971. [Google Scholar] [CrossRef]
- Wold, D.J.; Frisbie, C.D. Fabrication and Characterization of Metal-Molecule-Metal Junctions by Conducting Probe Atomic Force Microscopy. J. Am. Chem. Soc. 2001, 123, 5549–5556. [Google Scholar] [CrossRef]
- Beebe, J.M.; Engelkes, V.B.; Miller, L.L.; Frisbie, C.D. Contact Resistance in Metal-Molecule-Metal Junctions Based on Aliphatic SAMs: Effects of Surface Linker and Metal Work Function. J. Am. Chem. Soc. 2002, 124, 11268–11269. [Google Scholar] [CrossRef]
- Wold, D.J.; Haag, R.; Rampi, M.A.; Frisbie, C.D. Distance Dependence of Electron Tunneling through Self-Assembled Monolayers Measured by Conducting Probe Atomic Force Microscopy: Unsaturated versus Saturated Molecular Junctions. J. Phys. Chem. B 2002, 106, 2813–2816. [Google Scholar] [CrossRef]
- Engelkes, V.B.; Beebe, J.M.; Frisbie, C.D. Length-Dependent Transport in Molecular Junctions Based on SAMs of Alkanethiols and Alkanedithiols: Effect of Metal Work Function and Applied Bias on Tunneling Efficiency and Contact Resistance. J. Am. Chem. Soc. 2004, 126, 14287–14296. [Google Scholar] [CrossRef]
- Kushmerick, J.G.; Holt, D.B.; Pollack, S.K.; Ratner, M.A.; Yang, J.C.; Schull, T.L.; Naciri, J.; Moore, M.H.; Shashidhar, R. Effect of Bond-Length Alternation in Molecular Wires. J. Am. Chem. Soc. 2002, 124, 10654–10655. [Google Scholar] [CrossRef]
- Kushmerick, J.G.; Holt, D.B.; Yang, J.C.; Naciri, J.; Moore, M.H.; Shashidhar, R. Metal-Molecule Contacts and Charge Transport across Monomolecular Layers: Measurement and Theory. Phys. Rev. Lett. 2002, 89, 086802. [Google Scholar] [CrossRef] [PubMed]
- Kushmerick, J.G. Metal-molecule contacts. Mater. Today 2005, 8, 26–30. [Google Scholar] [CrossRef]
- Beebe, J.M.; Kim, B.; Gadzuk, J.W.; Frisbie, C.D.; Kushmerick, J.G. Transition from Direct Tunneling to Field Emission in Metal-Molecule-Metal Junctions. Phys. Rev. Lett. 2006, 97, 026801. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beebe, J.M.; Kim, B.; Frisbie, C.D.; Kushmerick, J.G. Measuring Relative Barrier Heights in Molecular Electronic Junctions with Transition Voltage Spectroscopy. ACS Nano 2008, 2, 827–832. [Google Scholar] [CrossRef] [PubMed]
- Simeone, F.C.; Yoon, H.J.; Thuo, M.M.; Barber, J.R.; Smith, B.; Whitesides, G.M. Defining the Value of Injection Current and Effective Electrical Contact Area for EGaIn-Based Molecular Tunneling Junctions. J. Am. Chem. Soc. 2013, 135, 18131–18144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoon, H.J.; Bowers, C.M.; Baghbanzadeh, M.; Whitesides, G.M. The Rate of Charge Tunneling Is Insensitive to Polar Terminal Groups in Self-Assembled Monolayers in AgTSS(CH2)nM(CH2)mT//Ga2O3/EGaIn Junctions. J. Am. Chem. Soc. 2014, 136, 16–19. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Soni, S.; Lee, T.; Nijhuis, C.A.; Xiang, D. Smart Eutectic Gallium-Indium: From Properties to Applications. Adv. Mater. 2022. Early View. [Google Scholar] [CrossRef]
- Park, S.; Kang, S.; Yoon, H.J. Power Factor of One Molecule Thick Films and Length Dependence. ACS Cent. Sci. 2019, 5, 1975–1982. [Google Scholar] [CrossRef] [Green Version]
- Guo, S.; Hihath, J.; Diez-Pérez, I.; Tao, N. Measurement and Statistical Analysis of Single-Molecule Current-Voltage Characteristics, Transition Voltage Spectroscopy, and Tunneling Barrier Height. J. Am. Chem. Soc. 2011, 133, 19189–19197. [Google Scholar] [CrossRef]
