Blood Metabolomics May Discriminate a Sub-Group of Patients with First Demyelinating Episode in the Context of RRMS with Increased Disability and MRI Characteristics Indicative of Poor Prognosis
Abstract
:1. Introduction
2. Results
2.1. Study Population
2.2. Metabolomic Analysis May Discriminate between Patients with Cis and Healthy Controls, as Well as between Patients with a First Demyelinating Episode in the Context of RRMS and Healthy Controls
2.3. Exploratory Hierarchical Clustering Analysis for Patients with RRMS Reveals Three Sub-Populations, One with a Common Metabolomic Profile with CIS
2.4. Metabolomics’ Hierarchical Clustering Analysis Discriminates a Sub-Population of Patients with RRMS with Increased Disability upon the First Demyelinating Episode, Laboratory Findings Suggestive of Increased Neuroinflammation and MRI Markers of Poor Prognosis
2.5. Distinct Serum Metabolomic Profile in Patients with RRMS Cluster 3, Compared to Patients with RRMS Clusters 1 and 2
3. Discussion
4. Materials and Methods
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, J.; Bankov, G.; Kim, M.; Wretlind, A.; Lord, J.; Green, R.; Hodges, A.; Hye, A.; Aarsland, D.; Velayudhan, L.; et al. Integrated lipidomics and proteomics network analysis highlights lipid and immunity pathways associated with Alzheimer’s disease. Transl. Neurodegener. 2020, 9, 36. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Snowden, S.; Suvitaival, T.; Ali, A.; Merkler, D.J.; Ahmad, T.; Westwood, S.; Baird, A.; Proitsi, P.; Nevado-Holgado, A.; et al. Primary fatty amides in plasma associated with brain amyloid burden, hippocampal volume, and memory in the European Medical Information Framework for Alzheimer’s Disease biomarker discovery cohort. Alzheimers Dement. 2019, 15, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Ben-Nun, A.; Wekerle, H.; Cohen, I.R. The rapid isolation of clonable antigen-specific T lymphocyte lines capable of mediating autoimmune encephalomyelitis. Eur. J. Immunol. 1981, 11, 195–199. [Google Scholar] [CrossRef]
- Ota, K.; Matsui, M.; Milford, E.L.; Mackin, G.A.; Weiner, H.L.; Hafler, D.A. T-cell recognition of an immunodominant myelin basic protein epitope in multiple sclerosis. Nature 1990, 346, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Montalban, X.; Tintore, M.; Swanton, J.; Barkhof, F.; Fazekas, F.; Filippi, M.; Frederiksen, J.; Kappos, L.; Palace, J.; Polman, C.; et al. MRI criteria for MS in patients with clinically isolated syndromes. Neurology 2010, 74, 427–434. [Google Scholar] [CrossRef]
- Brownlee, W.J.; Miller, D.H. Clinically isolated syndromes and the relationship to multiple sclerosis. J. Clin. Neurosci. 2014, 21, 2065–2071. [Google Scholar] [CrossRef]
- Miller, D.H.; Chard, D.T.; Ciccarelli, O. Clinically isolated syndromes. Lancet Neurol. 2012, 11, 157–169. [Google Scholar] [CrossRef]
- Thompson, A.J.; Banwell, B.L.; Barkhof, F.; Carroll, W.M.; Coetzee, T.; Comi, G.; Correale, J.; Fazekas, F.; Filippi, M.; Freedman, M.S.; et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018, 17, 162–173. [Google Scholar] [CrossRef]
