ES-Screen: A Novel Electrostatics-Driven Method for Drug Discovery Virtual Screening
Abstract
:1. Introduction
2. Results
2.1. ES-Screen Method
2.2. Initial Performance Assessment of ES-Screen Using DUD-E Benchmarking Set
2.3. ES-Screen Performance Using Approved and Experimental Drugs
2.4. Experimental Validation of ES-Screen Predictions
2.4.1. Mebendazole Binds Previously Unreported Protein Kinases
2.4.2. Novel NSAID Protein Targets Implicated in Metabolic Diseases
3. Discussion
4. Materials and Methods
4.1. Ligand and Protein Target Structure Preparation
4.2. Comparative Docking
4.3. ES-Screen
4.3.1. Pharmacophore Screening
4.3.2. Calculation of Electrostatic Energies of Interaction
4.3.3. Calculation of Components of Non-Polar Solvation Free Energy Contributors
4.3.4. Calculation of Replacement Energies of Interaction
4.3.5. Physicochemical Descriptor Generation and Similarity Scoring
4.3.6. Shape Quantification of Ligand/Protein Binding Pockets and Shape Similarity
4.3.7. Normalization Procedure
4.3.8. Z-Score Ranking Equation
4.4. MM-GBSA/MM-PBSA Binding Energy Calculations
4.5. Performance Metrics
4.6. FABP4 and Aldose Reductase Surface Plasmon Resonance (SPR) Binding Kinetics Assay
4.7. Kinase Binding Assay
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sivanesan, D.; Basu, G.; Go, N. The role of electrostatics in discrimination of adenine and guanine by proteins. Genome Inform. 2002, 13, 316–317. [Google Scholar]
- Basu, G.; Sivanesan, D.; Kawabata, T.; Go, N. Electrostatic potential of nucleotide-free protein is sufficient for discrimination between adenine and guanine-specific binding sites. J. Mol. Biol. 2004, 342, 1053–1066. [Google Scholar] [CrossRef] [PubMed]
- Honig, B.; Nicholls, A. Classical electrostatics in biology and chemistry. Science 1995, 268, 1144–1149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilson, M.K. Theory of electrostatic interactions in macromolecules. Curr. Opin. Struct. Biol. 1995, 5, 216–223. [Google Scholar] [CrossRef]
- Gabdoulline, R.R.; Wade, R.C. Biomolecular diVusional association. Curr. Opin. Struct. Biol. 2002, 12, 204–213. [Google Scholar] [CrossRef]
- Elcock, A.H.; Gabdoulline, R.R.; Wade, R.C.; McCammon, J.A. Computer simulation of protein-protein association kinetics: Acetylcholinesterase-fasciculin. J. Mol. Biol. 1999, 291, 149–162. [Google Scholar] [CrossRef]
- Radić, Z.; Kirchhoff, P.D.; Quinn, D.M.; McCammon, J.A.; Taylor, P. Electrostatic influence on the kinetics of ligand binding to acetylcholinesterase. J. Biol. Chem. 1997, 272, 23265–23277. [Google Scholar] [CrossRef] [Green Version]
- Sines, J.J.; McCammon, J.A.; Allison, S.A. Kinetic eVects of multiple charge modifications in enzyme-substrate reactions—Brownian Dynamics simulations of Cu, Zn superoxide dismutase. J. Comput. Chem. 1992, 13, 66–69. [Google Scholar] [CrossRef]
- Mehler, E.L.; Gerhards, J. Electronic determinants of the anti-inflammatory action of benzoic and salicylic acids. Mol. Pharmacol. 1987, 31, 284–293. [Google Scholar]
- Kitchen, D.B.; Decornez, H.; Furr, J.R.; Bajorath, J. Docking and scoring in virtual screening for drug discovery: Methods and applications. Nat. Rev. Drug Discov. 2004, 3, 935–949. [Google Scholar] [CrossRef]
