Carbon-Coated ZnS-FeS2 Heterostructure as an Anode Material for Lithium-Ion Battery Applications
Abstract
1. Introduction
2. Results and Discussion
2.1. Scheme Diagram and Structural Analysis
2.2. Morphological Analysis
2.3. Electrochemical Analysis
3. Methods and Materials
3.1. Chemicals
3.2. Synthesis of ZnS, FeS2, and ZnS-FeS2 Heterostructure
3.3. Carbon Coating of ZnS-FeS2
3.4. Material Characterizations
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, S.; Wang, M.; Jia, P.; Wang, B.; Zhang, J.; Zhao, Y. N-Graphene Motivated SnO2@SnS2 Heterostructure Quantum Dots for High Performance Lithium/Sodium Storage. Energy Storage Mater. 2019, 20, 225–233. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Li, Y.; Zhang, Y.; Dong, Y.; Li, D.; Zhang, J. Construction of Uniform SnS2/ZnS Heterostructure Nanosheets Embedded in Graphene for Advanced Lithium-Ion Batteries. J. Alloys Compd. 2020, 820, 153147. [Google Scholar] [CrossRef]
- Chen, Y.; Zong, W.; Chen, H.; Li, Z.; Pang, H.; Yuan, A.; Yang, H.; Shen, X. Cyanide-Metal Framework Derived Porous MoO3-Fe2O3 Hybrid Micro- Octahedrons as Superior Anode for Lithium-Ion Batteries. Chem. Eng. J. 2021, 426, 130347. [Google Scholar] [CrossRef]
- Tang, Q.; Su, H.; Cui, Y.; Baker, A.P.; Liu, Y.; Lu, J.; Song, X.; Zhang, H.; Wu, J.; Yu, H.; et al. Ternary Tin-Based Chalcogenide Nanoplates as a Promising Anode Material for Lithium-Ion Batteries. J. Power Sources 2018, 379, 182–190. [Google Scholar] [CrossRef]
- Hu, P.; Jia, Z.; Wang, Y.; Zhou, Q.; Liu, N.; Li, F.; Wang, J. Interface Engineering of Hierarchical MoS2/ZnS/C Heterostructures as Anode Materials for Highly Improved Lithium Storage Capability. ACS Appl. Energy Mater. 2020, 3, 7856–7864. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, Y.; Shang, C.; Wang, X.; Zhou, G.; Ou, J.Z.; Wang, Y. ZnS Nanotubes/Carbon Cloth as a Reversible and High-Capacity Anode Material for Lithium-Ion Batteries. ChemElectroChem 2019, 6, 461–466. [Google Scholar] [CrossRef]
- Sung, K.W.; Koo, B.R.; Ahn, H.J. Hybrid Nanocomposites of Tunneled-Mesoporous Sulfur-Doped Carbon Nanofibers Embedded with Zinc Sulfide Nanoparticles for Ultrafast Lithium Storage Capability. J. Alloys Compd. 2021, 854, 157206. [Google Scholar] [CrossRef]
- Ren, H.; Wen, Z.; Wu, G.; Chen, S.; Joo, S.W.; Huang, J. Preparation of Zinc Sulfide@reduced Graphene Oxide Nanocomposites with Enhanced Energy Storage Performance. J. Phys. Chem. Solids 2019, 134, 43–51. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, P.; Yin, Y.; Zhang, X.; Fan, L.; Zhang, N.; Sun, K. Heterostructured SnS-ZnS@C Hollow Nanoboxes Embedded in Graphene for High Performance Lithium and Sodium Ion Batteries. Chem. Eng. J. 2019, 356, 1042–1051. [Google Scholar] [CrossRef]
- Hu, Z.; Cui, H.; Zhu, Y.; Lei, G.; Li, Z. Holey Reduced Graphene Oxide Nanosheets Wrapped Hollow FeS2@C Spheres as a High-Performance Anode Material for Sodium-Ion Batteries. J. Power Sources 2022, 536, 231438. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Zhang, Y.; Wang, P.; Han, P.; Li, K.; Liu, W. Preparation of a Sulfur-Doped Graphene-Wrapped FeS2 Microsphere Composite Material for Lithium-Ion Batteries. Energy Fuels 2021, 35, 20330–20338. [Google Scholar] [CrossRef]
