Silicon Mediated Plant Immunity against Nematodes: Summarizing the Underline Defence Mechanisms in Plant Nematodes Interaction
Abstract
:1. Introduction
2. Role of Silicon in Nematode Management
3. Physical Mechanisms of Silicon-Mediated Nematode Resistance
Hosts | Nematodes | Compounds | Interaction Mechanisms | Reference |
---|---|---|---|---|
Beetroot | Meloidogyne incognita | Silicon dioxide | Increase the activities of SOD, CAT, PPO and POL; reduce root galls and nematode multiplication | [33] |
Carrot | M. incognita | Silicon dioxide | Reduce root galling and nematode multiplication, inhibit egg hatching | [27] |
Cucumber | M. incognita | Sodium metasilicate | Reduce eggmasses and root galling | [32] |
Cucumber | M. incognita | Sodium siliconate | Reduce root galls | [38] |
Coffee | M. exigua | Calcium silicate | Increase PPO and PAL activity; decrease root galls and eggs | [45] |
Coffee | M. exigua | Calcium silicate | Reduce juveniles | [43] |
Horsebean | M. incognita | Calcium silicate | Increase production of lignin PPO and PAL, reduce root galls and eggs | [20] |
Cotton | M. incognita | Potassium silicate | Decrease nematode population | [39] |
Eggplant | M. incognita | Silicon nanoparticles | Maximize nematicidal efficiency; inhibit egg hatching | [30] |
Eggplant | M. incognita | Silicon nanoparticles | Reduced the juveniles and increased shoot dry weight of plant | [28] |
Rice | M. graminicola | Silicon | Generate ROS of rice, activate ET pathway, reducenematode number and delay its development | [35] |
Sugarcane | M. incognita | Potassium silicate | Increase POD activity of plant | [19] |
Tomato | M. incognita | Silicon carbide nanoparticles | Degenerate reproductive organs of nematode | [23] |
Tomato | M. incognita | Silicon carbide nanoparticles | No effect on nematode mortality | [26] |
Tomato | M. javanica | Nano-chelated silicon fertilizer | Reduce the nematode population indice | [37] |
Tomato | M. incognita | Silicon dioxide | Reduce the final population of nematodes | [25] |
Tomato | M. incognita | Silicon Nanoparticles | Accumulate silicon in the parasitic zone | [34] |
Petri dish | M. javanica | Silicon | Reduce egg hatching | [29] |
4. Biochemical and Molecular Mechanisms of Silicon-Mediated Nematode Resistance
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bhat, J.A.; Rajora, N.; Raturi, G.; Sharma, S.; Dhiman, P.; Sanand, S.; Shivaraj, S.M.; Sonah, H.; Deshmukh, R. Silicon nanoparticles (SiNPs) in sustainable agriculture: Major emphasis on the practicality, efficacy and concerns. Nanoscale Adv. 2021, 3, 4019–4028. [Google Scholar] [CrossRef] [PubMed]
- Kessmann, H.; Staub, T.; Hofmann, C.; Maetzke, T.; Herzog, J.; Ward, E.; Uknes, S.; Ryals, J. Induction of systemic acquired disease resistance in plants by chemicals. Annu. Rev. Phytopathol. 1994, 32, 439–459. [Google Scholar] [CrossRef] [PubMed]
- Elad, Y.; David, D.R.; Harel, Y.M.; Borenshtein, M.; Kalifa, H.B.; Silber, A.; Graber, E.R. Induction of systemic resistance in plants by biochar, a soil-applied carbon sequestering agent. Phytopathology 2010, 100, 913–921. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vallad, G.E.; Goodman, R.M. Systemic acquired resistance and induced systemic resistance in conventional agriculture. Crop Sci. 2004, 44, 1920–1934. [Google Scholar] [CrossRef] [Green Version]
