Next Article in Journal
Comparison of the Chemical Components, Efficacy and Mechanisms of Action of Chrysanthemum morifolium Flower and Its Wild Relative Chrysanthemum indicum Flower against Liver-Fire Hyperactivity Syndrome of Hypertension via Integrative Analyses
Previous Article in Journal
Receptor Tyrosine Kinase Inhibitors for the Treatment of Recurrent and Unresectable Bone Sarcomas
Previous Article in Special Issue
Trichostatin A-Mediated Epigenetic Modulation Predominantly Triggers Transcriptomic Alterations in the Ex Vivo Expanded Equine Chondrocytes
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Editorial

Molecular Mechanism and Application of Somatic Cell Cloning in Mammals—Past, Present and Future

Department of Reproductive Biotechnology and Cryoconservation, National Research Institute of Animal Production, Krakowska 1 Street, 32-083 Balice, Poland
Int. J. Mol. Sci. 2022, 23(22), 13786; https://doi.org/10.3390/ijms232213786
Submission received: 2 November 2022 / Accepted: 7 November 2022 / Published: 9 November 2022
Thus far, nearly 25 mammalian species have been cloned by intra- or interspecies somatic cell nuclear transfer (SCNT). Among them, non-transgenic and transgenic representatives of such domesticated and wild-living animals that have been propagated and/or multiplied by intraspecific or interspecific SCNT-based cloning are:
  • Pigs (Sus scrofa domesticus) [1,2];
  • Sheep (Ovis aries) [3,4];
  • Goats (Capra aegagrus hircus) [5,6];
  • Cattle (Bos taurus taurus) [7,8,9];
  • Horses (Equus ferus caballus) [10];
  • Mules (equine hybrids: Equus asinus × Equus ferus caballus) [11];
  • Dromedary camels (Camelus dromedarius) [12];
  • Bactrian camels (Camelus bactrianus ferus) [13];
  • Water buffalos (Bubalus bubalis) [14];
  • Rabbits (Oryctolagus cuniculus) [15];
  • Domestic cats (Felis silvestris catus) [16];
  • Domestic dogs (Canis lupus familiaris) [17];
  • Mice (Mus musculus musculus) [18];
  • Rats (Rattus norvegicus domestica) [19];
  • Ferrets (Mustela putorius furo) [20];
  • Mouflon (Ovis aries/ammon musimon) [21];
  • Gaur (Bos gaurus) [22];
  • Red deer (Cervus elaphus) [23];
  • Pyrenean ibex (bucardo; Capra pyrenaica pyrenaica) [24];
  • African wild cat (Felis silvestris lybica) [25];
  • Sand cat (Felis margarita margarita) [26];
  • Gray wolf (Canis lupus lupus) [27];
  • Coyote (Canis latrans) [28];
  • Cynomolgus monkey/macaque (Macaca fascicularis) [29].
Despite the above-indicated abundant variety of SCNT-derived mammalian species, the effectiveness of SCNT-based cloning remains immensely or considerably low and oscillates between 0.1% and 5%, while estimating the outcomes of offspring born in relation to the total numbers of nuclear-transferred oocytes [30,31]. For this reason, at the present stage of investigations, extensive efforts are being undertaken to achieve considerable scientific breakthroughs, which would enable researchers to not only tremendously increase the ex vivo and in vivo developmental competences, but also to remarkably ameliorate the parameters related to the cytological, molecular and epigenetic qualities of SCNT-generated mammalian embryos. Only such a crucial turning point or a substantial research game changer would open up new possibilities for both improving the overall efficiency of SCNT-based cloning and, as a consequence, play an increasingly important role as an assisted reproductive technology (ART) which is characterized by a broad spectrum of applicability in embryology, biotechnology, transgenics and biomedicine [32,33].