- Yang, R.; Wang, C.; Li, Y.; Chen, Z.; Wei, M. Construction of FeS2@C Coated with Reduced Graphene Oxide as High-Performance Anode for Lithium-Ion Batteries. J. Electroanal. Chem. 2022, 918, 116467. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, H.; Bao, S.; Yin, Y.; Zhang, Y.; Lu, J. Hollow FeS2 Nanospheres Encapsulated in N/S Co-Doped Carbon Nanofibers as Electrode Material for Electrochemical Energy Storage. J. Alloys Compd. 2022, 905, 164184. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, W.; Chen, M.; Wang, R.; Fang, Z. The Synthesis of ZnS@MoS2 Hollow Polyhedrons for Enhanced Lithium Storage Performance. CrystEngComm 2018, 20, 7266–7274. [Google Scholar] [CrossRef]
- Zhu, X.; Li, J.; Ali, R.N.; Huang, M.; Liu, P.; Xiang, B. Toward a High-Performance Li-Ion Battery: Constructing a Co1−xS/ZnS@C Composite Derived from Metal-Organic Framework @3D Disordered Polystyrene Sphere Template. Mater. Des. 2018, 160, 636–641. [Google Scholar] [CrossRef]
- Li, B.; Wang, R.; Chen, Z.; Sun, D.; Fang, F.; Wu, R. Embedding Heterostructured MnS/Co1-xS Nanoparticles in Porous Carbon/Graphene for Superior Lithium Storage. J. Mater. Chem. A 2019, 7, 1260–1266. [Google Scholar] [CrossRef]
- Chen, F.; Shi, D.; Yang, M.; Jiang, H.; Shao, Y.; Wang, S.; Zhang, B.; Shen, J.; Wu, Y.; Hao, X. Novel Designed MnS-MoS2 Heterostructure for Fast and Stable Li/Na Storage:Insights into the Advanced Mechanism Attributed to Phase Engineering. Adv. Funct. Mater. 2021, 31, 2007132. [Google Scholar] [CrossRef]
- Man, X.; Liang, P.; Shu, H.; Zhang, L.; Wang, D.; Chao, D.; Liu, Z.; Du, X.; Wan, H.; Wang, H. Interface Synergistic Effect from Layered Metal Sulfides of MoS 2/SnS 2 van Der Waals Heterojunction with Enhanced Li-Ion Storage Performance. J. Phys. Chem. C 2018, 122, 24600–24608. [Google Scholar] [CrossRef]
- Wang, Z.; Jia, H.; Cai, Y.; Li, C.; Zheng, X.; Liang, H.; Qi, J.; Cao, J.; Feng, J. Highly Conductive Mn3O4/MnS Heterostructures Building Multi-Shelled Hollow Microspheres for High-Performance Supercapacitors. Chem. Eng. J. 2020, 392, 123890. [Google Scholar] [CrossRef]
- Venkatachalam, V.; Alsalme, A.; Alswieleh, A.; Jayavel, R. Double Hydroxide Mediated Synthesis of Nanostructured ZnCo2O4 as High Performance Electrode Material for Supercapacitor Applications. Chem. Eng. J. 2017, 321, 474–483. [Google Scholar] [CrossRef]
- Naveenkumar, P.; Munisamy, M.; Yesuraj, J.; Kim, K.; Kalaignan, G.P.; Kang, W.S.; Kim, S. Fabrication of Nanoneedle and Nanograss Array of Ni-Mixed CuCo2S4 @Ni-Foam as Binder-Free Electrode Materials for High-Performance Supercapacitor Applications. Energy Fuels 2022, 36, 3272–3282. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Z.; Zhu, Y.; Wang, R.; Suo, K.; Lin, G.; Zhang, N. Core-Shell FeS2@NSC Grown on Graphene for High Performance Lithium-Ion Storage. J. Electroanal. Chem. 2022, 918, 116510. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Y.; Wei, Y.; Song, X.; Fu, Y.; Battaglia, V.S. A ZnS Nanocrystal/Reduced Graphene Oxide Composite Anode with Enhanced Electrochemical Performances for Lithium-Ion Batteries. Phys. Chem. Chem. Phys. 2016, 18, 30630–30642. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, H.S.H.; Li, C.-F.; Wu, L.; Shi, W.-H.; Dong, W.-D.; Liu, J.; Hu, Z.-Y.; Chen, L.-H.; Li, Y.; Su, B.-L. Growing Ordered CuO Nanorods on 2D Cu/g-C3N4 Nanosheets as Stable Freestanding Anode for Outstanding Lithium Storage. Chem. Eng. J. 2021, 407, 126941. [Google Scholar] [CrossRef]