- Warren, G.L.; Andrews, C.W.; Capelli, A.-M.; Clarke, B.; LaLonde, J.; Lambert, M.H.; Lindvall, M.; Nevins, N.; Semus, S.F.; Senger, S.; et al. A critical assessment of docking programs and scoring functions. J. Med. Chem. 2006, 49, 5912–5931. [Google Scholar] [CrossRef] [PubMed]
- Bohari, M.H.; Sastry, G.N. FDA approved drugs complexed to their targets: Evaluating pose prediction accuracy of docking protocols. J. Mol. Model. 2012, 18, 4263–4274. [Google Scholar] [CrossRef]
- Bockris, J.O.; Reddy, K.N. Modern Electrochemistry: Ionics; Plenum Press: New York, NY, USA, 1998. [Google Scholar]
- Genheden, S.; Ryde, U. The MM/PBSA and MM/GBSA methods to estimate ligand- binding affinities. Expert Opin. Drug Discov. 2015, 10, 449–461. [Google Scholar] [CrossRef] [PubMed]
- Thompson, D.C.; Humblet, C.; Joseph-McCarthy, D. Investigation of MM-PBSA rescoring of docking poses. J. Chem. Inf. Model. 2008, 48, 1081–1091. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.Z.; Zhou, Y.C.; Holst, M.J.; McCammon, J.A. Recent progress in numerical methods for the Poisson-Boltzmann equation in biophysical applications. Commun. Comput. Phys. 2008, 3, 973–1009. [Google Scholar]
- Mysinger, M.M.; Carchia, M.; Irwin, J.J.; Shoichet, B.K. Directory of useful decoys, enhanced (DUD-E): Better ligands and decoys for better benchmarking. J. Med. Chem. 2012, 55, 6582–6594. [Google Scholar] [CrossRef]
- Warsch, W.; Walz, C.; Sexl, V. JAK of all trades: JAK2-STAT5 as novel therapeutic targets in BCR-ABL1+ chronic myeloid leukemia. Blood 2013, 122, 2167–2175. [Google Scholar] [CrossRef] [Green Version]
- Dror, R.O.; Green, H.F.; Valant, C.; Borhani, D.W.; Valcourt, J.R.; Pan, A.C.; Arlow, D.H.; Canals, M.; Lane, J.R.; Rahmani, R.; et al. Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs. Nature 2013, 503, 295–299. [Google Scholar] [CrossRef]
- Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov. 2004, 3, 673–683. [Google Scholar] [CrossRef]
- Sasaki, J.; Ramesh, R.; Chada, S.; Gomyo, Y.; Roth, J.A.; Mukhopadhyay, T. The anthelmintic drug mebendazole induces mitotic arrest and apoptosis by depolymerizing tubulin in non-small cell lung cancer cells. Mol. Cancer Ther. 2002, 1, 1201–1209. [Google Scholar]
- Bai, R.-Y.; Staedtke, V.; Aprhys, C.M.; Gallia, G.L.; Riggins, G.J. Antiparasitic mebendazole shows survival benefit in 2 preclinical models of glioblastoma multiforme. Neuro-Oncol. 2011, 13, 974–982. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, L.; Liu, Y.; Zhang, Q.; Zhou, H.; Zhang, Y.; Yan, B. Comparison of cancer cell survival triggered by microtubule damage after turning Dyrk1B kinase on and off. ACS Chem. Biol. 2014, 9, 731–742. [Google Scholar] [CrossRef] [PubMed]
- Nygren, P.; Fryknäs, M.; Ågerup, B.; Larsson, R. Repositioning of the anthelmintic drug mebendazole for the treatment for colon cancer. J. Cancer Res. Clin. Oncol. 2013, 139, 2133–2140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spagnuolo, P.A.; Hu, J.; Hurren, R.; Wang, X.; Gronda, M.; Sukhai, M.A.; Di Meo, A.; Boss, J.; Ashali, I.; Zavareh, R.B.; et al. The antihelmintic flubendazole inhibits microtubule function through a mechanism distinct from Vinca alkaloids and displays preclinical activity in leukemia and myeloma. Blood 2010, 115, 4824–4833. [Google Scholar] [CrossRef]