It is beyond any doubt that the relatively or extremely low efficiency of mammalian SCNT-mediated cloning, including both its intra- and interspecies model, can only be improved by comprehensively recognizing molecular and epigenetic determinants and mechanisms affecting the developmental competences of SCNT-derived embryos [34]. A wide range of biological and molecular factors predestine and predominantly bias the biotechnological suitability of nuclear donor cells and nuclear recipient oocytes for SCNT-mediated ARTs. The extent of this suitability is measured and directly depends on the developmental capacity and quality parameters pinpointed for nuclear-transferred oocytes and corresponding somatic-cell-cloned embryos in different mammalian species [35]. The main impact on the development of cloned embryos is exerted by the type and provenance of nuclear donor cells [36,37,38]. In this context, an important role is played by the strategies used to artificially synchronize the mitotic cycle of nuclear donor cells expanded ex vivo at the G0/G1 stages [39,40]. Notably, the developmental outcomes of somatic-cell-cloned embryos are largely determined by the molecular quality parameters reflected in the incidence of apoptotic cell death and oxidative stress processes in the nuclear donor cells and SCNT-derived embryos cultured in vitro [40,41,42,43]. Additionally, it is worth highlighting that the developmental capability of cloned embryos is remarkably biased by the molecular quality of metaphase-II stage nuclear recipient oocytes, which largely depends on coordination between the processes of meiotic, cytoplasmic and epigenomic maturation [44,45,46]. Not without significance is the tremendous influence of the approaches applied to artificially activate the embryo-specific developmental program of SCNT-derived oocytes on the efficacy of propagating cloned embryos and their molecular quality [47,48,49]. Furthermore, the effectiveness of generating somatic-cell-cloned embryos results from the capabilities of donor cell nuclei to epigenetically reprogram their transcriptomic signatures in the cytoplasm of SCNT-derived oocytes and the blastomeres of corresponding cloned embryos [50,51]. In turn, the epigenomic reprogrammability of transcriptional activity within donor cell nuclei has been proven to be strongly affected by the molecular network of inter-relations between nuclear and mitochondrial genomes that has been established during the early embryonic development of activated SCNT-derived oocytes [52,53,54]. Finally, as a consequence of applying a wide variety of methods focused on modulating/transforming the transcriptional activities of donor cell nuclear genomes by extrinsic epigenetic modifiers such as non-selective inhibitors of histone deacetylases (HDACi) and/or non-selective inhibitors of DNA methyltransferases (DNMTi), the enhanced capabilities of donor cell nuclei to correctly and faithfully reprogram their transcriptomic profiles in SCNT-derived embryos have been shown [31,55,56].
In summary, this Special Issue will publish research articles and comprehensive review papers aimed at highlighting the state of the art and mechanistic insights into precisely identifying and unravelling a wide array of genomic, epigenomic, transcriptomic and proteomic factors which cumulatively determine the molecular parameters which are of paramount importance for the quality of nuclear donor cells, nuclear recipient oocytes and SCNT-derived embryos. Thoroughly deciphering the multifaceted nature of all the aforementioned factors and insightful interpretation of the biological crosstalk between them can finally bias the augmentation of the overall efficiency of SCNT-based cloning. This is a preponderant condition indispensable for the practical implementation of SCNT-mediated ARTs to various research fields and interdisciplinary studies at the interface of experimental and applied embryology, biotechnology, transgenics, biomedicine, biopharmacology, the creation of animal models for etiopathogenesis and physiopathology of human diseases and the genetic rescue and/or resurrection of endangered/extinct mammalian species.