- Choudhary, D.K.; Prakash, A.; Johri, B.N. Induced systemic resistance (ISR) in plants: Mechanism of action. Indian J. Microbiol. 2007, 47, 289–297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Wees, S.C.; Pieterse, C.M.; Trijssenaar, A.; Van ‘t Westende, Y.A.; Hartog, F.; Van Loon, L.C. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol. Plant Microbe Interact. 1997, 10, 716–724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lohar, D.P.; Bird, D.M. Lotus japonicus: A new model to study root-parasitic nematodes. Plant Cell Physiol. 2003, 44, 1176–1184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, W.R.; Jia, L.; Goggin, L. Effects of jasmonate-induced defenses on root-knot nematode infection of resistant and susceptible tomato cultivars. J. Chem. Ecol. 2005, 31, 1953–1967. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, E.; Ma, J.F.; Miyake, Y. The possibility of silicon as an essential element for higher plants. Comments Agric. Food Chem. 1990, 2, 99–102. [Google Scholar]
- Richmond, K.E.; Sussman, M. Got silicon? The non-essential beneficial plant nutrient. Curr. Opin. Plant Biol. 2003, 6, 268–272. [Google Scholar] [CrossRef]
- Ma, J.F.; Tamai, K.; Yamaji, N.; Mitani, N.; Konishi, S.; Katsuhara, M.; Ishiguro, M.; Murata, Y.; Yano, M. A silicon transporter in rice. Nature 2006, 440, 688–691. [Google Scholar] [CrossRef]
- Zellner, W.; Tubana, B.; Rodrigues, F.A.; Datnoff, L.E. Silicon’s role in plant stress reduction and why this element is not used routinely for managing plant health. Plant Dis. 2021, 105, 2033–2049. [Google Scholar] [CrossRef] [PubMed]
- Fauteux, F.; Remus-Borel, W.; Menzies, J.G.; Belanger, R.R. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol. Lett. 2005, 249, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghareeb, H.; Bozso, Z.; Ott, P.G.; Repenning, C.; Stahl, F.; Wydra, K. Transcriptome of silicon-induced resistance against ralstonia solanacearum in the silicon non-accumulator tomato implicates priming effect. Physiol. Mol. Plant Pathol. 2011, 75, 83–89. [Google Scholar] [CrossRef]
- Ye, M.; Song, Y.Y.; Long, J.; Wang, R.L.; Baerson, S.R.; Pan, Z.Q.; Zhu-Salzman, K.; Xie, J.F.; Cai, K.Z.; Luo, S.M.; et al. Priming of jasmonate-mediated antiherbivore defense responses in rice by silicon. Proc. Natl. Acad. Sci. USA 2013, 110, E3631–E3639. [Google Scholar] [CrossRef] [Green Version]
- Cherif, M.; Asselin, A.; Belanger, R.R. Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathology 1994, 84, 236–242. [Google Scholar] [CrossRef]
- Rodrigues, F.A.; Benhamou, N.; Datnoff, L.E.; Jones, J.B.; Belanger, R.R. Ultrastructural and cytochemical aspects of silicon-mediated rice blast resistance. Phytopathology 2003, 93, 535–546. [Google Scholar] [CrossRef] [Green Version]
- Berry, S.D.; Spaull, V.W.; Ramouthar, P.V.; Cadet, P. Non-uptake of silicon and variable nematode species relationships between different levels of this element in sugarcane. S. Afr. J. Plant Soil 2011, 28, 110–118. [Google Scholar] [CrossRef] [Green Version]
- Guimaraes, L.M.P.; Pedrosa, E.M.R.; Coelho, R.S.B.; Couto, E.F.; Maranhao, S.R.V.L.; Chaves, A. Efficiency and enzymatic activity elicited by methyl jasmonate and potassium silicate on sugarcane under Meloidogyne incognita parasitism. Eficiencia e atividade enzimatica elicitada por metil jasmonato e silicato de potassio em cana-de-acUcar parasitada por Meloidogyne incognita. Summa Phytopathol. 2010, 36, 11–15. [Google Scholar] [CrossRef] [Green Version]