- Li, C.; Pobelov, I.; Wandlowski, T.; Bagrets, A.; Arnold, A.; Evers, F. Charge Transport in Single Au|Alkanedithiol|Au Junctions: Coordination Geometries and Conformational Degrees of Freedom. J. Am. Chem. Soc. 2008, 130, 318–326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.; Choi, S.H.; Zhu, X.Y.; Frisbie, C.D. Molecular Tunnel Junctions Based on π-Conjugated Oligoacene Thiols and Dithiols between Ag, Au, and Pt Contacts: Effect of Surface Linking Group and Metal Work Function. J. Am. Chem. Soc. 2011, 133, 19864–19877. [Google Scholar] [CrossRef] [PubMed]
- Thuo, M.M.; Reus, W.F.; Nijhuis, C.A.; Barber, J.R.; Kim, C.; Schulz, M.D.; Whitesides, G.M. Odd-Even Effects in Charge Transport across Self-Assembled Monolayers. J. Am. Chem. Soc. 2011, 133, 2962–2975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramin, L.; Jabbarzadeh, A. Odd–Even Effects on the Structure, Stability, and Phase Transition of Alkanethiol Self-Assembled Monolayers. Langmuir 2011, 27, 9748–9759. [Google Scholar] [CrossRef] [PubMed]
- Baghbanzadeh, M.; Simeone, F.C.; Bowers, C.M.; Liao, K.C.; Thuo, M.; Baghbanzadeh, M.; Miller, M.S.; Carmichael, T.B.; Whitesides, G.M. Odd-Even Effects in Charge Transport across n-Alkanethiolate-Based SAMs. J. Am. Chem. Soc. 2014, 136, 16919–16925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, L.; Sangeeth, C.S.S.; Nijhuis, C.A. The Origin of the Odd-Even Effect in the Tunneling Rates across EGaIn Junctions with Self-Assembled Monolayers (SAMs) of n-Alkanethiolates. J. Am. Chem. Soc. 2015, 137, 10659–10667. [Google Scholar] [CrossRef]
- Nurbawono, A.; Liu, S.; Nijhuis, C.A.; Zhang, C. Odd-Even Effects in Charge Transport through Self-Assembled Monolayer of Alkanethiolates. J. Phys. Chem. C 2015, 119, 5657–5662. [Google Scholar] [CrossRef]
- Song, P.; Thompson, D.; Annadata, H.V.; Guerin, S.; Loh, K.P.; Nijhuis, C.A. Supramolecular Structure of the Monolayer Triggers Odd-Even Effects in the Tunneling Rates across Noncovalent Junctions on Graphene. J. Phys. Chem. C 2017, 121, 4172–4180. [Google Scholar] [CrossRef]
- Ben Amara, F.; Dionne, E.R.; Kassir, S.; Pellerin, C.; Badia, A. Molecular Origin of the Odd-Even Effect of Macroscopic Properties of n-Alkanethiolate Self-Assembled Monolayers: Bulk or Interface? J. Am. Chem. Soc. 2020, 142, 13051–13061. [Google Scholar] [CrossRef] [PubMed]
- Selzer, Y.; Cai, L.; Cabassi, M.A.; Yao, Y.; Tour, J.M.; Mayer, T.S.; Allara, D.L. Effect of Local Environment on Molecular Conduction: Isolated Molecule versus Self-Assembled Monolayer. Nano Lett. 2005, 5, 61–65. [Google Scholar] [CrossRef] [PubMed]
- Milani, F.; Grave, C.; Ferri, V.; Samori, P.; Rampi, M.A. Ultrathin π-Conjugated Polymer Films for Simple Fabrication of Large-Area Molecular Junctions. ChemPhysChem 2007, 8, 515–518. [Google Scholar] [CrossRef] [PubMed]
- Akkerman, H.B.; de Boer, B. Electrical Conduction through Single Molecules and Self-Assembled Monolayers. J. Phys. Condens. Matt. 2008, 20, 013001. [Google Scholar] [CrossRef] [Green Version]
- Suchand Sangeeth, C.S.; Wan, A.; Nijhuis, C.A. Probing the nature and resistance of the molecule-electrode contact in SAM-based junctions. Nanoscale 2015, 7, 12061–12067. [Google Scholar] [CrossRef] [PubMed]
- Vilan, A.; Aswal, D.; Cahen, D. Large-Area, Ensemble Molecular Electronics: Motivation and Challenges. Chem. Rev. 2017, 117, 4248–4286. [Google Scholar] [CrossRef]
- Bâldea, I. Exact Analytic Formula for Conductance Predicting a Tunable Sommerfeld-Arrhenius Thermal Transition within a Single-Step Tunneling Mechanism in Molecular Junctions Subject to Mechanical Stretching. Adv. Theor. Simul. 2022, 5, 202200158. [Google Scholar] [CrossRef]
- Caroli, C.; Combescot, R.; Nozieres, P.; Saint-James, D. Direct Calculation of the Tunneling Current. J. Phys. C Solid State Phys. 1971, 4, 916. [Google Scholar] [CrossRef]