Funding

The present study was financially supported by research grant No. 04-19-11-21 from the National Research Institute of Animal Production in Balice near Kraków, Poland, to M.S. (Marcin Samiec).

Conflicts of Interest

The author declares no conflict of interest. The author had no financial or other relationship with other people or organizations that might inappropriately influence this work. The funders had no role in the writing of the manuscript or in the decision to publish the results.

References

  1. Onishi, A.; Iwamoto, M.; Akita, T.; Mikawa, S.; Takeda, K.; Awata, T.; Hanada, H.; Perry, A.C.F. Pig cloning by microinjection of fetal fibroblast nuclei. Science 2000, 289, 1188–1190. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  2. Zhao, H.; Li, Y.; Wiriyahdamrong, T.; Yuan, Z.; Qing, Y.; Li, H.; Xu, K.; Guo, J.; Jia, B.; Zhang, X.; et al. Improved production of GTKO/hCD55/hCD59 triple-gene-modified Diannan miniature pigs for xenotransplantation by recloning. Transgenic Res. 2020, 29, 369–379. [Google Scholar] [CrossRef]
  3. Wilmut, I.; Schnieke, A.E.; McWhir, J.; Kind, A.J.; Campbell, K.H. Viable offspring derived from fetal and adult mammalian cells. Nature 1997, 385, 810–813. [Google Scholar] [CrossRef] [PubMed]
  4. Deng, S.; Li, G.; Zhang, J.; Zhang, X.; Cui, M.; Guo, Y.; Liu, G.; Li, G.; Feng, J.; Lian, Z. Transgenic cloned sheep overexpressing ovine toll-like receptor 4. Theriogenology 2013, 80, 50–57. [Google Scholar] [CrossRef] [PubMed]
  5. Keefer, C.L.; Keyston, R.; Lazaris, A.; Bhatia, B.; Begin, I.; Bilodeau, A.S.; Zhou, F.J.; Kafidi, N.; Wang, B.; Baldassarre, H.; et al. Production of cloned goats after nuclear transfer using adult somatic cells. Biol. Reprod. 2002, 66, 199–203. [Google Scholar] [CrossRef] [Green Version]
  6. Feng, X.; Cao, S.; Wang, H.; Meng, C.; Li, J.; Jiang, J.; Qian, Y.; Su, L.; He, Q.; Zhang, Q. Production of transgenic dairy goat expressing human α-lactalbumin by somatic cell nuclear transfer. Transgenic Res. 2015, 24, 73–85. [Google Scholar] [CrossRef] [PubMed]
  7. Guo, Y.; Li, H.; Wang, Y.; Yan, X.; Sheng, X.; Chang, D.; Qi, X.; Wang, X.; Liu, Y.; Li, J.; et al. Screening somatic cell nuclear transfer parameters for generation of transgenic cloned cattle with intragenomic integration of additional gene copies that encode bovine adipocyte-type fatty acid-binding protein (A-FABP). Mol. Biol. Rep. 2017, 44, 159–168. [Google Scholar] [CrossRef]
  8. Hoshino, Y.; Hayashi, N.; Taniguchi, S.; Kobayashi, N.; Sakai, K.; Otani, T.; Iritani, A.; Saeki, K. Resurrection of a bull by cloning from organs frozen without cryoprotectant in a −80 °C freezer for a decade. PLoS ONE 2009, 4, e4142. [Google Scholar] [CrossRef]
  9. Wang, M.; Sun, Z.; Yu, T.; Ding, F.; Li, L.; Wang, X.; Fu, M.; Wang, H.; Huang, J.; Li, N.; et al. Large-scale production of recombinant human lactoferrin from high-expression, marker-free transgenic cloned cows. Sci. Rep. 2017, 7, 10733. [Google Scholar] [CrossRef]
  10. Hinrichs, K.; Choi, Y.H.; Varner, D.D.; Hartman, D.L. Production of cloned horse foals using roscovitine-treated donor cells and activation with sperm extract and/or ionomycin. Reproduction 2007, 134, 319–325. [Google Scholar] [CrossRef]