- Dutra, M.; Garcia, A.; Paiva, B.; Rocha, F.; Campos, V. Efeito do Silício aplicado na semeadura do feijoeiro no controle de nematoide de galha. Fitopatol. Bras. 2004, 29, 172. [Google Scholar]
- Decraemer, W.; Hunt, D.J. Structure and Classification; Cabi Publishing-C a B Int: Waco, TX, USA, 2006; pp. 3–32. [Google Scholar]
- Nicol, J.M.; Turner, S.J.; Coyne, D.L.; den Nijs, L.; Hockland, S.; Maafi, Z.T. Current Nematode Threats to World Agriculture. In Genomics and Molecular Genetics of Plant-Nematode Interactions; Springer: Dordrecht, The Netherlands, 2011; pp. 21–43. [Google Scholar]
- Al Banna, L.; Salem, N.; Ghrair, A.M.; Habash, S.S. Impact of silicon carbide nanoparticles on hatching and survival of soil nematodes Caenorhabditis elegans and Meloidogyne incognita. Appl. Ecol. Environ. Res. 2018, 16, 2651–2662. [Google Scholar] [CrossRef]
- Mohamed, E.; El-Sharabasy, S.; Abdulsamad, D. Evaluation of in vitro nematicidal efficiency of copper nanoparticles against Root-knot nematode Meloidogyne incognita. South Asian J. Parasitol. 2019, 2, 1–6. [Google Scholar] [CrossRef]
- Junior, E.M.; Rosas, J.T.F.; Damascena, A.P.; Silva, M.A.; Camara, G.D.R.; GonÇAlves, Â.O.; Moraes, W.B. Resistance induction efficiency of silicon dioxide against Meloidogyne incognita in tomato. Rev. Colomb. De Cienc. Hortíc. 2019, 13, 55–63. [Google Scholar] [CrossRef] [Green Version]
- Ardakani, A.S. Toxicity of silver, titanium and silicon nanoparticles on the root-knot nematode, Meloidogyne incognita, and growth parameters of tomato. Nematology 2013, 15, 671–677. [Google Scholar] [CrossRef]
- Ahamad, L.; Siddiqui, Z.A. Effects of silicon dioxide, zinc oxide and titanium dioxide nanoparticles on Meloidogyne incognita, Alternaria dauci and Rhizoctonia solani disease complex of carrot. Exp. Parasitol. 2021, 230, 108176. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Siddiqui, Z.A.; Parveen, A.; Khan, A.A.; Moon, I.S.; Alam, M. Elucidating the role of silicon dioxide and titanium dioxide nanoparticles in mitigating the disease of the eggplant caused by Phomopsis vexans, Ralstonia solanacearum, and root-knot nematode Meloidogyne incognita. Nanotechnol. Rev. 2022, 11, 1606–1619. [Google Scholar] [CrossRef]
- Mattei, D.; Dias-Arieira, C.R. Different sources of silicon in the embryonic development and in the hatching of Meloidogyne javanica. Afr. J. Agric. Res. 2015, 10, 4814–4819. [Google Scholar]
- El-Ashry, R.M.; El-Saadony, M.T.; El-Sobki, A.E.A.; El-Tahan, A.M.; Al-Otaibi, S.; El-Shehawi, A.M.; Saad, A.M.; Elshaer, N. Biological silicon nanoparticles maximize the efficiency of nematicides against biotic stress induced by Meloidogyne incognita in eggplant. Saudi J. Biol. Sci. 2022, 29, 920–932. [Google Scholar] [CrossRef] [PubMed]
- Bicalho, A.C.G.; Silva, S.A.D.; Machado, A.C.Z. Control of Meloidogyne paranaensis mediated by silicon. Sci. Agric. 2021, 78. [Google Scholar] [CrossRef]
- Dugui-Es, C.; Pedroche, N.; Villanueva, L.; Galeng, J.; De Waele, D. Management of root knot nematode, Meloidogyne incognita in cucumber (Cucumis sativus) using silicon. Commun. Agric. Appl. Biol. Sci. 2010, 75, 497–505. [Google Scholar]
- Khan, M.R.; Siddiqui, Z.A. Use of silicon dioxide nanoparticles for the management of Meloidogyne incognita, Pectobacterium betavasculorum and Rhizoctonia solani disease complex of beetroot (Beta vulgaris L.). Sci. Hortic. 2020, 265, 109211. [Google Scholar] [CrossRef]
- Udalova, Z.V.; Folmanis, G.E.; Fedotov, M.A.; Pelgunova, L.A.; Krysanov, E.Y.; Khasanov, F.K.; Zinovieva, S.V. Effects of Silicon Nanoparticles on Photosynthetic Pigments and Biogenic Elements in Tomato Plants Infected with Root-Knot Nematode Meloidogyne incognita. Dokl. Biochem. Biophys. 2020, 495, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Zhan, L.P.; Peng, D.L.; Wang, X.L.; Kong, L.A.; Peng, H.; Liu, S.M.; Liu, Y.; Huang, W.K. Priming effect of root-applied silicon on the enhancement of induced resistance to the root-knot nematode Meloidogyne graminicola in rice. BMC Plant Biol. 2018, 18, 50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sinh, N.V.; Khoi, C.M.; Phuong, N.T.K.; Linh, T.B.; Minh, D.D.; Perry, R.N.; Toyota, K. Impacts of Fallow Conditions, Compost and silicate fertilizer on soil nematode community in Salt–Affected Paddy Rice Fields in Acid Sulfate and Alluvial Soils in the Mekong Delta, Vietnam. Agronomy 2021, 11, 425. [Google Scholar] [CrossRef]
- Charehgani, H.; Fakharzadeh, S.; Nazaran, M.H. Evaluation of nano-chelated silicon fertilizer in the management of Meloidogyne javanica in tomato. Indian Phytopathol. 2021, 74, 1027–1034. [Google Scholar] [CrossRef]
- Mansourabad, M.A.; Bideh, A.K.; Abdollahi, M. Effects of some micronutrients and macronutrients on the root-knot nematode, Meloidogyne incognita, in greenhouse cucumber (Cucumis sativus cv. Negin). J. Crop Prot. 2016, 5, 507–517. [Google Scholar] [CrossRef] [Green Version]
- Santos, L.B.; de Souza, J.P.; Prado, R.D.; Ferreira, R.; de Souza, V.F.; Sarah, M.M.D.; Soares, P.L.M. Silicon Allows Halving Cadusafos Dose to Control Meloidogyne incognita and increase cotton development. Silicon 2022, 14, 3809–3816. [Google Scholar] [CrossRef]
- Jones, J.T.; Haegeman, A.; Danchin, E.G.J.; Gaur, H.S.; Helder, J.; Jones, M.G.K.; Kikuchi, T.; Manzanilla-Lopez, R.; Palomares-Rius, J.E.; Wesemael, W.M.L.; et al. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol. Plant Pathol. 2013, 14, 946–961. [Google Scholar] [CrossRef] [Green Version]
- Lazniewska, J.; Macioszek, V.K.; Kononowicz, A.K. Plant-fungus interface: The role of surface structures in plant resistance and susceptibility to pathogenic fungi. Physiol. Mol. Plant Pathol. 2012, 78, 24–30. [Google Scholar] [CrossRef]
- Sun, W.C.; Zhang, J.; Fan, Q.H.; Xue, G.F.; Li, Z.J.; Liang, Y.C. Silicon-enhanced resistance to rice blast is attributed to silicon-mediated defence resistance and its role as physical barrier. Eur. J. Plant Pathol. 2010, 128, 39–49. [Google Scholar] [CrossRef]
- Silva, R.V.; Oliveira, R.D.D.; Ferreira, P.D.; Castro, D.B.; Rodrigues, F.A. Effects of silicon on the penetration and reproduction events of Meloidogyne exigua on coffee roots. Bragantia 2015, 74, 196–199. [Google Scholar] [CrossRef] [Green Version]
- Marschner, P. (Ed.) Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Elsevier Academic Press Inc.: San Diego, CA, USA, 2012; pp. 1–651. [Google Scholar]
- Silva, R.V.; Oliveira, R.D.L.; Nascimento, K.J.T.; Rodrigues, F.A. Biochemical responses of coffee resistance against Meloidogyne exigua mediated by silicon. Plant Pathol. 2010, 59, 586–593. [Google Scholar] [CrossRef]