- Meir, Y.; Wingreen, N.S. Landauer formula for the current through an interacting electron region. Phys. Rev. Lett. 1992, 68, 2512–2515. [Google Scholar] [CrossRef]
- Haug, H.J.W.; Jauho, A.P. Quantum Kinetics in Transport and Optics of Semiconductors, 2nd ed.; Springer Series in Solid-State Sciences: Berlin/Heidelberg, Germany; New York, NY, USA, 2008; Volume 123. [Google Scholar] [CrossRef] [Green Version]
- Cuevas, J.C.; Scheer, E. Molecular Electronics: An Introduction to Theory and Experiment, 2nd ed.; World Scientific Series in Nanoscience and Nanotechnology; World Scientific: London, UK, 2017; Volume 15. [Google Scholar] [CrossRef]
- Bâldea, I. Protocol for Disentangling the Thermally Activated Contribution to the Tunneling-Assisted Charge Transport. Analytical Results and Experimental Relevance. Phys. Chem. Chem. Phys. 2017, 19, 11759–11770. [Google Scholar] [CrossRef]
- Bâldea, I. Why asymmetric molecular coupling to electrodes cannot be at work in real molecular rectifiers. Phys. Rev. B 2021, 103, 195408. [Google Scholar] [CrossRef]
- Sommerfeld, A.; Bethe, H. Elektronentheorie der Metalle. In Handbuch der Physik; Scheel, G., Ed.; Julius-Springer: Berlin, Germany, 1933; Volume 24, p. 446. [Google Scholar]
- Desjonqueres, M.C.; Spanjaard, D. Concepts in Surface Physics, 2nd ed.; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1996. [Google Scholar]
- Neaton, J.B.; Hybertsen, M.S.; Louie, S.G. Renormalization of Molecular Electronic Levels at Metal-Molecule Interfaces. Phys. Rev. Lett. 2006, 97, 216405. [Google Scholar] [CrossRef] [Green Version]
- Bâldea, I. Single-Molecule Junctions Based on Bipyridine: Impact of an Unusual Reorganization on the Charge Transport. J. Phys. Chem. C 2014, 118, 8676–8684. [Google Scholar] [CrossRef]
- Bâldea, I. Quantifying the Relative Molecular Orbital Alignment for Molecular Junctions with Similar Chemical Linkage to Electrodes. Nanotechnology 2014, 25, 455202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables; National Bureau of Standards Applied Mathematics Series; U.S. Government Printing Office: Washington, DC, USA, 1964. [Google Scholar]
- Bâldea, I. Interpretation of Stochastic Events in Single-Molecule Measurements of Conductance and Transition Voltage Spectroscopy. J. Am. Chem. Soc. 2012, 134, 7958–7962. [Google Scholar] [CrossRef] [PubMed]
- Sedghi, G.; Garcia-Suarez, V.M.; Esdaile, L.J.; Anderson, H.L.; Lambert, C.J.; Martin, S.; Bethell, D.; Higgins, S.J.; Elliott, M.; Bennett, N.; et al. Long-Range Electron Tunnelling in Oligo-Porphyrin Molecular Wires. Nat. Nanotechnol. 2011, 6, 517–523. [Google Scholar] [CrossRef]
- Smith, C.E.; Xie, Z.; Bâldea, I.; Frisbie, C.D. Work Function and Temperature Dependence of Electron Tunneling through an N-Type Perylene Diimide Molecular Junction with Isocyanide Surface Linkers. Nanoscale 2018, 10, 964–975. [Google Scholar] [CrossRef]
- Jahnke, E.; Emde, F. Tables of Functions with Formulae and Curves, 4th ed.; For the Riemann zeta function; Dover Publications: New York, NY, USA, 1945; p. 269. [Google Scholar]
- Ashcroft, N.W.; Mermin, N.D. Solid State Physics; Saunders College Publishing: New York, NY, USA, 1976; pp. 20–23, 52. [Google Scholar]
- Poot, M.; Osorio, E.; O’Neill, K.; Thijssen, J.M.; Vanmaekelbergh, D.; van Walree, C.A.; Jenneskens, L.W.; van der Zant, H.S.J. Temperature Dependence of Three-Terminal Molecular Junctions with Sulfur End-Functionalized Tercyclohexylidenes. Nano Lett. 2006, 6, 1031–1035. [Google Scholar] [CrossRef] [Green Version]