  11. Woods, G.L.; White, K.L.; Vanderwall, D.K.; Li, G.P.; Aston, K.I.; Bunch, T.D.; Meerdo, L.N.; Pate, B.J. A mule cloned from fetal cells by nuclear transfer. Science 2003, 301, 1063. [Google Scholar] [CrossRef] [PubMed]
  12. Moulavi, F.; Asadi-Moghadam, B.; Omidi, M.; Yarmohammadi, M.; Ozegovic, M.; Rastegar, A.; Hosseini, S.M. Pregnancy and calving rates of cloned dromedary camels produced by conventional and handmade cloning techniques and in vitro and in vivo matured oocytes. Mol. Biotechnol. 2020, 62, 433–442. [Google Scholar] [CrossRef] [PubMed]
  13. Wani, N.A.; Vettical, B.S.; Hong, S.B. First cloned Bactrian camel (Camelus bactrianus) calf produced by interspecies somatic cell nuclear transfer: A step towards preserving the critically endangered wild Bactrian camels. PLoS ONE 2017, 12, e0177800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  14. Madheshiya, P.K.; Sahare, A.A.; Jyotsana, B.; Singh, K.P.; Saini, M.; Raja, A.K.; Kaith, S.; Singla, S.K.; Chauhan, M.S.; Manik, R.S.; et al. Production of a cloned buffalo (Bubalus bubalis) calf from somatic cells isolated from urine. Cell. Reprogram. 2015, 17, 160–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  15. Li, S.; Guo, Y.; Shi, J.; Yin, C.; Xing, F.; Xu, L.; Zhang, C.; Liu, T.; Li, Y.; Li, H.; et al. Transgene expression of enhanced green fluorescent protein in cloned rabbits generated from in vitro-transfected adult fibroblasts. Transgenic Res. 2009, 18, 227–235. [Google Scholar] [CrossRef]
  16. Song, S.H.; Lee, K.L.; Xu, L.; Joo, M.D.; Hwang, J.Y.; Oh, S.H.; Kong, I.K. Production of cloned cats using additional complimentary cytoplasm. Anim. Reprod. Sci. 2019, 208, 106125. [Google Scholar] [CrossRef]
  17. Eun, K.; Hong, N.; Jeong, Y.W.; Park, M.G.; Hwang, S.U.; Jeong, Y.I.K.; Choi, E.J.; Olsson, P.O.; Hwang, W.S.; Hyun, S.H.; et al. Transcriptional activities of human elongation factor-1α and cytomegalovirus promoter in transgenic dogs generated by somatic cell nuclear transfer. PLoS ONE 2020, 15, e0233784. [Google Scholar] [CrossRef]
  18. Azuma, R.; Miyamoto, K.; Oikawa, M.; Yamada, M.; Anzai, M. Combinational Treatment of Trichostatin A and Vitamin C Improves the Efficiency of Cloning Mice by Somatic Cell Nuclear Transfer. J. Vis. Exp. 2018, 134, 57036. [Google Scholar] [CrossRef] [Green Version]
  19. Zhou, Q.; Renard, J.P.; Le Friec, G.; Brochard, V.; Beaujean, N.; Cherifi, Y.; Fraichard, A.; Cozzi, J. Generation of fertile cloned rats by regulating oocyte activation. Science 2003, 302, 1179. [Google Scholar] [CrossRef]
  20. Li, Z.; Sun, X.; Chen, J.; Liu, X.; Wisely, S.M.; Zhou, Q.; Renard, J.P.; Leno, G.H.; Engelhardt, J.F. Cloned ferrets produced by somatic cell nuclear transfer. Dev. Biol. 2006, 293, 439–448. [Google Scholar] [CrossRef]
  21. Loi, P.; Ptak, G.; Barboni, B.; Fulka, J., Jr.; Cappai, P.; Clinton, M. Genetic rescue of an endangered mammal by cross-species nuclear transfer using post-mortem somatic cells. Nat. Biotechnol. 2001, 19, 962–964. [Google Scholar] [CrossRef] [PubMed]
  22. Srirattana, K.; Imsoonthornruksa, S.; Laowtammathron, C.; Sangmalee, A.; Tunwattana, W.; Thongprapai, T.; Chaimongkol, C.; Ketudat-Cairns, M.; Parnpai, R. Full-term development of gaur-bovine interspecies somatic cell nuclear transfer embryos: Effect of trichostatin A treatment. Cell. Reprogram. 2012, 14, 248–257. [Google Scholar] [CrossRef] [PubMed]