- Yang, J.M.; Chen, Y.F.; Shen, T.W.; Kristal, B.S.; Hsu, D.F. Consensus scoring criteria for improving enrichment in virtual screening. J. Chem. Inf. Model. 2005, 45, 1134–1146. [Google Scholar] [CrossRef] [PubMed]
- Diab, S.; Kumarasiri, M.; Yu, M.; Teo, T.; Proud, C.; Milne, R.; Wang, S. MAP kinase-interacting kinases—Emerging targets against cancer. Chem. Biol. 2014, 21, 441–452. [Google Scholar] [CrossRef]
- Diab, S.; Teo, T.; Kumarasiri, M.; Li, P.; Yu, M.; Lam, F.; Basnet, S.K.C.; Sykes, M.J.; Albrecht, H.; Milne, R.; et al. Discovery of 5-(2-(Phenylamino) pyrimidin-4-yl) thiazol-2 (3H)-one Derivatives as Potent Mnk2 Inhibitors: Synthesis, SAR Analysis and Biological Evaluation. ChemMedChem 2014, 9, 962–972. [Google Scholar] [CrossRef]
- Kumarasiri, M.; Teo, T.; Wang, S. Dynamical insights of Mnk2 kinase activation by phosphorylation to facilitate inhibitor discovery. Future Med. Chem. 2015, 7, 91–102. [Google Scholar] [CrossRef] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Lin, Y.; Wen, X.; Jorrisen, R.N.; Gilson, M.K. BindingDB: A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res. 2007, 35, D198–D201. [Google Scholar] [CrossRef] [Green Version]
- Knox, C.; Law, V.; Jewison, T.; Liu, P.; Ly, S.; Frolkis, A.; Pon, A.; Banco, K.; Mak, C.; Neveu, V.; et al. DrugBank 3.0: A comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res. 2011, 39, D1035–D1041. [Google Scholar] [CrossRef] [Green Version]
- Schrödinger Release 2013-3: LigPrep, Version 2.8; Schrödinger, LLC: New York, NY, USA, 2013.
- Small-Molecule Drug Discovery Suite 2013-3: Glide, Version 6.1; Schrödinger, LLC: New York, NY, USA, 2013.
- Small-Molecule Drug Discovery Suite 2013-3: Phase, Version 3.5; Schrödinger, LLC: New York, NY, USA, 2013.
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, W.; Kollman, P.A.; Case, D.A. Automatic atom type and bond type perception in molecular mechanical calculations. J. Mol. Graph. Model. 2006, 25, 247–260. [Google Scholar] [CrossRef]
- Case, D.A.; Darden, T.A.; Cheatham, T.E., III; Simmerling, C.L.; Wang, J.; Duke, R.E.; Luo, R.; Walker, R.C.; Zhang, W.; Merz, K.M.; et al. AMBER 13; University of California: San Francisco, CA, USA, 2012. [Google Scholar]
- Li, L.; Li, C.; Sarkar, S.; Zhang, J.; Witham, S.; Zhang, Z.; Wang, L.; Smith, N.; Petukh, M.; Alexov, E. DelPhi: A comprehensive suite for DelPhi software and associated resources. BMC Biophy. 2012, 5, 9. [Google Scholar] [CrossRef] [PubMed]
- Small-Molecule Drug Discovery Suite 2013-3: Prime, Version 3.4; Schrödinger, LLC: New York, NY, USA, 2013.
- Felder, C.E.; Prilusky, J.; Silman, I.; Sussman, J.L. A server and database for dipole moments of proteins. Nucleic Acids Res. 2007, 35 (Suppl. 2), W512–W521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Small-Molecule Drug Discovery Suite 2013-3: QikProp, Version 3.8; Schrödinger, LLC: New York, NY, USA, 2013.
- Small-Molecule Drug Discovery Suite 2013-3: Strike, Version 2.4; Schrödinger, LLC: New York, NY, USA, 2013.