- Heimbuch, R.; Wu, H.; Kumar, A.; Poelsema, B.; Schön, P.; Vancso, G.J.; Zandvliet, H.J.W. Variable-Temperature Study of the Transport Through a Single Octanethiol Molecule. Phys. Rev. B 2012, 86, 075456. [Google Scholar] [CrossRef]
- Asadi, K.; Kronemeijer, A.J.; Cramer, T.; Jan Anton Koster, L.; Blom, P.W.M.; de Leeuw, D.M. Polaron hopping mediated by nuclear tunnelling in semiconducting polymers at high carrier density. Nat. Commun. 2013, 4, 1710. [Google Scholar] [CrossRef]
- Xiang, L.; Hines, T.; Palma, J.L.; Lu, X.; Mujica, V.; Ratner, M.A.; Zhou, G.; Tao, N. Non-Exponential Length Dependence of Conductance in Iodide-Terminated Oligothiophene Single-Molecule Tunneling Junctions. J. Am. Chem. Soc. 2016, 138, 679–687. [Google Scholar] [CrossRef]
- McCreery, R.L. Effects of Electronic Coupling and Electrostatic Potential on Charge Transport in Carbon-Based Molecular Electronic Junctions. Beilstein J. Nanotechnol. 2016, 7, 32–46. [Google Scholar] [CrossRef]
- Kumar, K.S.; Pasula, R.R.; Lim, S.; Nijhuis, C.A. Long-Range Tunneling Processes across Ferritin-Based Junctions. Adv. Mater. 2016, 28, 1824–1830. [Google Scholar] [CrossRef] [PubMed]
- Xin, N.; Jia, C.; Wang, J.; Wang, S.; Li, M.; Gong, Y.; Zhang, G.; Zhu, D.; Guo, X. Thermally Activated Tunneling Transition in a Photoswitchable Single-Molecule Electrical Junction. J. Phys. Chem. Lett. 2017, 8, 2849–2854. [Google Scholar] [CrossRef] [PubMed]
- Morteza Najarian, A.; McCreery, R.L. Structure Controlled Long-Range Sequential Tunneling in Carbon-Based Molecular Junctions. ACS Nano 2017, 11, 3542–3552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xin, N.; Hu, C.; Al Sabea, H.; Zhang, M.; Zhou, C.; Meng, L.; Jia, C.; Gong, Y.; Li, Y.; Ke, G.; et al. Tunable Symmetry-Breaking-Induced Dual Functions in Stable and Photoswitched Single-Molecule Junctions. J. Am. Chem. Soc. 2021, 143, 20811–20817. [Google Scholar] [CrossRef]
- Haaland, A.; Nilsson, J.E. The Determination of Barriers to Internal Rotation by Means of Electron Diffraction. Ferrocene and Ruthenocene. Acta Chem. Scand. 1968, 22, 2653–2670. [Google Scholar] [CrossRef] [Green Version]
- Coriani, S.; Haaland, A.; Helgaker, T.; Jorgensen, P. The Equilibrium Structure of Ferrocene. ChemPhysChem 2006, 7, 245–249. [Google Scholar] [CrossRef]
- Bâldea, I. Transition Voltage Spectroscopy Reveals Significant Solvent Effects on Molecular Transport and Settles an Important Issue in Bipyridine-Based Junctions. Nanoscale 2013, 5, 9222–9230. [Google Scholar] [CrossRef] [Green Version]
- Xie, Z.; Bâldea, I.; Smith, C.; Wu, Y.; Frisbie, C.D. Experimental and Theoretical Analysis of Nanotransport in Oligophenylene Dithiol Junctions as a Function of Molecular Length and Contact Work Function. ACS Nano 2015, 9, 8022–8036. [Google Scholar] [CrossRef]
- Xie, Z.; Bâldea, I.; Frisbie, C.D. Determination of Energy Level Alignment in Molecular Tunnel Junctions by Transport and Spectroscopy: Self-Consistency for the Case of Oligophenylene Thiols and Dithiols on Ag, Au, and Pt Electrodes. J. Am. Chem. Soc. 2019, 141, 3670–3681. [Google Scholar] [CrossRef]
- Xie, Z.; Bâldea, I.; Frisbie, C.D. Energy Level Alignment in Molecular Tunnel Junctions by Transport and Spectroscopy: Self-Consistency for the Case of Alkyl Thiols and Dithiols on Ag, Au, and Pt Electrodes. J. Am. Chem. Soc. 2019, 141, 18182–18192. [Google Scholar] [CrossRef]
- Bâldea, I.; Köppel, H. Evidence on single-molecule transport in electrostatically-gated molecular transistors. Phys. Lett. A 2012, 376, 1472–1476. [Google Scholar] [CrossRef]
- del Barco, E. Private commuication (University of Central Florida, 2022).