  23. Berg, D.K.; Li, C.; Asher, G.; Wells, D.N.; Oback, B. Red deer cloned from antler stem cells and their differentiated progeny. Biol. Reprod. 2007, 77, 384–394. [Google Scholar] [CrossRef] [PubMed]
  24. Folch, J.; Cocero, M.J.; Chesné, P.; Alabart, J.L.; Domínguez, V.; Cognié, Y.; Roche, A.; Fernández-Arias, A.; Martí, J.I.; Sánchez, P.; et al. First birth of an animal from an extinct subspecies (Capra pyrenaica pyrenaica) by cloning. Theriogenology 2009, 71, 1026–1034. [Google Scholar] [CrossRef] [PubMed]
  25. Gómez, M.C.; Pope, C.E.; Giraldo, A.; Lyons, L.A.; Harris, R.F.; King, A.L.; Cole, A.; Godke, R.A.; Dresser, B.L. Birth of African Wildcat cloned kittens born from domestic cats. Cloning Stem Cells 2004, 6, 247–258. [Google Scholar] [CrossRef]
  26. Gómez, M.C.; Pope, C.E.; Kutner, R.H.; Ricks, D.M.; Lyons, L.A.; Ruhe, M.; Dumas, C.; Lyons, J.; López, M.; Dresser, B.L.; et al. Nuclear transfer of sand cat cells into enucleated domestic cat oocytes is affected by cryopreservation of donor cells. Cloning Stem Cells 2008, 10, 469–483. [Google Scholar] [CrossRef]
  27. Oh, H.J.; Kim, M.K.; Jang, G.; Kim, H.J.; Hong, S.G.; Park, J.E.; Park, K.; Park, C.; Sohn, S.H.; Kim, D.Y.; et al. Cloning endangered gray wolves (Canis lupus) from somatic cells collected postmortem. Theriogenology 2008, 70, 638–647. [Google Scholar] [CrossRef]
  28. Hwang, I.; Jeong, Y.W.; Kim, J.J.; Lee, H.J.; Kang, M.; Park, K.B.; Park, J.H.; Kim, Y.W.; Kim, W.T.; Shin, T.; et al. Successful cloning of coyotes through interspecies somatic cell nuclear transfer using domestic dog oocytes. Reprod. Fertil. Dev. 2013, 25, 1142–1148. [Google Scholar] [CrossRef] [Green Version]
  29. Liu, Z.; Cai, Y.; Wang, Y.; Nie, Y.; Zhang, C.; Xu, Y.; Zhang, X.; Lu, Y.; Wang, Z.; Poo, M.; et al. Cloning of Macaque Monkeys by Somatic Cell Nuclear Transfer. Cell 2018, 172, 881–887.e7. [Google Scholar] [CrossRef] [Green Version]
  30. Glanzner, W.G.; de Macedo, M.P.; Gutierrez, K.; Bordignon, V. Enhancement of Chromatin and Epigenetic Reprogramming in Porcine SCNT Embryos-Progresses and Perspectives. Front. Cell Dev. Biol. 2022, 10, 940197. [Google Scholar] [CrossRef]
  31. Srirattana, K.; Kaneda, M.; Parnpai, R. Strategies to Improve the Efficiency of Somatic Cell Nuclear Transfer. Int. J. Mol. Sci. 2022, 23, 1969. [Google Scholar] [CrossRef] [PubMed]
  32. Song, S.; Lu, R.; Cheng, Y.; Zhang, T.; Gu, L.; Yu, K.; Zhou, M.; Li, D. Developmental analysis of reconstructed embryos of second-generation cloned transgenic goats. Reprod. Domest. Anim. 2022, 57, 473–480. [Google Scholar] [CrossRef] [PubMed]
  33. Xu, K.; Zhang, X.; Liu, Z.; Ruan, J.; Xu, C.; Che, J.; Fan, Z.; Mu, Y.; Li, K. A transgene-free method for rapid and efficient generation of precisely edited pigs without monoclonal selection. Sci. China Life. Sci. 2022, 65, 1535–1546. [Google Scholar] [CrossRef]
  34. Wang, X.; Qu, J.; Li, J.; He, H.; Liu, Z.; Huan, Y. Epigenetic Reprogramming During Somatic Cell Nuclear Transfer: Recent Progress and Future Directions. Front. Genet. 2020, 11, 205. [Google Scholar] [CrossRef] [Green Version]