- Haegeman, A.; Jones, J.T.; Danchin, E.G.J. Horizontal Gene Transfer in Nematodes: A Catalyst for Plant Parasitism? Mol. Plant-Microbe Interact. 2011, 24, 879–887. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, D.; Sharma, G. Role of silicon in counteracting abiotic and biotic plant stresses. Int. J. Chem. Stud. 2018, 6, 1434–1442. [Google Scholar]
- Hall, C.R.; Waterman, J.M.; Vandegeer, R.K.; Hartley, S.E.; Johnson, S.N. The Role of Silicon in Antiherbivore Phytohormonal Signalling. Front. Plant Sci. 2019, 10, 1132. [Google Scholar] [CrossRef] [PubMed]
- Waewthongrak, W.; Pisuchpen, S.; Leelasuphakul, W. Effect of bacillus subtilis and chitosan applications on green mold (Penicilium digitatum Sacc.) decay in citrus fruit. Postharvest Biol. Technol. 2015, 99, 44–49. [Google Scholar] [CrossRef]
- Quarta, A.; Mita, G.; Durante, M.; Arlorio, M.; De Paolis, A. Isolation of a polyphenol oxidase (PPO) cDNA from artichoke and expression analysis in wounded artichoke heads. Plant Physiol. Biochem. 2013, 68, 52–60. [Google Scholar] [CrossRef]
- Liang, Y.C.; Sun, W.C.; Si, J.; Romheld, V. Effects of foliar- and root-applied silicon on the enhancement of induced resistance to powdery mildew in Cucumis sativus. Plant Pathol. 2005, 54, 678–685. [Google Scholar] [CrossRef]
- Chabannes, M.; Ruel, K.; Yoshinaga, A.; Chabbert, B.; Jauneau, A.; Joseleau, J.P.; Boudet, A.M. In situ analysis of lignins in transgenic tobacco reveals a differential impact of individual transformations on the spatial patterns of lignin deposition at the cellular and subcellular levels. Plant J. 2001, 28, 271–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, S.; DeMason, D.A.; Ehlers, J.D.; Close, T.J.; Roberts, P.A. Histological characterization of root-knot nematode resistance in cowpea and its relation to reactive oxygen species modulation. J. Exp. Bot. 2008, 59, 1305–1313. [Google Scholar] [CrossRef] [Green Version]
- Giraldo, M.C.; Valent, B. Filamentous plant pathogen effectors in action. Nat. Rev. Microbiol. 2013, 11, 800–814. [Google Scholar] [CrossRef] [PubMed]
- Fauteux, F.; Chain, F.; Belzile, F.; Menzies, J.G.; Belanger, R.R. The protective role of silicon in the Arabidopsis-powdery mildew pathosystem. Proc. Natl. Acad. Sci. USA 2006, 103, 17554–17559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.C.; Wang, L.J.; Zhang, W.X.; Zhang, F.S. Do lignification and silicification of the cell wall precede silicon deposition in the silica cell of the rice (Oryza sativa L.) leaf epidermis? Plant Soil 2013, 372, 137–149. [Google Scholar] [CrossRef]
- Strout, G.; Russell, S.D.; Pulsifer, D.P.; Erten, S.; Lakhtakia, A.; Lee, D.W. Silica nanoparticles aid in structural leaf coloration in the Malaysian tropical rainforest understorey herb Mapania caudata. Ann. Bot. 2013, 112, 1141–1148. [Google Scholar] [CrossRef]
- Rastogi, A.; Tripathi, D.K.; Yadav, S.; Chauhan, D.K.; Zivcak, M.; Ghorbanpour, M.; El-Sheery, N.I.; Brestic, M. Application of silicon nanoparticles in agriculture. 3 Biotech 2019, 9, 90. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Ohnishi, Y.; Kitagishi, K. Histochemistry of silicon in rice plant. 2. Localization of silicon within rice tissues. 3. The presence of cuticle-silica double layer in the epidermal tissue. Soil Plant Food 1962, 8, 1–5. [Google Scholar]