- Demissie, A.T.; Haugstad, G.; Frisbie, C.D. Quantitative Surface Coverage Measurements of Self-Assembled Monolayers by Nuclear Reaction Analysis of Carbon-12. J. Phys. Chem. Lett. 2016, 7, 3477–3481. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Bâldea, I.; Demissie, A.T.; Smith, C.E.; Wu, Y.; Haugstad, G.; Frisbie, C.D. Exceptionally Small Statistical Variations in the Transport Properties of Metal-Molecule-Metal Junctions Composed of 80 Oligophenylene Dithiol Molecules. J. Am. Chem. Soc. 2017, 139, 5696–5699. [Google Scholar] [CrossRef] [PubMed]
- Li, Y. Private commuication (Tsingua University, 2022).
- Choi, S.H.; Kim, B.; Frisbie, C.D. Electrical Resistance of Long Conjugated Molecular Wires. Science 2008, 320, 1482–1486. [Google Scholar] [CrossRef] [PubMed]
- Hines, T.; Diez-Perez, I.; Hihath, J.; Liu, H.; Wang, Z.S.; Zhao, J.; Zhou, G.; Müllen, K.; Tao, N. Transition from Tunneling to Hopping in Single Molecular Junctions by Measuring Length and Temperature Dependence. J. Am. Chem. Soc. 2010, 132, 11658–11664. [Google Scholar] [CrossRef]
- Shklovskii, B.I.; Efros, A.L. Variable-Range Hopping Conduction. In Electronic Properties of Doped Semiconductors; Springer: Berlin/Heidelberg, Germany, 1984; pp. 202–227. [Google Scholar] [CrossRef]
- Maugis, D. Adhesion of Spheres: The JKR-DMT Transition Using a Dugdale Model. J. Colloid. Interf. Sci. 1992, 150, 243–269. [Google Scholar] [CrossRef]
- Johnson, K.L. Contact Mechanics; Cambridge University Press: Cambridge, UK, 1985. [Google Scholar] [CrossRef]
- Haugstad, G. Atomic Force Microscopy; John Wiley & Sons: Hoboken, NJ, USA, 2012. [Google Scholar] [CrossRef]
- Bâldea, I. Self-assembled monolayers of oligophenylenes stiffer than steel and silicon, possibly even stiffer than Si3N4. Appl. Surf. Sci. Adv. 2021, 5, 100094. [Google Scholar] [CrossRef]
- Bâldea, I. Important Insight into Electron Transfer in Single-Molecule Junctions Based on Redox Metalloproteins from Transition Voltage Spectroscopy. J. Phys. Chem. C 2013, 117, 25798–25804. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bâldea, I. Estimating the Number of Molecules in Molecular Junctions Merely Based on the Low Bias Tunneling Conductance at Variable Temperature. Int. J. Mol. Sci. 2022, 23, 14985. https://doi.org/10.3390/ijms232314985
Bâldea I. Estimating the Number of Molecules in Molecular Junctions Merely Based on the Low Bias Tunneling Conductance at Variable Temperature. International Journal of Molecular Sciences. 2022; 23(23):14985. https://doi.org/10.3390/ijms232314985
Chicago/Turabian StyleBâldea, Ioan. 2022. "Estimating the Number of Molecules in Molecular Junctions Merely Based on the Low Bias Tunneling Conductance at Variable Temperature" International Journal of Molecular Sciences 23, no. 23: 14985. https://doi.org/10.3390/ijms232314985
APA StyleBâldea, I. (2022). Estimating the Number of Molecules in Molecular Junctions Merely Based on the Low Bias Tunneling Conductance at Variable Temperature. International Journal of Molecular Sciences, 23(23), 14985. https://doi.org/10.3390/ijms232314985