- Mao, M.; Jiang, L.; Wu, L.; Zhang, M.; Wang, T. The Structure Control of ZnS/Graphene Composites and Their Excellent Properties for Lithium-Ion Batteries. J. Mater. Chem. A 2015, 3, 13384–13389. [Google Scholar] [CrossRef]
- Xiao, X.; Zhang, Z.; Yang, K.; Mei, T.; Yan, D.; Wang, X. Design and Synthesize Hollow Spindle Ni-Doped Co9S8@ZnS Composites and Their Enhanced Cycle Performance. J. Alloys Compd. 2021, 853, 157118. [Google Scholar] [CrossRef]
- Teng, Y.; Xu, Y.; Cheng, X.; Gao, S.; Zhang, X.; Zhao, H.; Huo, L. Lonicerae Flos-Derived N, S Co-Doped Graphitized Carbon Uniformly Embedded with FeS2 Nanoparticles as Anode Materials for High Performance Lithium Ion Batteries. J. Alloys Compd. 2022, 909, 164707. [Google Scholar] [CrossRef]
- Chen, S.; Li, G.; Yang, M.; Xiong, J.; Akter, S.; Mi, L.; Li, Y. Nanotube Assembled Coral-like ZnS@N, S Co-Doped Carbon: A Sodium-Ion Batteries Anode Material with Outstanding Stability and Rate Performance. Appl. Surf. Sci. 2021, 535, 147748. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, L.; Ye, L.; Li, G. Capacity and Cycle Performance of Lithium Ion Batteries Employing CoxZn1-XS/Co9S8@N-Doped Reduced Graphene Oxide as Anode Material. Chem. Eng. J. 2021, 409, 127372. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, Y.; Liu, X.; Chen, C.; Xu, Z.; Liu, P. Zeolitic Imidazolate Frameworks Derived ZnS/Co3S4 Composite Nanoparticles Doping on Polyhedral Carbon Framework for Efficient Lithium/Sodium Storage Anode Materials. Carbon 2020, 157, 244–254. [Google Scholar] [CrossRef]
- Sun, H.; Xin, G.; Hu, T.; Yu, M.; Shao, D.; Sun, X.; Lian, J. High-Rate Lithiation-Induced Reactivation of Mesoporous Hollow Spheres for Long-Lived Lithium-Ion Batteries. Nat. Commun. 2014, 5, 4526. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wu, R.; Wang, H.; Jiang, Y.; Jin, L.; Guo, Y.; Song, Y.; Fang, F.; Sun, D. Construction of Hybrid Hollow Architectures by In-Situ Rooting Ultrafine ZnS Nanorods within Porous Carbon Polyhedra for Enhanced Lithium Storage Properties. Chem. Eng. J. 2017, 326, 680–690. [Google Scholar] [CrossRef]
- Guo, C.; Wang, Q.; He, J.; Wu, C.; Xie, K.; Liu, Y.; Zhang, W.; Cheng, H.; Hu, H.; Wang, C. Rational Design of Unique ZnO/ZnS@N-C Heterostructures for High-Performance Lithium-Ion Batteries. J. Phys. Chem. Lett. 2020, 11, 905–912. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Wang, Y.; Li, H.; Wei, D.; Wen, F.; Zhang, G.; Liu, P.; Li, L.; Zhang, W.; Chen, Z. Bimetal-Organic Framework-Derived Co9S8/ZnS@NC Heterostructures for Superior Lithium-Ion Storage. Chem. Asian J. 2020, 15, 1613–1620. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Li, X.; Zheng, J.; Tang, B.; Rui, Y. A Variety of Carbon-Coated FeS2 Anodes: FeS2@CNT with Excellent Lithium-Ion Storage Performance. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 637, 128226. [Google Scholar] [CrossRef]
- Li, J.; Fu, Y.; Shi, X.; Xu, Z.; Zhang, Z. Urchinlike ZnS Microspheres Decorated with Nitrogen-Doped Carbon: A Superior Anode Material for Lithium and Sodium Storage. Chem. A Eur. J. 2017, 23, 157–166. [Google Scholar] [CrossRef]
- He, L.; Liao, X.Z.; Yang, K.; He, Y.S.; Wen, W.; Ma, Z.F. Electrochemical Characteristics and Intercalation Mechanism of ZnS/C Composite as Anode Active Material for Lithium-Ion Batteries. Electrochim. Acta 2011, 56, 1213–1218. [Google Scholar] [CrossRef]
- Du, X.; Zhao, H.; Lu, Y.; Zhang, Z.; Kulka, A.; Świerczek, K. Synthesis of Core-Shell-like ZnS/C Nanocomposite as Improved Anode Material for Lithium Ion Batteries. Electrochim. Acta 2017, 228, 100–106. [Google Scholar] [CrossRef]
- Jiang, H.; Peng, H.; Guo, H.; Zeng, Y.; Li, L.; Zhang, Y.; Chen, Y.; Chen, X.; Zhang, J.; Chu, R. Interfacial Mechanical Strength Enhancement for High-Performance ZnS Thin-Film Anodes. ACS Appl. Mater. Interfaces 2020, 12, 51344–51356. [Google Scholar] [CrossRef]
- Tian, G.; Zhao, Z.; Sarapulova, A.; Das, C.; Zhu, L.; Liu, S.; Missiul, A.; Welter, E.; Maibach, J.; Dsoke, S. Understanding the Li-Ion Storage Mechanism in a Carbon Composited Zinc Sulfide Electrode. J. Mater. Chem. A 2019, 7, 15640–15653. [Google Scholar] [CrossRef]
- Ding, H.; Huang, H.C.; Zhang, X.K.; Xie, L.; Fan, J.Q.; Jiang, T.; Shi, D.; Ma, N.; Tsai, F.C. Zinc Sulfide Decorated on Nitrogen-Doped Carbon Derived from Metal-Organic Framework Composites for Highly Reversible Lithium-Ion Battery Anode. ChemElectroChem 2019, 6, 5617–5626. [Google Scholar] [CrossRef]
Materials | Reversible Capacity—(mAh g−1) | Current Density—(A g−1) | Cycles | Reference |
---|---|---|---|---|
ZnS-FeS2@C | 821 | 1 | 500 | This work |
FeS2/SG | 400.1 | 1 | 400 | [11] |
rGO@FeS2@C | 820.7 | 1 | 300 | [12] |
FeS2@NSC/SG | 392 | 2.5 | 400 | [22] |
Ni doped Co9S8@ZnS | 758 | 1 | 500 | [26] |
FeS2@N/S-C | 528 | 1 | 1000 | [27] |
ZnS@NSC-800 | 571.4 | 1 | 1000 | [28] |
CoxZn1-xS/Co9S8@ rGO | 786 | 1 | 1000 | [29] |
ZnO/ZnS@N-C/CNT | 386.6 | 1 | 400 | [33] |
Co9S8/ZnS@NC | 411.2 | 1 | 300 | [34] |
FeS2@CNT | 750 | 1 | 200 | [35] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naveenkumar, P.; Maniyazagan, M.; Kang, N.; Yang, H.-W.; Kang, W.-S.; Kim, S.-J. Carbon-Coated ZnS-FeS2 Heterostructure as an Anode Material for Lithium-Ion Battery Applications. Int. J. Mol. Sci. 2022, 23, 13945. https://doi.org/10.3390/ijms232213945
Naveenkumar P, Maniyazagan M, Kang N, Yang H-W, Kang W-S, Kim S-J. Carbon-Coated ZnS-FeS2 Heterostructure as an Anode Material for Lithium-Ion Battery Applications. International Journal of Molecular Sciences. 2022; 23(22):13945. https://doi.org/10.3390/ijms232213945
Chicago/Turabian StyleNaveenkumar, Perumal, Munisamy Maniyazagan, Nayoung Kang, Hyeon-Woo Yang, Woo-Seung Kang, and Sun-Jae Kim. 2022. "Carbon-Coated ZnS-FeS2 Heterostructure as an Anode Material for Lithium-Ion Battery Applications" International Journal of Molecular Sciences 23, no. 22: 13945. https://doi.org/10.3390/ijms232213945
APA StyleNaveenkumar, P., Maniyazagan, M., Kang, N., Yang, H.-W., Kang, W.-S., & Kim, S.-J. (2022). Carbon-Coated ZnS-FeS2 Heterostructure as an Anode Material for Lithium-Ion Battery Applications. International Journal of Molecular Sciences, 23(22), 13945. https://doi.org/10.3390/ijms232213945