- Datnoff, L.E.; Elmer, W.H.; Huber, D.M. Mineral Nutrition and Plant Disease; American Phytopathological Society: Saint Paul, MI, USA, 2007; p. vi + 278. [Google Scholar]
- Bakhat, H.F.; Bibi, N.; Zia, Z.; Abbas, S.; Hammad, H.M.; Fahad, S.; Ashraf, M.R.; Shah, G.M.; Rabbani, F.; Saeed, S. Silicon mitigates biotic stresses in crop plants: A review. Crop Prot. 2018, 104, 21–34. [Google Scholar] [CrossRef]
- Goujon, T.; Sibout, R.; Eudes, A.; MacKay, J.; Joulanin, L. Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana. Plant Physiol. Biochem. 2003, 41, 677–687. [Google Scholar] [CrossRef]
- Huang, W.K.; Ji, H.L.; Gheysen, G.; Kyndt, T. Thiamine-induced priming against root-knot nematode infection in rice involves lignification and hydrogen peroxide generation. Mol. Plant Pathol. 2016, 17, 614–624. [Google Scholar] [CrossRef] [Green Version]
- Bittner, N.; Trauer-Kizilelma, U.; Hilker, M. Early plant defence against insect attack: Involvement of reactive oxygen species in plant responses to insect egg deposition. Planta 2017, 245, 993–1007. [Google Scholar] [CrossRef]
- Bozkurt, T.O.; Schornack, S.; Banfield, M.J.; Kamoun, S. Oomycetes, effectors, and all that jazz. Curr. Opin. Plant Biol. 2012, 15, 483–492. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Y.C. Phytophthora sojae effectors orchestrate warfare with host immunity. Curr. Opin. Microbiol. 2018, 46, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Coskun, D.; Deshmukh, R.; Sonah, H.; Menzies, J.G.; Reynolds, O.; Ma, J.F.; Kronzucker, H.J.; Belanger, R.R. The controversies of silicon’s role in plant biology. New Phytol. 2019, 221, 67–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okuda, A.; Takahashi, E. The role of silicon. In The Mineral Nutrition of the Rice Plant; Chandler, R.F., Ed.; John Hopkins Press: Baltimore, AR, USA, 1965; pp. 126–146. [Google Scholar]
- Vivancos, J.; Labbe, C.; Menzies, J.G.; Belanger, R.R. Silicon-mediated resistance of Arabidopsis against powdery mildew involves mechanisms other than the salicylic acid (SA)-dependent defence pathway. Mol. Plant Pathol. 2015, 16, 572–582. [Google Scholar] [CrossRef] [PubMed]
- Islam, W.; Tayyab, M.; Khalil, F.; Hua, Z.; Huang, Z.Q.; Chen, H.Y.H. Silicon-mediated plant defense against pathogens and insect pests. Pestic. Biochem. Physiol. 2020, 168, 104641. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, J.; Yu, X.; Li, C.; Ayaz, M.; Abdulsalam, S.; Peng, D.; Qi, R.; Peng, H.; Kong, L.; Jia, J.; et al. Silicon Mediated Plant Immunity against Nematodes: Summarizing the Underline Defence Mechanisms in Plant Nematodes Interaction. Int. J. Mol. Sci. 2022, 23, 14026. https://doi.org/10.3390/ijms232214026
Yu J, Yu X, Li C, Ayaz M, Abdulsalam S, Peng D, Qi R, Peng H, Kong L, Jia J, et al. Silicon Mediated Plant Immunity against Nematodes: Summarizing the Underline Defence Mechanisms in Plant Nematodes Interaction. International Journal of Molecular Sciences. 2022; 23(22):14026. https://doi.org/10.3390/ijms232214026
Chicago/Turabian StyleYu, Jingwen, Xiyue Yu, Caihong Li, Muhammad Ayaz, Sulaiman Abdulsalam, Deliang Peng, Rende Qi, Huan Peng, Lingan Kong, Jianping Jia, and et al. 2022. "Silicon Mediated Plant Immunity against Nematodes: Summarizing the Underline Defence Mechanisms in Plant Nematodes Interaction" International Journal of Molecular Sciences 23, no. 22: 14026. https://doi.org/10.3390/ijms232214026