- Montalban, X.; Gold, R.; Thompson, A.J.; Otero-Romero, S.; Amato, M.P.; Chandraratna, D.; Clanet, M.; Comi, G.; Derfuss, T.; Fazekas, F.; et al. ECTRIMS/EAN Guideline on the pharmacological treatment of people with multiple sclerosis. Mult. Scler. J. 2018, 24, 96–120. [Google Scholar] [CrossRef] [Green Version]
- Fisniku, L.K.; Brex, P.A.; Altmann, D.R.; Miszkiel, K.A.; Benton, C.E.; Lanyon, R.; Thompson, A.J.; Miller, D.H. Disability and T2 MRI lesions: A 20-year follow-up of patients with relapse onset of multiple sclerosis. Brain 2008, 131 Pt 3, 808–817. [Google Scholar] [CrossRef]
- Paul, A.; Comabella, M.; Gandhi, R. Biomarkers in Multiple Sclerosis. Cold Spring Harb. Perspect. Med. 2019, 9, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Camara-Lemarroy, C.R.; Silva, C.; Metz, L.M.; Cerchiaro, G.; Greenfield, J.; Dowlatabadi, R.; Vogel, H.J.; Lee, C.H.; Giuliani, F.; Nakhaei-Nejad, M.; et al. Multimodal peripheral fluid biomarker analysis in clinically isolated syndrome and early multiple sclerosis. Mult. Scler. Relat. Disord 2021, 50, 102809. [Google Scholar] [CrossRef] [PubMed]
- Lazzarino, G.; Amorini, A.M.; Petzold, A.; Gasperini, C.; Ruggieri, S.; Quartuccio, M.E.; Di Stasio, E.; Tavazzi, B. Serum Compounds of Energy Metabolism Impairment Are Related to Disability, Disease Course and Neuroimaging in Multiple Sclerosis. Mol. Neurobiol. 2017, 54, 7520–7533. [Google Scholar] [CrossRef] [PubMed]
- Lim, C.K.; Bilgin, A.; Lovejoy, D.B.; Tan, V.; Bustamante, S.; Taylor, B.V.; Bessede, A.; Brew, B.J.; Guillemin, G.J. Kynurenine pathway metabolomics predicts and provides mechanistic insight into multiple sclerosis progression. Sci. Rep. 2017, 7, 41473. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Boccio, P.; Rossi, C.; di Ioia, M.; Cicalini, I.; Sacchetta, P.; Pieragostino, D. Integration of metabolomics and proteomics in multiple sclerosis: From biomarkers discovery to personalized medicine. Proteomics. Clin. Appl. 2016, 10, 470–484. [Google Scholar] [CrossRef]
- Del Boccio, P.; Pieragostino, D.; Di Ioia, M.; Petrucci, F.; Lugaresi, A.; De Luca, G.; Gambi, D.; Onofrj, M.; Di Ilio, C.; Sacchetta, P.; et al. Lipidomic investigations for the characterization of circulating serum lipids in multiple sclerosis. J. Proteomics 2011, 74, 2826–2836. [Google Scholar] [CrossRef]
- Yeo, T.; Sealey, M.; Zhou, Y.; Saldana, L.; Loveless, S.; Claridge, T.D.W.; Robertson, N.; DeLuca, G.; Palace, J.; Anthony, D.C.; et al. A blood-based metabolomics test to distinguish relapsing-remitting and secondary progressive multiple sclerosis: Addressing practical considerations for clinical application. Sci. Rep. 2020, 10, 12381. [Google Scholar] [CrossRef]
- Liu, Z.; Waters, J.; Rui, B. Metabolomics as a promising tool for improving understanding of multiple sclerosis: A review of recent advances. Biomed J. 2022, 45, 594–606. [Google Scholar] [CrossRef]
- Deisenhammer, F.; Zetterberg, H.; Fitzner, B.; Zettl, U.K. The Cerebrospinal Fluid in Multiple Sclerosis. Front. Immunol. 2019, 10, 726. [Google Scholar] [CrossRef] [Green Version]