  35. Akagi, S.; Matsukawa, K.; Takahashi, S. Factors affecting the development of somatic cell nuclear transfer embryos in Cattle. J. Reprod. Dev. 2014, 60, 329–335. [Google Scholar] [CrossRef] [Green Version]
  36. Zhai, Y.; Li, W.; Zhang, Z.; Cao, Y.; Wang, Z.; Zhang, S.; Li, Z. Epigenetic states of donor cells significantly affect the development of somatic cell nuclear transfer (SCNT) embryos in pigs. Mol. Reprod. Dev. 2018, 85, 26–37. [Google Scholar] [CrossRef] [PubMed]
  37. Zhang, Y.T.; Yao, W.; Chai, M.J.; Liu, W.J.; Liu, Y.; Liu, Z.H.; Weng, X.G. Evaluation of porcine urine-derived cells as nuclei donor for somatic cell nuclear transfer. J. Vet. Sci. 2022, 23, e40. [Google Scholar] [CrossRef] [PubMed]
  38. Son, Y.B.; Jeong, Y.I.; Jeong, Y.W.; Hossein, M.S.; Hwang, W.S. Impact of co-transfer of embryos produced by somatic cell nuclear transfer using two types of donor cells on pregnancy outcomes in dogs. Anim. Biosci. 2022, 35, 1360–1366. [Google Scholar] [CrossRef]
  39. Nguyen, V.K.; Somfai, T.; Salamone, D.; Thu Huong, V.T.; Le Thi Nguyen, H.; Huu, Q.X.; Hoang, A.T.; Phan, H.T.; Thi Pham, Y.K.; Pham, L.D. Optimization of donor cell cycle synchrony, maturation media and embryo culture system for somatic cell nuclear transfer in the critically endangered Vietnamese Ỉ pig. Theriogenology 2021, 166, 21–28. [Google Scholar] [CrossRef]
  40. Yao, Y.; Yang, A.; Li, G.; Wu, H.; Deng, S.; Yang, H.; Ma, W.; Lv, D.; Fu, Y.; Ji, P.; et al. Melatonin promotes the development of sheep transgenic cloned embryos by protecting donor and recipient cells. Cell Cycle 2022, 21, 1360–1375. [Google Scholar] [CrossRef]
  41. Kim, M.J.; Jung, B.D.; Park, C.K.; Cheong, H.T. Development of Porcine Somatic Cell Nuclear Transfer Embryos Following Treatment Time of Endoplasmic Reticulum Stress Inhibitor. Dev. Reprod. 2021, 25, 43–53. [Google Scholar] [CrossRef] [PubMed]
  42. Samiec, M.; Skrzyszowska, M. Assessment of in vitro developmental capacity of porcine nuclear-transferred embryos reconstituted with cumulus oophorus cells undergoing vital diagnostics for apoptosis detection. Ann. Anim. Sci. 2013, 13, 513–529. [Google Scholar] [CrossRef] [Green Version]
  43. Gao, W.; Yu, T.; Li, G.; Shu, W.; Jin, Y.; Zhang, M.; Yu, X. Antioxidant Activity and Anti-Apoptotic Effect of the Small Molecule Procyanidin B1 in Early Mouse Embryonic Development Produced by Somatic Cell Nuclear Transfer. Molecules 2021, 26, 6150. [Google Scholar] [CrossRef]
  44. Li, R.; Wu, H.; Zhuo, W.W.; Mao, Q.F.; Lan, H.; Zhang, Y.; Hua, S. Astaxanthin Normalizes Epigenetic Modifications of Bovine Somatic Cell Cloned Embryos and Decreases the Generation of Lipid Peroxidation. Reprod. Domest. Anim. 2015, 50, 793–799. [Google Scholar] [CrossRef]
  45. An, Q.; Peng, W.; Cheng, Y.; Lu, Z.; Zhou, C.; Zhang, Y.; Su, J. Melatonin supplementation during in vitro maturation of oocyte enhances subsequent development of bovine cloned embryos. J. Cell. Physiol. 2019, 234, 17370–17381. [Google Scholar] [CrossRef]
  46. Meng, L.; Hu, H.; Liu, Z.; Zhang, L.; Zhuan, Q.; Li, X.; Fu, X.; Zhu, S.; Hou, Y. The Role of Ca2+ in Maturation and Reprogramming of Bovine Oocytes: A System Study of Low-Calcium Model. Front. Cell Dev. Biol. 2021, 9, 746237. [Google Scholar] [CrossRef] [PubMed]