- Morris, R.J.; Najmanovich, R.J.; Kahraman, A.; Thornton, J.M. Real spherical harmonic expansion coefficients as 3D shape descriptors for protein binding pocket and ligand comparisons. Bioinformatics 2005, 21, 2347–2355. [Google Scholar] [CrossRef] [Green Version]
- Triballeau, N.; Acher, F.; Brabet, I.; Pin, J.P.; Bertrand, H.O. Virtual screening workflow development guided by the “receiver operating characteristic” curve approach. Application to high-throughput docking on metabotropic glutamate receptor subtype 4. J. Med. Chem. 2005, 48, 2534–2547. [Google Scholar] [CrossRef]
- Pearlman, D.A.; Charifson, P.S. Improved scoring of ligand-protein interactions using OWFEG free energy grids. J. Med. Chem. 2001, 44, 502–511. [Google Scholar] [CrossRef]
- Dakshanamurthy, S.; Issa, N.T.; Assefnia, S.; Seshasayee, A.; Peters, O.J.; Madhavan, S.; Uren, A.; Brown, M.L.; Byers, S.W. Predicting New Indications For Approved Drugs Using A Proteochemometric Method. J. Med. Chem. 2012, 55, 6832–6848. [Google Scholar] [CrossRef] [Green Version]
- Issa, N.T.; Peters, O.J.; Byers, S.W.; Dakshanamurthy, S. Repurposevs: A Drug Repurposing-focused Computational Method For Accurate Drug-target Signature Predictions. Comb. Chem. High Throughput Screen. 2015, 18, 784–794. [Google Scholar] [CrossRef] [Green Version]
- Fabian, M.A.; Biggs, W.H., 3rd; Treiber, D.K.; Atteridge, C.E.; Azimioara, M.D.; Benedetti, M.G.; Carter, T.A.; Ciceri, P.; Edeen, P.T.; Floyd, M.; et al. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol. 2005, 23, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Pu, M.; Wang, H.; Ma, X.; Zhang, Y.J. Modified Electrostatic Complementary Score Function and Its Application Boundary Exploration in Drug Design. J. Chem. Inf. Model. 2022, 62, 4420–4426. [Google Scholar] [CrossRef] [PubMed]
- Bolcato, G.; Heid, E.; Boström, J. On the Value of Using 3D Shape and Electrostatic Similarities in Deep Generative Methods. J. Chem. Inf. Model. 2022, 62, 1388–1398. [Google Scholar] [CrossRef] [PubMed]
Kinase Target | Percent Control at 10 µM (Lower Numbers Indicate Stronger Hits) | Binding Affinity (Kd) in nM |
---|---|---|
JAK2 | 39 | N/D |
PIK3CG | 18 | N/D |
MKNK2 | 46 | N/D |
RAF1 | 23 | N/D |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Issa, N.T.; Byers, S.W.; Dakshanamurthy, S. ES-Screen: A Novel Electrostatics-Driven Method for Drug Discovery Virtual Screening. Int. J. Mol. Sci. 2022, 23, 14830. https://doi.org/10.3390/ijms232314830
Issa NT, Byers SW, Dakshanamurthy S. ES-Screen: A Novel Electrostatics-Driven Method for Drug Discovery Virtual Screening. International Journal of Molecular Sciences. 2022; 23(23):14830. https://doi.org/10.3390/ijms232314830
Chicago/Turabian StyleIssa, Naiem T., Stephen W. Byers, and Sivanesan Dakshanamurthy. 2022. "ES-Screen: A Novel Electrostatics-Driven Method for Drug Discovery Virtual Screening" International Journal of Molecular Sciences 23, no. 23: 14830. https://doi.org/10.3390/ijms232314830
APA StyleIssa, N. T., Byers, S. W., & Dakshanamurthy, S. (2022). ES-Screen: A Novel Electrostatics-Driven Method for Drug Discovery Virtual Screening. International Journal of Molecular Sciences, 23(23), 14830. https://doi.org/10.3390/ijms232314830