- Kappos, L.; Polman, C.H.; Freedman, M.S.; Edan, G.; Hartung, H.P.; Miller, D.H.; Montalban, X.; Barkhof, F.; Bauer, L.; Jakobs, P.; et al. Treatment with interferon beta-1b delays conversion to clinically definite and McDonald MS in patients with clinically isolated syndromes. Neurology 2006, 67, 1242–1249. [Google Scholar] [CrossRef]
- Comi, G.; Martinelli, V.; Rodegher, M.; Moiola, L.; Bajenaru, O.; Carra, A.; Elovaara, I.; Fazekas, F.; Hartung, H.P.; Hillert, J.; et al. Effect of glatiramer acetate on conversion to clinically definite multiple sclerosis in patients with clinically isolated syndrome (PreCISe study): A randomised, double-blind, placebo-controlled trial. Lancet 2009, 374, 1503–1511. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Liu, Y.; Jia, A.; Cui, Y.; Feng, J. Cerebrospinal fluid cells immune landscape in multiple sclerosis. J. Transl. Med. 2021, 19, 125. [Google Scholar] [CrossRef] [PubMed]
- Fabis, M.J.; Scott, G.S.; Kean, R.B.; Koprowski, H.; Hooper, D.C. Loss of blood-brain barrier integrity in the spinal cord is common to experimental allergic encephalomyelitis in knockout mouse models. Proc. Natl. Acad. Sci. USA 2007, 104, 5656–5661. [Google Scholar] [CrossRef] [Green Version]
- Lassmann, H.; van Horssen, J. The molecular basis of neurodegeneration in multiple sclerosis. FEBS Lett. 2011, 585, 3715–3723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wentling, M.; Lopez-Gomez, C.; Park, H.J.; Amatruda, M.; Ntranos, A.; Aramini, J.; Petracca, M.; Rusielewicz, T.; Chen, E.; Tolstikov, V.; et al. A metabolic perspective on CSF-mediated neurodegeneration in multiple sclerosis. Brain 2019, 142, 2756–2774. [Google Scholar] [CrossRef]
- Nijland, P.G.; Michailidou, I.; Witte, M.E.; Mizee, M.R.; van der Pol, S.M.; van Het Hof, B.; Reijerkerk, A.; Pellerin, L.; van der Valk, P.; de Vries, H.E.; et al. Cellular distribution of glucose and monocarboxylate transporters in human brain white matter and multiple sclerosis lesions. Glia 2014, 62, 1125–1141. [Google Scholar] [CrossRef]
- Minneboo, A.; Barkhof, F.; Polman, C.H.; Uitdehaag, B.M.; Knol, D.L.; Castelijns, J.A. Infratentorial lesions predict long-term disability in patients with initial findings suggestive of multiple sclerosis. Arch. Neurol. 2004, 61, 217–221. [Google Scholar] [CrossRef] [Green Version]
- Leocani, L.; Rocca, M.A.; Comi, G. MRI and neurophysiological measures to predict course, disability and treatment response in multiple sclerosis. Curr. Opin. Neurol. 2016, 29, 243–253. [Google Scholar] [CrossRef]
- Rio, J.; Tintore, M.; Sastre-Garriga, J.; Nos, C.; Castillo, J.; Tur, C.; Comabella, M.; Montalban, X. Change in the clinical activity of multiple sclerosis after treatment switch for suboptimal response. Eur. J. Neurol. 2012, 19, 899–904. [Google Scholar] [CrossRef]
- Sakamoto, S.; Ishii, K.; Sasaki, M.; Hosaka, K.; Mori, T.; Matsui, M.; Hirono, N.; Mori, E. Differences in cerebral metabolic impairment between early and late onset types of Alzheimer’s disease. J. Neurol. Sci. 2002, 200, 27–32. [Google Scholar] [CrossRef]
- Kanda, T.; Ishii, K.; Uemura, T.; Miyamoto, N.; Yoshikawa, T.; Kono, A.K.; Mori, E. Comparison of grey matter and metabolic reductions in frontotemporal dementia using FDG-PET and voxel-based morphometric MR studies. Eur. J. Nucl. Med. Mol. Imaging 2008, 35, 2227–2234. [Google Scholar] [CrossRef] [PubMed]
- Panov, A.; Schonfeld, P.; Dikalov, S.; Hemendinger, R.; Bonkovsky, H.L.; Brooks, B.R. The neuromediator glutamate, through specific substrate interactions, enhances mitochondrial ATP production and reactive oxygen species generation in nonsynaptic brain mitochondria. J. Biol. Chem. 2009, 284, 14448–14456. [Google Scholar] [CrossRef] [Green Version]
- Panov, A.V.; Kubalik, N.; Zinchenko, N.; Ridings, D.M.; Radoff, D.A.; Hemendinger, R.; Brooks, B.R.; Bonkovsky, H.L. Metabolic and functional differences between brain and spinal cord mitochondria underlie different predisposition to pathology. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, R844–R854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Charil, A.; Filippi, M. Inflammatory demyelination and neurodegeneration in early multiple sclerosis. J. Neurol. Sci. 2007, 259, 7–15. [Google Scholar] [CrossRef] [PubMed]
- Lassmann, H. Mechanisms of neurodegeneration shared between multiple sclerosis and Alzheimer’s disease. J. Neural Transm. 2011, 118, 747–752. [Google Scholar] [CrossRef]
- Van Schependom, J.; Guldolf, K.; D’Hooghe, M.B.; Nagels, G.; D’Haeseleer, M. Detecting neurodegenerative pathology in multiple sclerosis before irreversible brain tissue loss sets in. Transl. Neurodegener. 2019, 8, 37. [Google Scholar] [CrossRef]
- Fitzgerald, K.C.; Smith, M.D.; Kim, S.; Sotirchos, E.S.; Kornberg, M.D.; Douglas, M.; Nourbakhsh, B.; Graves, J.; Rattan, R.; Poisson, L.; et al. Multi-omic evaluation of metabolic alterations in multiple sclerosis identifies shifts in aromatic amino acid metabolism. Cell Rep. Med. 2021, 2, 100424. [Google Scholar] [CrossRef]
- Cocco, E.; Murgia, F.; Lorefice, L.; Barberini, L.; Poddighe, S.; Frau, J.; Fenu, G.; Coghe, G.; Murru, M.R.; Murru, R.; et al. (1)H-NMR analysis provides a metabolomic profile of patients with multiple sclerosis. Neurol. (R) Neuroimmunol. Neuroinflamm. 2016, 3, e185. [Google Scholar] [CrossRef] [Green Version]
- Martinez, Y.; Li, X.; Liu, G.; Bin, P.; Yan, W.; Mas, D.; Valdivie, M.; Hu, C.A.; Ren, W.; Yin, Y. The role of methionine on metabolism, oxidative stress, and diseases. Amino Acids 2017, 49, 2091–2098. [Google Scholar] [CrossRef]
- Sylvestre, D.A.; Slupsky, C.M.; Aviv, R.I.; Swardfager, W.; Taha, A.Y. Untargeted metabolomic analysis of plasma from relapsing-remitting multiple sclerosis patients reveals changes in metabolites associated with structural changes in brain. Brain Res. 2020, 1732, 146589. [Google Scholar] [CrossRef]
- Zahoor, I.; Suhail, H.; Datta, I.; Ahmed, M.E.; Poisson, L.M.; Waters, J.; Rashid, F.; Bin, R.; Singh, J.; Cerghet, M.; et al. Blood-based untargeted metabolomics in relapsing-remitting multiple sclerosis revealed the testable therapeutic target. Proc. Natl. Acad. Sci. USA 2022, 119, e2123265119. [Google Scholar] [CrossRef] [PubMed]
- Kappos, L.; Wolinsky, J.S.; Giovannoni, G.; Arnold, D.L.; Wang, Q.; Bernasconi, C.; Model, F.; Koendgen, H.; Manfrini, M.; Belachew, S.; et al. Contribution of Relapse-Independent Progression vs Relapse-Associated Worsening to Overall Confirmed Disability Accumulation in Typical Relapsing Multiple Sclerosis in a Pooled Analysis of 2 Randomized Clinical Trials. JAMA Neurol. 2020, 77, 1132–1140. [Google Scholar] [CrossRef] [PubMed]
- Scott, T.F.; Schramke, C.J.; Novero, J.; Chieffe, C. Short-term prognosis in early relapsing-remitting multiple sclerosis. Neurology 2000, 55, 689–693. [Google Scholar] [CrossRef]
- Amato, M.P.; Ponziani, G. A prospective study on the prognosis of multiple sclerosis. Neurol. Sci. Off. J. Ital. Neurol. Soc. Ital. Soc. Clin. Neurophysiol. 2000, 21 (Suppl. 2), S831–S838. [Google Scholar] [CrossRef] [PubMed]
- Manjon, J.V.; Coupe, P. VolBrain: An Online MRI Brain Volumetry System. Front. Neuroinform. 2016, 10, 30. [Google Scholar] [CrossRef] [Green Version]
- Kurtzke, J.F. Rating neurologic impairment in multiple sclerosis: An expanded disability status scale (EDSS). Neurology 1983, 33, 1444–1452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gika, H.G.; Theodoridis, G.A.; Wingate, J.E.; Wilson, I.D. Within-day reproducibility of an HPLC-MS-based method for metabonomic analysis: Application to human urine. J. Proteome Res. 2007, 6, 3291–3303. [Google Scholar] [CrossRef]
- Gika, H.G.; Macpherson, E.; Theodoridis, G.A.; Wilson, I.D. Evaluation of the repeatability of ultra-performance liquid chromatography-TOF-MS for global metabolic profiling of human urine samples. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2008, 871, 299–305. [Google Scholar] [CrossRef] [PubMed]
- Virgiliou, C.; Sampsonidis, I.; Gika, H.G.; Raikos, N.; Theodoridis, G.A. Development and validation of a HILIC-MS/MS multitargeted method for metabolomics applications. Electrophoresis 2015, 36, 2215–2225. [Google Scholar] [CrossRef]
CIS | RRMS | Control | |||||
---|---|---|---|---|---|---|---|
Mean | S.E. | Mean | S.E. | Mean | S.E. | p * | |
age | 38.55 | 1.72 | 36.32 | 2.03 | 33.45 | 2.06 | 0.531 |
gender (m/f) | 6/5 | N/A | 14/23 | N/A | 6/5 | N/A | 0.458 |
EDSS | 0.95 | 0.21 | 2.27 | 0.24 | N/A | N/A | 0.006 |
VitD | 20.06 | 2.6 | 21.21 | 1.59 | N/A | N/A | 0.715 |
B12 | 335.88 | 58.81 | 347.05 | 29.1 | N/A | N/A | 0.865 |
Folate | 20.2 | 4.97 | 16.23 | 1.92 | N/A | N/A | 0.389 |
TSH | 1.41 | 0.29 | 2.03 | 0.19 | N/A | N/A | 0.125 |
IgG CSF/IgG serum ×1000 | 3.47 | 0.37 | 5.71 | 0.42 | N/A | N/A | <0.001 |
IgG INDEX | 0.64 | 0.04 | 0.96 | 0.08 | N/A | N/A | 0.001 |
brain T2W lesions ** | 21.2 | 3.27 | 17.94 | 1.48 | N/A | N/A | 0.328 |
brain Gd(+) lesions | 0 | 0 | 1.14 | 0.3 | N/A | N/A | <0.001 |
spinal T2W lesions | 0.6 | 0.16 | 2 | 0.33 | N/A | N/A | 0.001 |
spinal Gd(+) lesions | 0 | 0 | 0.52 | 0.18 | N/A | N/A | 0.007 |
Compounds | F | RRMS (All Patients) vs. Control | CIS vs. Control | CIS vs. RRMS (RRMS: Clusters 2 and 3) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
t-Test | AUC | log2 FC | t-Test | AUC | log2 FC | t-Test | AUC | log2 FC | ||
2- Methylhippuric acid | 0.031 | >0.05 | N/A | NA | 3.26 × 10−2 | 0.79 | 0.88 | N/A | N/A | |
Alanine | 0.036 | 9.63 × 10−3 | 0.78 | 0.32 | 3.92 × 10−2 | 0.75 | 0.21 | >0.05 | N/A | N/A |
Asparagine | 0.334 | >0.05 | N/A | NA | >0.05 | N/A | N/A | 6.97 × 10−3 | 0.69 | −0.19 |
Aspartic acid | 0.278 | >0.05 | N/A | NA | 2.60 × 10−2 | 0.78 | −0.52 | 2.68 × 10−3 | 0.54 | −0.30 |
Betaine | 0.785 | >0.05 | N/A | NA | >0.05 | N/A | N/A | 8.78 × 10−3 | 0.64 | 0.18 |
Choline | 0.025 | 9.06 × 10−3 | 0.75 | −0.23 | >0.05 | N/A | N/A | >0.05 | N/A | N/A |
Creatine | 0.042 | 4.37 × 10−2 | 0.73 | −0.38 | >0.05 | N/A | N/A | >0.05 | N/A | N/A |
Cystine | 0.861 | >0.05 | N/A | NA | >0.05 | N/A | N/A | 3.74 × 10−3 | 0.61 | 0.12 |
Glutamic acid | <0.001 | 5.34 × 10−4 | 0.78 | −0.60 | 2.30 × 10−3 | 0.88 | −0.88 | 4.13 × 10−2 | 0.63 | −0.28 |
Glutamine | 0.045 | 2.24 × 10−2 | 0.68 | 0.30 | 4.28 × 10−2 | 0.70 | 0.24 | >0.05 | N/A | N/A |
Hydroxyisobutyric acid | 0.217 | >0.05 | N/A | NA | >0.05 | N/A | N/A | 3.78 × 10−2 | 0.66 | −0.47 |
Hydroxyisovaleric acid | 0.001 | 9.56 × 10−4 | 0.73 | −1.02 | >0.05 | N/A | N/A | >0.05 | N/A | N/A |
Hypoxanthine | 0.02 | 3.04 × 10−2 | 0.83 | −0.55 | 2.74 × 10−4 | 0.91 | −0.91 | 1.79 × 10−2 | 0.59 | −0.37 |
Lactic acid | 0.034 | 1.25 × 10−2 | 0.76 | 0.43 | 6.71 × 10−3 | 0.81 | 0.43 | >0.05 | N/A | N/A |
Methionine | 0.261 | >0.05 | N/A | NA | 4.88 × 10−2 | 0.73 | −0.32 | 2.44 × 10−3 | 0.70 | −0.42 |
Monoisoamylamine | 0.001 | 5.86 × 10−3 | 0.77 | 0.32 | 4.24 × 10−4 | 0.90 | 0.45 | 3.58 × 10−2 | 0.62 | 0.13 |
Nicotinamide | <0.001 | 2.03 × 10−5 | 0.86 | −1.19 | 4.83 × 10−5 | 0.91 | −1.73 | >0.05 | N/A | N/A |
Phenylalanine | 0.341 | >0.05 | N/A | NA | >0.05 | N/A | N/A | 1.21 × 10−3 | 0.70 | −0.14 |
Pyruvic acid | 0.109 | 4.66 × 10−2 | 0.71 | 0.70 | >0.05 | N/A | N/A | >0.05 | N/A | N/A |
Serine | 0.074 | >0.05 | N/A | N/A | 2.94 × 10−2 | 0.71 | −0.26 | 1.20 × 10−3 | 0.66 | −0.21 |
Threonine | 0.217 | >0.05 | N/A | N/A | 2.18 × 10−2 | 0.76 | −0.32 | 2.94 × 10−2 | 0.71 | −0.37 |
Trimethylamine-n-oxide | 0.011 | 4.92 × 10−3 | 0.68 | −1.24 | >0.05 | N/A | N/A | 2.25 × 10−2 | 0.70 | 0.48 |
Uridine | 0.029 | 2.07 × 10−2 | 0.68 | −0.27 | 3.76 × 10−2 | 0.73 | −0.35 | >0.05 | N/A | N/A |
Xanthine | <0.001 | 1.19 × 10−5 | 0.86 | −0.97 | 3.12 × 10−4 | 0.92 | −1.21 | 2.50 × 10−2 | 0.61 | −0.24 |
Parameter/HCL Group | n | Mean | S.E. of Mean | F * | p * | |
---|---|---|---|---|---|---|
EDSS | CIS | 11 | 0.95 | 0.21 | 3.103 | 0.036 |
RRMS cluster 1 | 21 | 2.07 | 0.33 | |||
RRMS cluster 2 | 10 | 2.50 | 0.48 | |||
RRMS cluster 3 | 6 | 2.58 | 0.49 | |||
ALP | CIS | 9 | 56.33 | 3.21 | 3.372 | 0.028 |
RRMS cluster 1 | 16 | 65.44 | 3.50 | |||
RRMS cluster 2 | 10 | 72.70 | 4.47 | |||
RRMS cluster 3 | 6 | 56.17 | 4.77 | |||
TSH | CIS | 9 | 1.41 | 0.29 | 3.783 | 0.018 |
RRMS cluster 1 | 18 | 2.49 | 0.28 | |||
RRMS cluster 2 | 10 | 1.51 | 0.23 | |||
RRMS cluster 3 | 6 | 1.51 | 0.30 | |||
SER 60 min | CIS | 9 | 6.78 | 1.18 | 2.765 | 0.054 |
RRMS cluster 1 | 21 | 17.14 | 2.81 | |||
RRMS cluster 2 | 10 | 10.60 | 1.73 | |||
RRMS cluster 3 | 5 | 11.40 | 2.98 | |||
cells (CSF) | CIS | 11 | 1.09 | 0.41 | 4.789 | 0.006 |
RRMS cluster 1 | 21 | 7.10 | 2.10 | |||
RRMS cluster 2 | 10 | 9.90 | 2.59 | |||
RRMS cluster 3 | 6 | 18.17 | 6.30 | |||
glucose (CSF) | CIS | 11 | 64.09 | 1.36 | 27.772 | <0.001 |
RRMS cluster 1 | 21 | 63.43 | 1.13 | |||
RRMS cluster 2 | 9 | 65.00 | 4.51 | |||
RRMS cluster 3 | 6 | 95.67 | 4.18 | |||
glucose CSF/serum | CIS | 11 | 0.76 | 0.03 | 14.95 | <0.001 |
RRMS cluster 1 | 21 | 0.71 | 0.02 | |||
RRMS cluster 2 | 8 | 0.77 | 0.07 | |||
RRMS cluster 3 | 6 | 1.1 | 0.07 | |||
IgG CSF | CIS | 11 | 3.47 | 0.39 | 2.450 | 0.076 |
RRMS cluster 1 | 21 | 5.51 | 0.53 | |||
RRMS cluster 2 | 10 | 5.71 | 0.99 | |||
RRMS cluster 3 | 6 | 4.32 | 0.55 | |||
IgG CSF/ IgG serum × 1000 | CIS | 11 | 3.47 | 0.37 | 3.523 | 0.023 |
RRMS cluster 1 | 21 | 6.21 | 0.62 | |||
RRMS cluster 2 | 10 | 5.36 | 0.76 | |||
RRMS cluster 3 | 6 | 4.52 | 0.52 | |||
IgG INDEX | CIS | 11 | 0.64 | 0.04 | 2.321 | 0.088 |
RRMS cluster 1 | 21 | 1.05 | 0.14 | |||
RRMS cluster 2 | 10 | 0.88 | 0.08 | |||
RRMS cluster 3 | 6 | 0.76 | 0.07 | |||
brain T2W lesions ** | CIS | 10 | 21.2 | 3.27 | 0.339 | 0.797 |
RRMS cluster 1 | 21 | 18.24 | 1.38 | |||
RRMS cluster 2 | 9 | 17.89 | 3.24 | |||
RRMS cluster 3 | 6 | 17 | 6.36 | |||
brain Gd(+) lesions | CIS | 11 | 0 | 0 | 1.682 | 0.185 |
RRMS cluster 1 | 20 | 1 | 0.38 | |||
RRMS cluster 2 | 10 | 1.5 | 0.72 | |||
RRMS cluster 3 | 6 | 1 | 0.52 | |||
spinal T2W lesions | CIS | 10 | 0.6 | 0.16 | 2.069 | 0.120 |
RRMS cluster 1 | 18 | 1. 8 | 0.45 | |||
RRMS cluster 2 | 9 | 2 | 0.53 | |||
RRMS cluster 3 | 6 | 2. 7 | 1.02 | |||
spinal Gd(+) lesions | CIS | 10 | 0 | 0 | 2.159 | 0.108 |
RRMS cluster 1 | 18 | 0.28 | 0.16 | |||
RRMS cluster 2 | 9 | 1 | 0.47 | |||
RRMS cluster 3 | 6 | 0.5 | 0.5 | |||
infratentorial and spinal T2 lesions | CIS | 9 | 0.56 | 0.18 | 2.587 | 0.068 |
RRMS cluster 1 | 18 | 1.78 | 0.45 | |||
RRMS cluster 2 | 8 | 1.88 | 0.58 | |||
RRMS cluster 3 | 6 | 3 | 0.86 |
Compounds | RRMS Cluster 3 vs. 1 | RRMS Cluster 3 vs. 2 | ||||
---|---|---|---|---|---|---|
t-Tests | AUC | Log2 FC | t-Tests | AUC | Log2 FC | |
Acetylcarnitine | 0.0064251 | 0.80159 | −0.7736 | 0.015338 | 0.88333 | −0.91828 |
Alanine | 6.007 × 10−5 | 0.94444 | −0.55022 | 0.0006984 | 0.96667 | −0.50571 |
Arginine | 0.0089912 | 0.75397 | −0.482 | 0.0030095 | 0.91667 | −0.75006 |
Asparagine | 0.0003576 | 0.85714 | −0.60183 | 0.0048269 | 0.83333 | −0.45923 |
Aspartic_acid | N/A | N/A | N/A | 0.0034009 | 0.86667 | 0.8524 |
Choline | N/A | N/A | N/A | 0.0001562 | 1 | 0.4611 |
Creatinine | 0.039939 | 0.76984 | 0.34011 | N/A | N/A | N/A |
Cystine | 0.0044975 | 0.95238 | 1.613 | 0.017129 | 0.86667 | 1.0331 |
Glucose | 0.0002488 | 0.84921 | −0.51357 | 0.0024325 | 0.9 | −0.71125 |
Glutamic_acid | N/A | N/A | N/A | 0.0060747 | 0.8 | 0.61686 |
Glutamine | 0.0006285 | 0.7619 | −0.50125 | 0.018247 | 0.73333 | −0.45563 |
Hydroxyisobutyric | 2.155 × 10−6 | 0.96032 | −1.3397 | 0.0001444 | 0.96667 | −1.382 |
Lactic_acid | 0.0076353 | 0.80952 | −0.57308 | N/A | N/A | N/A |
Mannose | 0.0005278 | 0.80952 | −0.44569 | 0.0016796 | 0.91667 | −0.69713 |
Methionine | 3.259 × 10−6 | 0.96032 | −1.1363 | 0.0007746 | 0.96667 | −0.83975 |
MethylHippuric_acid | 0.038958 | 0.77778 | 0.65068 | N/A | N/A | N/A |
Nicotinamide | 0.046064 | 0.78571 | 0.88572 | 0.001909 | 0.96667 | 2,0052 |
Phenylalanine | 3.324× 10−7 | 0.97619 | −0.46776 | 0.0018768 | 0.9 | −0.23945 |
Pyruvic_acid | 6.703 × 10−6 | 0.96032 | −1.154 | 0.0007994 | 0.95 | −1.4189 |
Serine | 0.0082229 | 0.81746 | −0.29768 | N/A | N/A | N/A |
Taurine | N/A | N/A | N/A | 0.0077124 | 0.86667 | 0.879 |
Theobromine | N/A | N/A | N/A | 0.024328 | 0.91667 | 2.5868 |
Threonine | 0.042464 | 0.74603 | −0.40446 | N/A | N/A | N/A |
Uridine | 0.034079 | 0.81746 | 0.3817 | 0.0006818 | 0.95 | 0.60553 |
Xanthine | N/A | N/A | N/A | 0.0074553 | 0.91667 | 0.75873 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boziki, M.; Pechlivanis, A.; Virgiliou, C.; Bakirtzis, C.; Sintila, S.A.; Karafoulidou, E.; Kesidou, E.; Theotokis, P.; Nikolaidis, I.; Theodoridis, G.; et al. Blood Metabolomics May Discriminate a Sub-Group of Patients with First Demyelinating Episode in the Context of RRMS with Increased Disability and MRI Characteristics Indicative of Poor Prognosis. Int. J. Mol. Sci. 2022, 23, 14578. https://doi.org/10.3390/ijms232314578
Boziki M, Pechlivanis A, Virgiliou C, Bakirtzis C, Sintila SA, Karafoulidou E, Kesidou E, Theotokis P, Nikolaidis I, Theodoridis G, et al. Blood Metabolomics May Discriminate a Sub-Group of Patients with First Demyelinating Episode in the Context of RRMS with Increased Disability and MRI Characteristics Indicative of Poor Prognosis. International Journal of Molecular Sciences. 2022; 23(23):14578. https://doi.org/10.3390/ijms232314578
Chicago/Turabian StyleBoziki, Marina, Alexandros Pechlivanis, Christina Virgiliou, Christos Bakirtzis, Styliani Aggeliki Sintila, Eleni Karafoulidou, Evangelia Kesidou, Paschalis Theotokis, Ioannis Nikolaidis, Georgios Theodoridis, and et al. 2022. "Blood Metabolomics May Discriminate a Sub-Group of Patients with First Demyelinating Episode in the Context of RRMS with Increased Disability and MRI Characteristics Indicative of Poor Prognosis" International Journal of Molecular Sciences 23, no. 23: 14578. https://doi.org/10.3390/ijms232314578
APA StyleBoziki, M., Pechlivanis, A., Virgiliou, C., Bakirtzis, C., Sintila, S. A., Karafoulidou, E., Kesidou, E., Theotokis, P., Nikolaidis, I., Theodoridis, G., Gika, H., & Grigoriadis, N. (2022). Blood Metabolomics May Discriminate a Sub-Group of Patients with First Demyelinating Episode in the Context of RRMS with Increased Disability and MRI Characteristics Indicative of Poor Prognosis. International Journal of Molecular Sciences, 23(23), 14578. https://doi.org/10.3390/ijms232314578