  47. Oh, H.J.; Lee, B.C.; Kim, M.K. Optimal Treatment of 6-Dimethylaminopurine Enhances the In Vivo Development of Canine Embryos by Rapid Initiation of DNA Synthesis. Int. J. Mol. Sci. 2021, 22, 7757. [Google Scholar] [CrossRef] [PubMed]
  48. Samiec, M.; Skrzyszowska, M. Biological transcomplementary activation as a novel and effective strategy applied to the generation of porcine somatic cell cloned embryos. Reprod. Biol. 2014, 14, 128–139. [Google Scholar] [CrossRef]
  49. Zhang, S.; Xiang, S.; Yang, J.; Shi, J.; Guan, X.; Jiang, J.; Wei, Y.; Luo, C.; Shi, D.; Lu, F. Optimization of parthenogenetic activation of rabbit oocytes and development of rabbit embryo by somatic cell nuclear transfer. Reprod. Domest. Anim. 2019, 54, 258–269. [Google Scholar] [CrossRef]
  50. Brochard, V.; Beaujean, N. Somatic Reprograming by Nuclear Transfer. Methods Mol. Biol. 2021, 2214, 109123. [Google Scholar] [CrossRef]
  51. Zhao, L.; Long, C.; Zhao, G.; Su, J.; Ren, J.; Sun, W.; Wang, Z.; Zhang, J.; Liu, M.; Hao, C.; et al. Reprogramming barriers in bovine cells nuclear transfer revealed by single-cell RNA-seq analysis. J. Cell. Mol. Med. 2022, 26, 4792–4804. [Google Scholar] [CrossRef] [PubMed]
  52. Bebbere, D.; Ulbrich, S.E.; Giller, K.; Zakhartchenko, V.; Reichenbach, H.D.; Reichenbach, M.; Verma, P.J.; Wolf, E.; Ledda, S.; Hiendleder, S. Mitochondrial DNA Depletion in Granulosa Cell Derived Nuclear Transfer Tissues. Front. Cell Dev. Biol. 2021, 9, 664099. [Google Scholar] [CrossRef] [PubMed]
  53. Yan, Z.H.; Zhou, Y.Y.; Fu, J.; Jiao, F.; Zhao, L.W.; Guan, P.F.; Huang, S.Z.; Zeng, Y.T.; Zeng, F. Donor-host mitochondrial compatibility improves efficiency of bovine somatic cell nuclear transfer. BMC Dev. Biol. 2010, 10, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  54. Srirattana, K.; St John, J.C. Additional mitochondrial DNA influences the interactions between the nuclear and mitochondrial genomes in a bovine embryo model of nuclear transfer. Sci. Rep. 2018, 8, 7246. [Google Scholar] [CrossRef] [Green Version]
  55. Samiec, M.; Skrzyszowska, M. Intrinsic and extrinsic molecular determinants or modulators for epigenetic remodeling and reprogramming of somatic cell-derived genome in mammalian nuclear-transferred oocytes and resultant embryos. Pol. J. Vet. Sci. 2018, 21, 217–227. [Google Scholar] [CrossRef] [PubMed]
  56. Li, Y.; Sun, Q. Epigenetic manipulation to improve mouse SCNT embryonic development. Front. Genet. 2022, 13, 932867. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Samiec, M. Molecular Mechanism and Application of Somatic Cell Cloning in Mammals—Past, Present and Future. Int. J. Mol. Sci. 2022, 23, 13786. https://doi.org/10.3390/ijms232213786

AMA Style

Samiec M. Molecular Mechanism and Application of Somatic Cell Cloning in Mammals—Past, Present and Future. International Journal of Molecular Sciences. 2022; 23(22):13786. https://doi.org/10.3390/ijms232213786

Chicago/Turabian Style

Samiec, Marcin. 2022. "Molecular Mechanism and Application of Somatic Cell Cloning in Mammals—Past, Present and Future" International Journal of Molecular Sciences 23, no. 22: 13786. https://doi.org/10.3390/ijms232213786

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop