Insights into the Genetics and Signaling Pathways in Maturity-Onset Diabetes of the Young
Abstract
:1. Diabetes Mellitus—Background
2. Maturity Onset Diabetes of the Young (MODY)
Hepatocyte Nuclear Factors 1 and 4
3. HNF1A-MODY (MODY3)
4. HNF4A-MODY (MODY1)
5. HNF1B-MODY (MODY5)
6. Glucokinase
7. GCK—MODY (MODY2)
8. Pancreatic Duodenal Homeobox 1
9. PDX1-MODY (MODY 4)
10. Neurogenic Differentiation 1 (NEUROD1)
11. NEUROD1-MODY (MODY6)
12. Kruppel Like Factor 11 (KLF11)
13. MODY-KLF11 (MODY7)
14. CEL
15. CEL-MODY (MODY 8)
16. PAX4
17. PAX4-MODY (MODY9)
18. Insulin (INS)
19. INS-MODY (MODY10)
20. B-Lymphocyte Kinase (BLK)
21. BLK-MODY (MODY11)
22. ATP Binding Cassette Subfamily C Member 8 (ABCC8) and Potassium Inwardly Rectifying Channel Subfamily J Member 11 (KCNJ11)
23. ABCC8-MODY (MODY12)
24. KCNJ11-MODY (MODY13)
25. Adaptor Protein, Phosphotyrosine Interacting with PH Domain and Leucine Zipper 1 (APPL1)
26. APPL1-MODY (MODY 14)
27. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Roglic, G.; World Health Organization. Global Report on Diabetes; World Health Organization: Geneva, Switzerland, 2016; 86p. [Google Scholar]
- Ellard, S.; Bellanné-Chantelot, C.; Hattersley, A.T. Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young. Diabetologia 2008, 51, 546–553. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anik, A.; Çatli, G.; Abaci, A.; Böber, E. Maturity-onset diabetes of the young (MODY): An update. J. Pediatr. Endocrinol. Metab. 2015, 28, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Colclough, K.; Saint-Martin, C.; Timsit, J.; Ellard, S.; Bellanné-Chantelot, C. Clinical utility gene card for: Maturity-onset diabetes of the young. Eur. J. Hum. Genet. 2014, 22, 1153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lau, H.H.; Ng, N.H.J.; Loo, L.S.W.; Jasmen, J.B.; Teo, A.K.K. The molecular functions of hepatocyte nuclear factors—In and beyond the liver. J. Hepatol. 2018, 68, 1033–1048. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lehto, M.; O Bitzén, P.; Isomaa, B.; Wipemo, C.; Wessman, Y.; Forsblom, C.; Tuomi, T.; Taskinen, M.R.; Groop, L. Mutation in the HNF-4alpha gene affects insulin secretion and triglyceride metabolism. Diabetes 1999, 48, 423–425. [Google Scholar] [CrossRef]
- Shih, D.Q.; Dansky, H.M.; Fleisher, M.; Assmann, G.; Fajans, S.S.; Stoffel, M. Genotype/phenotype relationships in HNF-4alpha/MODY1: Haploinsufficiency is associated with reduced apolipoprotein (AII), apolipoprotein (CIII), lipoprotein(a), and triglyceride levels. Diabetes 2000, 49, 832–837. [Google Scholar] [CrossRef] [Green Version]
- Laver, T.W.; Colclough, K.; Shepherd, M.; Patel, K.; Houghton, J.A.; Dusatkova, P.; Pruhova, S.; Morris, A.D.; Palmer, C.N.; McCarthy, M.I.; et al. The Common p.R114W HNF4A Mutation Causes a Distinct Clinical Subtype of Monogenic Diabetes. Diabetes 2016, 65, 3212–3217. [Google Scholar] [CrossRef] [Green Version]
- Pearson, E.; Boj, S.F.; Steele, A.M.; Barrett, T.; Stals, K.; Hamilton-Shield, J.; Ellard, S.; Ferrer, J.; Hattersley, A.T. Macrosomia and Hyperinsulinaemic Hypoglycaemia in Patients with Heterozygous Mutations in the HNF4A Gene. PLOS Med. 2007, 4, e118. [Google Scholar] [CrossRef] [Green Version]
- Baldini, S.F.; Steenackers, A.; Olivier-Van Stichelen, S.; Mir, A.M.; Mortuaire, M.; Lefebvre, T.; Guinez, C. Glucokinase expression is regulated by glucose through O-GlcNAc glycosylation. Biochem. Biophys. Res. Commun. 2016, 478, 942–948. [Google Scholar] [CrossRef]
- Iynedjian, P.B. Molecular physiology of mammalian glucokinase. Cell Mol. Life Sci. 2009, 66, 27–42. [Google Scholar] [CrossRef]
- McDonald, T.; Ellard, S. Maturity onset diabetes of the young: Identification and diagnosis. Ann. Clin. Biochem. 2013, 50, 403–415. [Google Scholar] [CrossRef] [PubMed]
- Osbak, K.K.; Colclough, K.; Saint-Martin, C.; Beer, N.L.; Bellanné-Chantelot, C.; Ellard, S.; Gloyn, A.L. Update on mutations in glucokinase (GCK), which cause maturity-onset diabetes of the young, permanent neonatal diabetes, and hyperinsulinemic hypoglycemia. Hum. Mutat. 2009, 30, 1512–1526. [Google Scholar] [CrossRef] [PubMed]
- Low, B.S.J.; Lim, C.S.; Ding, S.S.L.; Tan, Y.S.; Ng, N.H.J.; Krishnan, V.G.; Ang, S.F.; Neo, C.W.Y.; Verma, C.S.; Hoon, S.; et al. Decreased GLUT2 and glucose uptake contribute to insulin secretion defects in MODY3/HNF1A hiPSC-derived mutant beta cells. Nat. Commun. 2021, 12, 3133. [Google Scholar] [CrossRef] [PubMed]
- van de Bunt, M.; Gloyn, A.L. A tale of two glucose transporters: How GLUT2 re-emerged as a contender for glucose transport into the human beta cell. Diabetologia 2012, 55, 2312–2315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahlgren, U.; Jonsson, J.; Jonsson, L.; Simu, K.; Edlund, H. beta-cell-specific inactivation of the mouse Ipf1/Pdx1 gene results in loss of the beta-cell phenotype and maturity onset diabetes. Genes Dev. 1998, 12, 1763–1768. [Google Scholar] [CrossRef] [Green Version]
- Hani, E.H.; Stoffers, D.A.; Chèvre, J.-C.; Durand, E.; Stanojevic, V.; Dina, C.; Habener, J.F.; Froguel, P. Defective mutations in the insulin promoter factor-1 (IPF-1) gene in late-onset type 2 diabetes mellitus. J. Clin. Investig. 1999, 104, R41–R48. [Google Scholar] [CrossRef] [Green Version]
- Fajans, S.S.; Bell, G.I.; Paz, V.P.; Below, J.E.; Cox, N.J.; Martin, C.; Thomas, I.H.; Chen, M. Obesity and hyperinsulinemia in a family with pancreatic agenesis and MODY caused by the IPF1 mutation Pro63fsX60. Transl. Res. 2010, 156, 7–14. [Google Scholar] [CrossRef] [Green Version]
- Stoffers, D.A.; Zinkin, N.T.; Stanojevic, V.; Clarke, W.L.; Habener, J.F. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat. Genet. 1997, 15, 106–110. [Google Scholar] [CrossRef]
- Thomas, I.H.; Saini, N.K.; Adhikari, A.; Lee, J.M.; Kasa-Vubu, J.Z.; Vazquez, D.M.; Menon, R.K.; Chen, M.; Fajans, S.S. Neonatal diabetes mellitus with pancreatic agenesis in an infant with homozygous IPF-1 Pro63fsX60 mutation. Pediatr. Diabetes 2009, 10, 492–496. [Google Scholar] [CrossRef] [Green Version]
- Wright, N.M.; Metzger, D.L.; Borowitz, S.M.; Clarke, W.L. Permanent neonatal diabetes mellitus and pancreatic exocrine insufficiency resulting from congenital pancreatic agenesis. Am. J. Dis. Child. 1993, 147, 607–609. [Google Scholar]
- Hatzis, P.; Talianidis, I. Regulatory Mechanisms Controlling Human Hepatocyte Nuclear Factor 4α Gene Expression. Mol. Cell. Biol. 2001, 21, 7320–7330. [Google Scholar] [CrossRef] [PubMed]
- Choi, Y.-H.; Suzuki, A.; Hajarnis, S.; Ma, Z.; Chapin, H.C.; Caplan, M.J.; Pontoglio, M.; Somlo, S.; Igarashi, P. Polycystin-2 and phosphodiesterase 4C are components of a ciliary A-kinase anchoring protein complex that is disrupted in cystic kidney diseases. Proc. Natl. Acad. Sci. USA 2011, 108, 10679–10684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Vas, M.G.; Kopp, J.L.; Heliot, C.; Sander, M.; Cereghini, S.; Haumaitre, C. Hnf1b controls pancreas morphogenesis and the generation of Ngn3+ endocrine progenitors. Development 2015, 142, 871–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferre, S.; Igarashi, P. New insights into the role of HNF-1beta in kidney (patho)physiology. Pediatr. Nephrol. 2019, 34, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
- Barbacci, E.; Reber, M.; Ott, M.O.; Breillat, C.; Huetz, F.; Cereghini, S. Variant hepatocyte nuclear factor 1 is required for visceral endoderm specification. Development 1999, 126, 4795–4805. [Google Scholar] [CrossRef]
- Kim, E.K.; Lee, J.S.; Cheong, H.I.; Chung, S.S.; Kwak, S.H.; Park, K.S. Identification and Functional Characterization of P159L Mutation in HNF1B in a Family with Maturity-Onset Diabetes of the Young 5 (MODY5). Genom. Inf. 2014, 12, 240–246. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.W.; Seghers, V.; Cho, J.H.; Kang, Y.; Kim, S.; Ryu, Y.; Baek, K.; Aguilar-Bryan, L.; Lee, Y.D.; Bryan, J.; et al. Transactivation of the mouse sulfonylurea receptor I gene by BETA2/NeuroD. Mol. Endocrinol. 2002, 16, 1097–1107. [Google Scholar] [CrossRef]
- Marsich, E.; Vetere, A.; Di Piazza, M.; Tell, G.; Paoletti, S. The PAX6 gene is activated by the basic helix–loop–helix transcription factor NeuroD/BETA2. Biochem. J. 2003, 376, 707–715. [Google Scholar] [CrossRef]
- Martin, C.C.; Svitek, C.A.; Oeser, J.K.; Henderson, E.; Stein, R.; O’Brien, R.M. Upstream stimulatory factor (USF) and neurogenic differentiation/beta-cell E box transactivator 2 (NeuroD/BETA2) contribute to islet-specific glucose-6-phosphatase catalytic-subunit-related protein (IGRP) gene expression. Biochem. J. 2003, 371, 675–686. [Google Scholar] [CrossRef]
- Moates, J.M.; Nanda, S.; Cissell, M.A.; Tsai, M.-J.; Stein, R. BETA2 Activates Transcription From the Upstream Glucokinase Gene Promoter in Islet β-Cells and Gut Endocrine Cells. Diabetes 2003, 52, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Naya, F.J.; Stellrecht, C.M.; Tsai, M.J. Tissue-specific regulation of the insulin gene by a novel basic helix-loop-helix transcription factor. Genes Dev. 1995, 9, 1009–1019. [Google Scholar] [CrossRef] [PubMed]
- Naya, F.J.; Huang, H.P.; Qiu, Y.; Mutoh, H.; DeMayo, F.J.; Leiter, A.B.; Tsai, M.J. Diabetes, defective pancreatic morphogenesis, and abnormal enteroendocrine differentiation in BETA2/neuroD-deficient mice. Genes Dev. 1997, 11, 2323–2334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malecki, M.T.; Jhala, U.S.; Antonellis, A.; Fields, L.; Doria, A.; Orban, T.; Saad, M.F.; Warram, J.H.; Montminy, M.; Krolewski, A.S. Mutations in NEUROD1 are associated with the development of type 2 diabetes mellitus. Nat. Genet. 1999, 23, 323–328. [Google Scholar] [CrossRef] [PubMed]
- Sagen, J.V.; Baumann, M.E.; Salvesen, H.B.; Molven, A.; Sovik, O.; Njolstad, P.R. Diagnostic screening of NEUROD1 (MODY6) in subjects with MODY or gestational diabetes mellitus. Diabet. Med. 2005, 22, 1012–1015. [Google Scholar] [CrossRef]
- Bonnefond, A.; Lomberk, G.; Buttar, N.; Busiah, K.; Vaillant, E.; Lobbens, S.; Yengo, L.; Dechaume, A.; Mignot, B.; Simon, A.; et al. Disruption of a novel Kruppel-like transcription factor p300-regulated pathway for insulin biosynthesis revealed by studies of the c.-331 INS mutation found in neonatal diabetes mellitus. J. Biol. Chem. 2011, 286, 28414–28424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Zapico, M.E.; Mladek, A.; Ellenrieder, V.; Folch-Puy, E.; Miller, L.; Urrutia, R. An mSin3A interaction domain links the transcriptional activity of KLF11 with its role in growth regulation. EMBO J. 2003, 22, 4748–4758. [Google Scholar] [CrossRef] [Green Version]
- Ushijima, K.; Narumi, S.; Ogata, T.; Yokota, I.; Sugihara, S.; Kaname, T.; Horikawa, Y.; Matsubara, Y.; Fukami, M.; Kawamura, T.; et al. KLF11 variant in a family clinically diagnosed with early childhood-onset type 1B diabetes. Pediatr. Diabetes 2019, 20, 712–719. [Google Scholar] [CrossRef]
- Johansson, B.B.; Torsvik, J.; Bjørkhaug, L.; Vesterhus, M.; Ragvin, A.; Tjora, E.; Fjeld, K.; Hoem, D.; Johansson, S.; Ræder, H.; et al. Diabetes and pancreatic exocrine dysfunction due to mutations in the carboxyl ester lipase gene-maturity onset diabetes of the young (CEL-MODY): A protein misfolding disease. J. Biol. Chem. 2011, 286, 34593–34605. [Google Scholar] [CrossRef] [Green Version]
- Sahin-Toth, M. Genetic risk in chronic pancreatitis: The misfolding-dependent pathway. Curr. Opin. Gastroenterol. 2017, 33, 390–395. [Google Scholar] [CrossRef] [Green Version]
- Ræder, H.; Johansson, S.; Holm, P.I.; Haldorsen, I.S.; Mas, E.; Sbarra, V.; Nermoen, I.; Eide, S.Å.; Grevle, L.; Bjørkhaug, L.; et al. Mutations in the CEL VNTR cause a syndrome of diabetes and pancreatic exocrine dysfunction. Nat. Genet. 2006, 38, 54–62. [Google Scholar] [CrossRef]
- Torsvik, J.; Johansson, S.; Johansen, A.; Ek, J.; Minton, J.; Ræder, H.; Ellard, S.; Hattersley, A.; Pedersen, O.; Hansen, T.; et al. Mutations in the VNTR of the carboxyl-ester lipase gene (CEL) are a rare cause of monogenic diabetes. Hum. Genet. 2010, 127, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, P.I.; Juárez-Vicente, F.; Cobo-Vuilleumier, N.; García-Domínguez, M.; Gauthier, B.R. The Diabetes-Linked Transcription Factor PAX4: From Gene to Functional Consequences. Genes 2017, 8, 101. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Balasubramanyam, A.; Nalini, R.; Hampe, C.S.; Maldonado, M. Syndromes of Ketosis-Prone Diabetes Mellitus. Endocr. Rev. 2008, 29, 292–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brun, T.; Franklin, I.; St-Onge, L.; Biason-Lauber, A.; Schoenle, E.J.; Wollheim, C.B.; Gauthier, B.R. The diabetes-linked transcription factor PAX4 promotes {beta}-cell proliferation and survival in rat and human islets. J. Cell. Biol. 2004, 167, 1123–1135. [Google Scholar] [CrossRef] [PubMed]
- Plengvidhya, N.; Kooptiwut, S.; Songtawee, N.; Doi, A.; Furuta, H.; Nishi, M.; Nanjo, K.; Tantibhedhyangkul, W.; Boonyasrisawat, W.; Yenchitsomanus, P.-T.; et al. PAX4 Mutations in Thais with Maturity Onset Diabetes of the Young. J. Clin. Endocrinol. Metab. 2007, 92, 2821–2826. [Google Scholar] [CrossRef] [Green Version]
- Sujjitjoon, J.; Kooptiwut, S.; Chongjaroen, N.; Tangjittipokin, W.; Plengvidhya, N.; Yenchitsomanus, P.-T. Aberrant mRNA splicing of paired box 4 (PAX4) IVS7-1G>A mutation causing maturity-onset diabetes of the young, type 9. Acta Diabetol. 2015, 53, 205–216. [Google Scholar] [CrossRef]
- Jo, W.; Endo, M.; Ishizu, K.; Nakamura, A.; Tajima, T. A Novel PAX4 Mutation in a Japanese Patient with Maturity-Onset Diabetes of the Young. Tohoku J. Exp. Med. 2011, 223, 113–118. [Google Scholar] [CrossRef] [Green Version]
- Plengvidhya, N.; Boonyasrisawat, W.; Chongjaroen, N.; Jungtrakoon, P.; Sriussadaporn, S.; Vannaseang, S.; Banchuin, N.; Yenchitsomanus, P.-T. Mutations of maturity-onset diabetes of the young (MODY) genes in Thais with early-onset type 2 diabetes mellitus. Clin. Endocrinol. 2009, 70, 847–853. [Google Scholar] [CrossRef]
- De Meyts, P. The Insulin Receptor and Its Signal Transduction Network; MDText.com, Inc.: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Colombo, C.; Porzio, O.; Liu, M.; Massa, O.; Vasta, M.; Salardi, S.; Beccaria, L.; Monciotti, C.; Toni, S.; Pedersen, O.; et al. Seven mutations in the human insulin gene linked to permanent neonatal/infancy-onset diabetes mellitus. J. Clin. Investig. 2008, 118, 2148–2156. [Google Scholar] [CrossRef] [Green Version]
- Park, S.-Y.; Ye, H.; Steiner, D.F.; Bell, G.I. Mutant proinsulin proteins associated with neonatal diabetes are retained in the endoplasmic reticulum and not efficiently secreted. Biochem. Biophys. Res. Commun. 2010, 391, 1449–1454. [Google Scholar] [CrossRef] [Green Version]
- Edghill, E.L.; Flanagan, S.E.; Patch, A.M.; Boustred, C.; Parrish, A.; Shields, B.; Shepherd, M.H.; Hussain, K.; Kapoor, R.R.; Malecki, M.; et al. Insulin mutation screening in 1,044 patients with diabetes: Mutations in the INS gene are a common cause of neonatal diabetes but a rare cause of diabetes diagnosed in childhood or adulthood. Diabetes 2008, 57, 1034–1042. [Google Scholar] [CrossRef] [PubMed]
- Molven, A.; Ringdal, M.; Nordbø, A.M.; Ræder, H.; Støy, J.; Lipkind, G.M.; Steiner, D.F.; Philipson, L.H.; Bergmann, I.; Aarskog, D.; et al. Mutations in the Insulin Gene Can Cause MODY and Autoantibody-Negative Type 1 Diabetes. Diabetes 2008, 57, 1131–1135. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Edlund, H. Factors controlling pancreatic cell differentiation and function. Diabetologia 2001, 44, 1071–1079. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, J.K.; Nelson, S.B.; Jorgensen, M.C.; Henseleit, K.D.; Fujitani, Y.; Wright, C.V.; Sander, M.; Serup, P. Endodermal expression of Nkx6 genes depends differentially on Pdx1. Dev. Biol. 2005, 288, 487–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schisler, J.C.; Fueger, P.T.; Babu, D.A.; Hohmeier, H.E.; Tessem, J.S.; Lu, D.; Becker, T.C.; Naziruddin, B.; Levy, M.; Mirmira, R.G.; et al. Stimulation of human and rat islet beta-cell proliferation with retention of function by the homeodomain transcription factor Nkx6.1. Mol. Cell. Biol. 2008, 28, 3465–3476. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borowiec, M.; Liew, C.W.; Thompson, R.; Boonyasrisawat, W.; Hu, J.; Mlynarski, W.M.; El Khattabi, I.; Kim, S.H.; Marselli, L.; Rich, S.S.; et al. Mutations at the BLK locus linked to maturity onset diabetes of the young and beta-cell dysfunction. Proc. Natl. Acad. Sci. USA 2009, 106, 14460–14465. [Google Scholar] [CrossRef] [Green Version]
- McTaggart, J.S.; Clark, R.H.; Ashcroft, F.M. The role of the KATP channel in glucose homeostasis in health and disease: More than meets the islet. J. Physiol. 2010, 588, 3201–3209. [Google Scholar] [CrossRef]
- Proks, P.; Shimomura, K.; Craig, T.J.; Girard, C.A.; Ashcroft, F.M. Mechanism of action of a sulphonylurea receptor SUR1 mutation (F132L) that causes DEND syndrome. Hum. Mol. Genet. 2007, 16, 2011–2019. [Google Scholar] [CrossRef] [Green Version]
- Bowman, P.; Flanagan, S.; Edghill, E.L.; Damhuis, A.; Shepherd, M.; Paisey, R.; Hattersley, A.; Ellard, S. Heterozygous ABCC8 mutations are a cause of MODY. Diabetologia 2011, 55, 123–127. [Google Scholar] [CrossRef]
- Bonnefond, A.; Philippe, J.; Durand, E.; Dechaume, A.; Huyvaert, M.; Montagne, L.; Marre, M.; Balkau, B.; Fajardy, I.; Vambergue, A.; et al. Whole-Exome Sequencing and High Throughput Genotyping Identified KCNJ11 as the Thirteenth MODY Gene. PLoS ONE 2012, 7, e37423. [Google Scholar] [CrossRef] [Green Version]
- Yorifuji, T.; Nagashima, K.; Kurokawa, K.; Kawai, M.; Oishi, M.; Akazawa, Y.; Hosokawa, M.; Yamada, Y.; Inagaki, N.; Nakahata, T. The C42R Mutation in the Kir6.2 (KCNJ11) Gene as a Cause of Transient Neonatal Diabetes, Childhood Diabetes, or Later-Onset, Apparently Type 2 Diabetes Mellitus. J. Clin. Endocrinol. Metab. 2005, 90, 3174–3178. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.K.; Lam, K.S.; Wu, D.; Wang, Y.; Sweeney, G.; Hoo, R.L.; Zhang, J.; Xu, A. APPL1 potentiates insulin secretion in pancreatic beta cells by enhancing protein kinase Akt-dependent expression of SNARE proteins in mice. Proc. Natl. Acad. Sci. USA 2012, 109, 8919–8924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prudente, S.; Jungtrakoon, P.; Marucci, A.; Ludovico, O.; Buranasupkajorn, P.; Mazza, T.; Hastings, T.; Milano, T.; Morini, E.; Mercuri, L.; et al. Loss-of-Function Mutations in APPL1 in Familial Diabetes Mellitus. Am. J. Hum. Genet. 2015, 97, 177–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuo, C.J.; Conley, P.B.; Chen, L.; Sladek, F.M.; Darnell, J.E.; Crabtree, G.R. A transcriptional hierarchy involved in mammalian cell-type specification. Nature 1992, 355, 457–461. [Google Scholar] [CrossRef] [PubMed]
- Miura, N.; Tanaka, K. Analysis of the rat hepatocyte nuclear factor (HNF) 1 gene promoter: Synergistic activation by HNF4 and HNF1 proteins. Nucleic Acids Res. 1993, 21, 3731–3736. [Google Scholar] [PubMed]
- Lausen, J.; Thomas, H.; Lemm, I.; Bulman, M.; Borgschulze, M.; Lingott, A.; Hattersley, A.T.; Ryffel, G.U. Naturally occurring mutations in the human HNF4alpha gene impair the function of the transcription factor to a varying degree. Nucleic Acids Res. 2000, 28, 430–437. [Google Scholar] [CrossRef] [Green Version]
- Poll, A.V.; Pierreux, C.E.; Lokmane, L.; Haumaitre, C.; Achouri, Y.; Jacquemin, P.; Rousseau, G.G.; Cereghini, S.; Lemaigre, F.P. A vHNF1/TCF2-HNF6 cascade regulates the transcription factor network that controls generation of pancreatic precursor cells. Diabetes 2006, 55, 61–69. [Google Scholar] [CrossRef] [PubMed]
- Jacquemin, P.; Durviaux, S.M.; Jensen, J.; Godfraind, C.; Gradwohl, G.; Guillemot, F.; Madsen, O.D.; Carmeliet, P.; Dewerchin, M.; Collen, D.; et al. Transcription Factor Hepatocyte Nuclear Factor 6 Regulates Pancreatic Endocrine Cell Differentiation and Controls Expression of the Proendocrine Gene ngn3. Mol. Cell. Biol. 2000, 20, 4445–4454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ong, A.C.; Wheatley, D.N. Polycystic kidney disease—The ciliary connection. Lancet 2003, 361, 774–776. [Google Scholar] [CrossRef]
- SIFT. Available online: http://sift.jcvi.org/%0D (accessed on 6 November 2019).
- Harries, L.W.; Ellard, S.; Stride, A.; Morgan, N.; Hattersley, A.T. Isomers of the TCF1 gene encoding hepatocyte nuclear factor-1 alpha show differential expression in the pancreas and define the relationship between mutation position and clinical phenotype in monogenic diabetes. Hum. Mol. Genet. 2006, 15, 2216–2224. [Google Scholar] [CrossRef] [Green Version]
- Pontoglio, M.; Prié, D.; Cheret, C.; Doyen, A.; Leroy, C.; Froguel, P.; Velho, G.; Yaniv, M.; Friedlander, G. HNF1α controls renal glucose reabsorption in mouse and man. EMBO Rep. 2000, 1, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Isomaa, B.; Henricsson, M.; Lehto, M.; Forsblom, C.; Karanko, S.; Sarelin, L.; Häggblom, M.; Groop, L. Chronic diabetic complications in patients with MODY3 diabetes. Diabetologia 1998, 41, 467–473. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-H.; Sauer, B.; Gonzalez, F.J. Laron Dwarfism and Non-Insulin-Dependent Diabetes Mellitus in the Hnf-1α Knockout Mouse. Mol. Cell. Biol. 1998, 18, 3059–3068. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Simms, R.J.; Sayer, J.A.; Quinton, R.; Walker, M.; Ellard, S.; Goodship, T.H.J. Monogenic diabetes, renal dysplasia and hypopituitarism: A patient with a HNF1A mutation. QJM: Int. J. Med. 2010, 104, 881–883. [Google Scholar] [CrossRef] [Green Version]
- Pearson, E.; Pruhova, S.; Tack, C.J.; Johansen, A.; Castleden, H.A.J.; Lumb, P.J.; Wierzbicki, A.S.; Clark, P.M.; Lebl, J.; Pedersen, O.; et al. Molecular genetics and phenotypic characteristics of MODY caused by hepatocyte nuclear factor 4α mutations in a large European collection. Diabetologia 2005, 48, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Stoffel, M.; Duncan, S.A. The maturity-onset diabetes of the young (MODY1) transcription factor HNF4α regulates expression of genes required for glucose transport and metabolism. Proc. Natl. Acad. Sci. USA 1997, 94, 13209–13214. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haumaitre, C.; Fabre, M.; Cormier, S.; Baumann, C.; Delezoide, A.L.; Cereghini, S. Severe pancreas hypoplasia and multicystic renal dysplasia in two human fetuses carrying novel HNF1beta/MODY5 mutations. Hum. Mol. Genet. 2006, 15, 2363–2375. [Google Scholar] [CrossRef] [Green Version]
- Cha, J.-Y.; Kim, H.-I.; Kim, K.-S.; Hur, M.-W.; Ahn, Y.-H. Identification of Transacting Factors Responsible for the Tissue-specific Expression of Human Glucose Transporter Type 2 Isoform Gene. Cooperative role of hepatocyte nuclear factors 1α and 3β J. Biol. Chem. 2000, 275, 18358–18365. [Google Scholar] [CrossRef] [Green Version]
- Edghill, E.L.; Stals, K.; Oram, R.A.; Shepherd, M.H.; Hattersley, A.T.; Ellard, S. HNF1B deletions in patients with young-onset diabetes but no known renal disease. Diabet. Med. 2013, 30, 114–117. [Google Scholar] [CrossRef]
- Haldorsen, I.S.; Vesterhus, M.; Raeder, H.; Jensen, D.K.; Søvik, O.; Molven, A.; Njølstad, P.R. Lack of pancreatic body and tail in HNF1B mutation carriers. Diabet. Med. 2008, 25, 782–787. [Google Scholar] [CrossRef]
- Grupe, A.; Hultgren, B.; Ryan, A.; Ma, Y.H.; Bauer, M.; Stewart, T.A. Transgenic knockouts reveal a critical requirement for pancreatic beta cell glucokinase in maintaining glucose homeostasis. Cell 1995, 83, 69–78. [Google Scholar] [CrossRef]
- Byrne, M.M.; Sturis, J.; Clément, K.; Vionnet, N.; E Pueyo, M.; Stoffel, M.; Takeda, J.; Passa, P.; Cohen, D.; I Bell, G. Insulin secretory abnormalities in subjects with hyperglycemia due to glucokinase mutations. J. Clin. Investig. 1994, 93, 1120–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Velho, G.; Petersen, K.F.; Perseghin, G.; Hwang, J.H.; Rothman, D.L.; E Pueyo, M.; Cline, G.W.; Froguel, P.; Shulman, G. Impaired hepatic glycogen synthesis in glucokinase-deficient (MODY-2) subjects. J. Clin. Investig. 1996, 98, 1755–1761. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.; Ammirati, M.J.; Song, X.; Knafels, J.D.; Zhang, J.; Greasley, S.E.; Pfefferkorn, J.A.; Qiu, X. Insights into mechanism of glucokinase activation: Observation of multiple distinct protein conformations. J. Biol. Chem. 2012, 287, 13598–13610. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stride, A.; Shields, B.; Gill-Carey, O.; Chakera, A.J.; Colclough, K.; Ellard, S.; Hattersley, A.T. Cross-sectional and longitudinal studies suggest pharmacological treatment used in patients with glucokinase mutations does not alter glycaemia. Diabetologia 2013, 57, 54–56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spyer, G.; Hattersley, A.T.; Sykes, J.E.; Sturley, R.H.; MacLeod, K.M. Influence of maternal and fetal glucokinase mutations in gestational diabetes. Am. J. Obstet. Gynecol. 2001, 185, 240–241. [Google Scholar] [CrossRef]
- Barrio, R.; Bellanne-Chantelot, C.; Moreno, J.C.; Morel, V.; Calle, H.; Alonso, M.; Mustieles, C. Nine novel mutations in maturity-onset diabetes of the young (MODY) candidate genes in 22 Spanish families. J. Clin. Endocrinol. Metab. 2002, 87, 2532–2539. [Google Scholar] [CrossRef]
- Costa, A.; Bescós, M.; Velho, G.; Chevre, J.; Vidal, J.; Sesmilo, G.; Bellanne-Chantelot, C.; Froguel, P.; Casamitjana, R.; Rivera-Fillat, F.; et al. Genetic and clinical characterisation of maturity-onset diabetes of the young in Spanish families. Eur. J. Endocrinol. 2000, 142, 380–386. [Google Scholar] [CrossRef]
- Estalella, I.; Rica, I.; de Nanclares, G.P.; Bilbao, J.R.; Vazquez, J.A.; Pedro, J.I.S.; Busturia, M.A.; Castaño, L.; Spanish MODY Group. Mutations in GCK and HNF-1α explain the majority of cases with clinical diagnosis of MODY in Spain. Clin. Endocrinol. 2007, 67, 538–546. [Google Scholar] [CrossRef]
- Froguel, P.; Zouali, H.; Vionnet, N.; Velho, G.; Vaxillaire, M.; Sun, F.; Lesage, S.; Stoffel, M.; Takeda, J.; Passa, P.; et al. Familial Hyperglycemia due to Mutations in Glucokinase—Definition of a Subtype of Diabetes Mellitus. N. Engl. J. Med. 1993, 328, 697–702. [Google Scholar] [CrossRef]
- Johansen, A.; Ek, J.; Mortensen, H.B.; Pedersen, O.; Hansen, T. Half of clinically defined maturity-onset diabetes of the young patients in Denmark do not have mutations in HNF4A, GCK, and TCF1. J. Clin. Endocrinol. Metab. 2005, 90, 4607–4614. [Google Scholar] [CrossRef] [PubMed]
- Mantovani, V.; Salardi, S.; Cerreta, V.; Bastia, D.; Cenci, M.; Ragni, L.; Zucchini, S.; Parente, R.; Cicognani, A. Identification of eight novel glucokinase mutations in Italian children with maturity-onset diabetes of the young. Hum. Mutat. 2003, 22, 338. [Google Scholar] [CrossRef] [PubMed]
- Pruhova, S.; Ek, J.; Lebl, J.; Sumnik, Z.; Saudek, F.; Andel, M.; Pedersen, O.; Hansen, T. Genetic epidemiology of MODY in the Czech republic: New mutations in the MODY genes HNF-4alpha, GCK and HNF-1alpha. Diabetologia 2003, 46, 291–295. [Google Scholar] [CrossRef] [PubMed]
- Sagen, J.V.; Bjørkhaug, L.; Molnes, J.; Ræder, H.; Grevle, L.; Søvik, O.; Molven, A.; Njølstad, P.R. Diagnostic screening of MODY2/GCK mutations in the Norwegian MODY Registry. Pediatr. Diabetes 2008, 9, 442–449. [Google Scholar] [CrossRef]
- Thomson, K.; Gloyn, A.; Colclough, K.; Batten, M.; Allen, L.; Beards, F.; Hattersley, A.; Ellard, S. Identification of 21 novel glucokinase (GCK) mutations in UK and European Caucasians with maturity-onset diabetes of the young (MODY). Hum. Mutat. 2003, 22, 417. [Google Scholar] [CrossRef]
- Jonsson, J.; Carlsson, L.; Edlund, T.; Edlund, H. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 1994, 371, 606–609. [Google Scholar] [CrossRef]
- Bonner-Weir, S. Life and death of the pancreatic beta cells. Trends Endocrinol. Metab. 2000, 11, 375–378. [Google Scholar] [CrossRef]
- Kubota, N.; Tobe, K.; Terauchi, Y.; Eto, K.; Yamauchi, T.; Suzuki, R.; Tsubamoto, Y.; Komeda, K.; Nakano, R.; Miki, H.; et al. Disruption of insulin receptor substrate 2 causes type 2 diabetes because of liver insulin resistance and lack of compensatory beta-cell hyperplasia. Diabetes 2000, 49, 1880–1889. [Google Scholar] [CrossRef] [Green Version]
- Withers, D.; Gutierrez, J.S.; Towery, H.; Burks, D.J.; Ren, J.-M.; Previs, S.; Zhang, Y.; Bernal, D.; Pons, S.; Shulman, G.; et al. Disruption of IRS-2 causes type 2 diabetes in mice. Nature 1998, 391, 900–904. [Google Scholar] [CrossRef]
- Kitamura, T.; Nakae, J.; Kitamura, Y.; Kido, Y.; Biggs, W.H.; Wright, C.V.; White, M.F.; Arden, K.C.; Accili, D. The forkhead transcription factor Foxo1 links insulin signaling to Pdx1 regulation of pancreatic beta cell growth. J. Clin. Investig. 2002, 110, 1839–1847. [Google Scholar] [CrossRef] [Green Version]
- Okamoto, H.; Hribal, M.L.; Lin, H.V.; Bennett, W.R.; Accili, D. Role of the forkhead protein FoxO1 in beta cell compensation to insulin resistance. J. Clin. Investig. 2006, 116, 775–782. [Google Scholar] [CrossRef] [PubMed]
- Tanabe, K.; Liu, Z.; Patel, S.; Doble, B.W.; Li, L.; Cras-Méneur, C.; Martinez, S.C.; Welling, C.M.; White, M.F.; Bernal-Mizrachi, E.; et al. Genetic deficiency of glycogen synthase kinase-3beta corrects diabetes in mouse models of insulin resistance. PLoS Biol. 2008, 6, e37. [Google Scholar] [CrossRef] [PubMed]
- Sachdeva, M.M.; Claiborn, K.C.; Khoo, C.; Yang, J.; Groff, D.N.; Mirmira, R.G.; Stoffers, D.A. Pdx1 ( MODY4 ) regulates pancreatic beta cell susceptibility to ER stress. Proc. Natl. Acad. Sci. USA 2009, 106, 19090–19095. [Google Scholar] [CrossRef] [Green Version]
- Soleimanpour, S.A.; Ferrari, A.M.; Raum, J.C.; Groff, D.N.; Yang, J.; Kaufman, B.A.; Stoffers, D.A. Diabetes Susceptibility Genes Pdx1 and Clec16a Function in a Pathway Regulating Mitophagy in beta-Cells. Diabetes 2015, 64, 3475–3484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sivitz, W.I.; Yorek, M.A. Mitochondrial Dysfunction in Diabetes: From Molecular Mechanisms to Functional Significance and Therapeutic Opportunities. Antioxid. Redox Signal 2010, 12, 537–577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szendroedi, J.; Phielix, E.; Roden, M. The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2011, 8, 92–103. [Google Scholar] [CrossRef]
- Nicolino, M.; Claiborn, K.C.; Senée, V.; Boland, A.; Stoffers, D.A.; Julier, C. A Novel Hypomorphic PDX1 Mutation Responsible for Permanent Neonatal Diabetes With Subclinical Exocrine Deficiency. Diabetes 2009, 59, 733–740. [Google Scholar] [CrossRef] [Green Version]
- Schwitzgebel, V.; Mamin, A.; Brun, T.; Ritz-Laser, B.; Zaiko, M.; Maret, A.; Jornayvaz, F.R.; Theintz, G.E.; Michielin, O.; Melloul, D.; et al. Agenesis of Human Pancreas due to Decreased Half-Life of Insulin Promoter Factor 1. J. Clin. Endocrinol. Metab. 2003, 88, 4398–4406. [Google Scholar] [CrossRef] [Green Version]
- Gragnoli, C.; Stanojevic, V.; Gorini, A.; Von Preussenthal, G.M.; Thomas, M.K.; Habener, J.F. IPF-1/MODY4 gene missense mutation in an Italian family with type 2 and gestational diabetes. Metabolism 2005, 54, 983–988. [Google Scholar] [CrossRef]
- Eckner, R.; Yao, T.P.; Oldread, E.; Livingston, D.M. Interaction and functional collaboration of p300/CBP and bHLH proteins in muscle and B-cell differentiation. Genes Dev. 1996, 10, 2478–2490. [Google Scholar] [CrossRef] [Green Version]
- Shiama, N. The p300/CBP family: Integrating signals with transcription factors and chromatin. Trends Cell. Biol. 1997, 7, 230–236. [Google Scholar] [CrossRef]
- Sartorelli, V.; Huang, J.; Hamamori, Y.; Kedes, L. Molecular mechanisms of myogenic coactivation by p300: Direct interaction with the activation domain of MyoD and with the MADS box of MEF2C. Mol. Cell. Biol. 1997, 17, 1010–1026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, W.; Condorelli, G.; Caruso, M.; Felsani, A.; Giordano, A. Human p300 Protein Is a Coactivator for the Transcription Factor MyoD. J. Biol. Chem. 1996, 271, 9009–9013. [Google Scholar] [CrossRef] [Green Version]
- Schwab, M.H.; Bartholomae, A.; Heimrich, B.; Feldmeyer, D.; Druffel-Augustin, S.; Goebbels, S.; Naya, F.J.; Zhao, S.; Frotscher, M.; Tsai, M.J.; et al. Neuronal basic helix-loop-helix proteins (NEX and BETA2/Neuro D) regulate terminal granule cell differentiation in the hippocampus. J. Neurosci. 2000, 20, 3714–3724. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horikawa, Y.; Enya, M.; Mabe, H.; Fukushima, K.; Takubo, N.; Ohashi, M.; Ikeda, F.; Hashimoto, K.; Watada, H.; Takeda, J. NEUROD1-deficient diabetes ( MODY6 ): Identification of the first cases in Japanese and the clinical features. Pediatr. Diabetes 2017, 19, 236–242. [Google Scholar] [CrossRef] [PubMed]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubio-Cabezas, O.; Minton, J.A.; Kantor, I.; Williams, D.; Ellard, S.; Hattersley, A.T. Homozygous Mutations in NEUROD1 Are Responsible for a Novel Syndrome of Permanent Neonatal Diabetes and Neurological Abnormalities. Diabetes 2010, 59, 2326–2331. [Google Scholar] [CrossRef] [Green Version]
- Demirbilek, H.; Hatipoglu, N.; Gul, U.; Tatli, Z.U.; Ellard, S.; Flanagan, S.E.; De Franco, E.; Kurtoglu, S. Permanent neonatal diabetes mellitus and neurological abnormalities due to a novel homozygous missense mutation in NEUROD1. Pediatr. Diabetes 2018, 19, 898–904. [Google Scholar] [CrossRef]
- Kristinsson, S.Y.; Talseth-Palmer, B.; Steingrimsson, E.; Thorsson, A.V.; Helgason, T.; Hreidarsson, A.B.; Thorolfsdottir, E.T.; Arngrimsson, R. MODY in Iceland is associated with mutations in HNF-1α and a novel mutation in NeuroD1. Diabetologia 2001, 44, 2098–2103. [Google Scholar] [CrossRef]
- Park, K.-G.; Lee, K.-M.; Seo, H.-Y.; Suh, J.-H.; Kim, H.-S.; Wang, L.; Won, K.-C.; Lee, H.-W.; Park, J.-Y.; Lee, K.-U.; et al. Glucotoxicity in the INS-1 Rat Insulinoma Cell Line Is Mediated by the Orphan Nuclear Receptor Small Heterodimer Partner. Diabetes 2007, 56, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Broom, A.; Jacobi, Z.; Trainor, K.; Meiering, E.M. Computational tools help improve protein stability but with a solubility tradeoff. J. Biol. Chem. 2017, 292, 14349–14361. [Google Scholar] [CrossRef] [PubMed]
- Daftary, G.S.; Zheng, Y.; Tabbaa, Z.M.; Schoolmeester, J.K.; Gada, R.P.; Grzenda, A.; Mathison, A.J.; Keeney, G.L.; Lomberk, G.A.; Urrutia, R. A Novel Role of the Sp/KLF Transcription Factor KLF11 in Arresting Progression of Endometriosis. PLoS ONE 2013, 8, e60165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez-Zapico, M.E.; van Velkinburgh, J.C.; Gutiérrez-Aguilar, R.; Neve, B.; Froguel, P.; Urrutia, R.; Stein, R. MODY7 gene, KLF11, is a novel p300-dependent regulator of Pdx-1 (MODY4) transcription in pancreatic islet beta cells. J. Biol. Chem. 2009, 284, 36482–36490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neve, B.; Fernandez-Zapico, M.E.; Ashkenazi-Katalan, V.; Dina, C.; Hamid, Y.H.; Joly, E.; Vaillant, E.; Benmezroua, Y.; Durand, E.; Bakaher, N.; et al. Role of transcription factor KLF11 and its diabetes-associated gene variants in pancreatic beta cell function. Proc. Natl. Acad. Sci. USA 2005, 102, 4807–4812. [Google Scholar] [CrossRef] [Green Version]
- Laver, T.W.; Wakeling, M.N.; Knox, O.; Colclough, K.; Wright, C.F.; Ellard, S.; Hattersley, A.T.; Weedon, M.N.; Patel, K.A. Evaluation of Evidence for Pathogenicity Demonstrates That BLK, KLF11, and PAX4 Should Not Be Included in Diagnostic Testing for MODY. Diabetes 2022, 71, 1128–1136. [Google Scholar] [CrossRef]
- El Jellas, K.; Dušátková, P.; Haldorsen, I.S.; Molnes, J.; Tjora, E.; Johansson, B.B.; Fjeld, K.; Johansson, S.; Průhová, Š.; Groop, L.; et al. Two New Mutations in the CEL Gene Causing Diabetes and Hereditary Pancreatitis: How to Correctly Identify MODY8 Cases. J. Clin. Endocrinol. Metab. 2022, 107, e1455–e1466. [Google Scholar] [CrossRef]
- Pellegrini, S.; Pipitone, G.B.; Cospito, A.; Manenti, F.; Poggi, G.; Lombardo, M.T.; Nano, R.; Martino, G.; Ferrari, M.; Carrera, P.; et al. Generation of beta Cells from iPSC of a MODY8 Patient with a Novel Mutation in the Carboxyl Ester Lipase (CEL) Gene. J. Clin. Endocrinol. Metab. 2021, 106, e2322–e2333. [Google Scholar] [CrossRef]
- Gaildrat, P.; Killian, A.; Martins, A.; Tournier, I.; Frébourg, T.; Tosi, M. Use of Splicing Reporter Minigene Assay to Evaluate the Effect on Splicing of Unclassified Genetic Variants. Cancer Susceptibility 2010, 653, 249–257. [Google Scholar] [CrossRef]
- Smith, S.B.; Ee, H.C.; Conners, J.R.; German, M.S. Paired-Homeodomain Transcription Factor PAX4 Acts as a Transcriptional Repressor in Early Pancreatic Development. Mol. Cell. Biol. 1999, 19, 8272–8280. [Google Scholar] [CrossRef] [Green Version]
- Kooptiwut, S.; Plengvidhya, N.; Chukijrungroat, T.; Sujjitjoon, J.; Semprasert, N.; Furuta, H.; Yenchitsomanus, P.-T. Defective PAX4 R192H transcriptional repressor activities associated with maturity onset diabetes of the young and early onset-age of type 2 diabetes. J. Diabetes Complicat. 2012, 26, 343–347. [Google Scholar] [CrossRef]
- Mauvais-Jarvis, F.; Smith, S.B.; Le May, C.; Leal, S.M.; Gautier, J.-F.; Molokhia, M.; Riveline, J.-P.; Rajan, A.S.; Kevorkian, J.-P.; Zhang, S.; et al. PAX4 gene variations predispose to ketosis-prone diabetes. Hum. Mol. Genet. 2004, 13, 3151–3159. [Google Scholar] [CrossRef] [PubMed]
- Docena, M.K.; Faiman, C.; Stanley, C.M.; Pantalone, K.M. Mody-3: Novel HNF1A Mutation and the Utility of Glucagon-Like Peptide (GLP)-1 Receptor Agonist Therapy. Endocr. Pract. 2014, 20, 107–111. [Google Scholar] [CrossRef] [PubMed]
- Lefèbvre, P.J.; Paquot, N.; Scheen, A.J. Inhibiting or antagonizing glucagon: Making progress in diabetes care. Diabetes, Obes. Metab. 2015, 17, 720–725. [Google Scholar] [CrossRef] [PubMed]
- Lumb, A.N.; Gallen, I.W. Treatment of HNF1-alpha MODY with the DPP-4 inhibitor Sitagliptin. Diabet. Med. 2009, 26, 189–190. [Google Scholar] [CrossRef] [PubMed]
- Østoft, S.H.; Bagger, J.I.; Hansen, T.; Pedersen, O.; Faber, J.; Holst, J.J.; Knop, F.K.; Vilsbøll, T. Glucose-Lowering Effects and Low Risk of Hypoglycemia in Patients With Maturity-Onset Diabetes of the Young When Treated With a GLP-1 Receptor Agonist: A Double-Blind, Randomized, Crossover Trial. Diabetes Care 2014, 37, 1797–1805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmody, D.; Park, S.Y.; Ye, H.; Perrone, M.E.; Alkorta-Aranburu, G.; Highland, H.M.; Hanis, C.L.; Philipson, L.H.; Bell, G.I.; Greeley, S.A.W. Continued lessons from the INS gene: An intronic mutation causing diabetes through a novel mechanism. J. Med. Genet. 2015, 52, 612–616. [Google Scholar] [CrossRef] [Green Version]
- Garin, I.; De Nanclares, G.P.; Gastaldo, E.; Harries, L.; Rubio-Cabezas, O.; Castaño, L. Permanent Neonatal Diabetes Caused by Creation of an Ectopic Splice Site within the INS Gene. PLoS ONE 2012, 7, e29205. [Google Scholar] [CrossRef] [Green Version]
- Matsuno, S.; Furuta, H.; Kosaka, K.; Doi, A.; Yorifuji, T.; Fukuda, T.; Senmaru, T.; Uraki, S.; Matsutani, N.; Furuta, M.; et al. Identification of a variant associated with early-onset diabetes in the intron of the insulin gene with exome sequencing. J. Diabetes Investig. 2018, 10, 947–950. [Google Scholar] [CrossRef]
- Dusatkova, L.; Dusatkova, P.; Vosahlo, J.; Vesela, K.; Cinek, O.; Lebl, J.; Pruhova, S. Frameshift mutations in the insulin gene leading to prolonged molecule of insulin in two families with Maturity-Onset Diabetes of the Young. Eur. J. Med Genet. 2015, 58, 230–234. [Google Scholar] [CrossRef]
- Dipple, K.M.; McCabe, E.R. Phenotypes of patients with “simple” Mendelian disorders are complex traits: Thresholds, modifiers, and systems dynamics. Am. J. Hum. Genet. 2000, 66, 1729–1735. [Google Scholar] [CrossRef] [Green Version]
- Bonnefond, A.; Yengo, L.; Philippe, J.; Dechaume, A.; Ezzidi, I.; Vaillant, E.; Gjesing, A.P.; Andersson, E.A.; Czernichow, S.; Hercberg, S.; et al. Reassessment of the putative role of BLK-p.A71T loss-of-function mutation in MODY and type 2 diabetes. Diabetologia 2012, 56, 492–496. [Google Scholar] [CrossRef]
- Timmers, M.; Dirinck, E.; Lauwers, P.; Wuyts, W.; De Block, C. ABCC8 variants in MODY12: Review of the literature and report of a case with severe complications. Diabetes Metab. Res. Rev. 2021, 37, e3459. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.R.; Flanagan, S.E.; James, C.; Shield, J.; Ellard, S.; Hussain, K. Hyperinsulinaemic hypoglycaemia. Arch. Dis. Child. 2009, 94, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Rafiq, M.; Flanagan, S.E.; Patch, A.-M.; Shields, B.M.; Ellard, S.; Hattersley, A.T. The Neonatal Diabetes International Collaborative Group Effective Treatment with Oral Sulfonylureas in Patients with Diabetes due to Sulfonylurea Receptor 1 (SUR1) Mutations. Diabetes Care 2008, 31, 204–209. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gloyn, A.L.; Pearson, E.R.; Antcliff, J.F.; Proks, P.; Bruining, G.J.; Slingerland, A.S.; Howard, N.; Srinivasan, S.; Silva, J.M.; Molnes, J.; et al. Activating Mutations in the Gene Encoding the ATP-Sensitive Potassium-Channel Subunit Kir6.2 and Permanent Neonatal Diabetes. N. Engl. J. Med. 2004, 350, 1838–1849. [Google Scholar] [CrossRef] [Green Version]
- Massa, O.; Iafusco, D.; D’Amato, E.; Gloyn, A.L.; Hattersley, A.T.; Pasquino, B.; Tonini, G.; Dammacco, F.; Zanette, G.; Meschi, F.; et al. KCNJ11 activating mutations in Italian patients with permanent neonatal diabetes. Hum. Mutat. 2005, 25, 22–27. [Google Scholar] [CrossRef]
- Jiang, X.; Zhou, Y.; Wu, K.K.; Chen, Z.; Xu, A.; Cheng, K.K. APPL1 prevents pancreatic beta cell death and inflammation by dampening NFkappaB activation in a mouse model of type 1 diabetes. Diabetologia 2017, 60, 464–474. [Google Scholar] [CrossRef] [Green Version]
- Schenck, A.; Goto-Silva, L.; Collinet, C.; Rhinn, M.; Giner, A.; Habermann, B.; Brand, M.; Zerial, M. The Endosomal Protein Appl1 Mediates Akt Substrate Specificity and Cell Survival in Vertebrate Development. Cell 2008, 133, 486–497. [Google Scholar] [CrossRef] [Green Version]
- Ivanoshchuk, D.; Shakhtshneider, E.; Rymar, O.; Ovsyannikova, A.; Mikhailova, S.; Orlov, P.; Ragino, Y.; Voevoda, M. Analysis of APPL1 Gene Polymorphisms in Patients with a Phenotype of Maturity Onset Diabetes of the Young. J. Pers. Med. 2020, 10, 100. [Google Scholar] [CrossRef]
Subtype | Gene | Inheritance | Prevalence | Molecular Mechanisms | Pathophysiology | Clinical Information |
---|---|---|---|---|---|---|
MODY1 | HNF4A | AD | Rare (5%) | Regulation of gene expression in the early liver; Regulation of HNF1A transcription in hepatocytes [5]; Regulation of apolipo and metabolic genes (APOA, APOB, PAH, FABP1) [6,7] | Abnormal embryo development (liver and pancreas dysfunction) [5]; Diminished insulin secretion capacity [8,9]; | Transient neonatal hyperinsulinemia and hypoglycemia with associated macrosomia; Gestational diabetes; Progressive insulin secretory defect accompanied with tendency for microvascular complications; Low serum levels of triglycerides, Apo AI, AII and CIII; Marked sensitivity to sulfonylureas [8,9]; |
MODY2 | GCK | AD | Common (30–50%) | Glucose phosphorylation [10,11,12,13] | Decreased glucose phosphorylation capacity; Decreased glycogen storage Diminished insulin secretion; β-cell dysfunction [13] | Stable, mild fasting hyperglycemia throughout life, with increased likelihood of glucose <55 mg/dL on oral glucose tolerance test; Typically asymptomatic;, with the diagnosis often incidental; Mild diabetes that generally does not require anti-diabetes medication. Managed with diet and exercise; Gestational diabetes; Variation in birth weight reviewed in [3]; |
MODY3 | HNF1A | AD | Common (30–50%) | Regulation of gene expression in the early liver, kidney, intestine, and pancreas [5]; Regulation of INS and SLC2A2 gene expression [14] | GLUT2 defiency associated with reduced glucose uptake and ATP production; Diminished insulin secretion capacity [14,15] | Absence of antibodies against Langerhans’ islets; High penetrance; Transient neonatal, hyperinsulinemia and, hypoglycemia for some; Diminished renal threshold for glycosuria, accompanied with glycosuria; Progressive insulin secretory defect with microvascular abnormalities; Marked sensitivity to sulfonylureas reviewed in [3]; |
MODY4 | PDX1/ IPF1 | AD | Very rare, <<1% | Regulation of INS, GLUT2, GCK, HNF4A and SLC2A2 gene expression [5,16,17] | Dysfunction of β cell maturation; Altered pancreatic development [18] Decreased insulin secretion capacity [19]; | Diagnosis at 35 years old; requires oral anti-diabetes and insulin treatment; 1-bp deletion found in a child with agenesis of the pancreas belonging to an inbreeding family. Additionally, heterozygous relatives for this same disorder displayed an early-onset T2DM phenotype [18,19,20,21] |
MODY5 | HNF1B | AD | Rare | Cooperation with GATA6 for HNF4A expression [22]; Activation of OC1 and OC2 genes; Regulation of Pkdh1, Pkd2, Umod, and PC2 genes expression [23,24,25]; | Abnormal embryo development Absence of endocrine cells; Abnormal β-cell development [24,26,27] | Renal pathologies and microvascular complications. No sensitivity to sulfonylureas and insulin therapy requirement reviewed in [3]; |
MODY6 | NEUROD1 | AD | Very rare, <<1% | Regulation of INS, SUR1, GCK, IGRP and PAX6 gene expression [28,29,30,31,32] | Pancreatic islet endocrine cells and enteroendocrine cells abnormalities [33]. | Rare heterozygous mutations cause MODY among other pathologies such as PND and syndromic NDM [34,35]; |
MODY7 | KLF11 | AD | Very rare, <<1% | Regulation of INS, SMAD7, SOD2 and CAT1 gene expression [36] | Exocrine cell growth dysfunction; Pancreatic malignancy [37] | Similar phenotype to T2DM [38]; |
MODY8 | CEL | Deletion of VNTR | Very rare, <<1% | Altered CEL protein intracellular and extracellular aggregates [39,40] | Decreased pancreatic endocrine and exocrine functions; Decreased viability of pancreatic cells [39,40] | Pathogenic variants in 2 Norwegian families associated with childhood-onset exocrine pancreatic dysfunction [41,42]; |
MODY9 | PAX4 | AD | Very rare, <<1% | Regulation of INS, IAPP, and ghrelin promoter’s repressor gene expression Regulation of Glucagon and somatostatin [43] | Decreased maturation and proliferation of β-cells [44,45,46,47] | Possible ketoacidosis; Three pathogenic variants detected in two Thai families and one Japanese family, both primarily diagnosed with early-onset T1DM and T2DM [48,49]; |
MODY10 | INS | AD | Rare, <1% | Regulation of PI3K and ERK cascades [50]; Regulation of NF-ƘB transcription factor; Misfolding of proinsulin molecules [51,52] | Reduced structural stability of insulin molecule [50]; β-cell dysfunction; Decreased insulin secretion capacity [51,52] | Onset before age 20, insulin therapy and sulfonylureas usually required; Two pathogenic viants reported as causing INS-MODY [53,54]; |
MODY11 | BLK | AD | Very rare, <<1% | Regulation of Nkx6.1 and PDX1 Promotion of insulin synthesis and secretion [55,56,57] | Reduction of insulin content; Desensitization of β-cells to glucose; Insulin secretion deficit [55,56,57] | Increased penetrance with increasing body mass index; Five mutations associated with MODY in 3 families of different ethnicities [58]; |
MODY12 | ABCC8 | AD | Very rare, <<1% | Ca2+ influx and β-cells metabolism [59] | Dysfunction of ATP-sensitive potassium channels; Decreased insulin secretion; [59,60] | Heterogeneous phenotype; Pathogenic variants cause a phenotype similar to MODY3 and MODY1 in patients with no pathogenic variants in HNF1A and HNF4A [61]; |
MODY13 | KCNJ11 | AD | Very rare, <<1% | Ca2+ influx and β-cells metabolism [59] | Dysfunction of ATP-sensitive potassium channels; Decreased insulin secretion; [59,60] | Heterogeneous phenotype; Two variants identified as causative of KCNJ11-MODY in 12 individuals from a French family, with age of diagnosis ranging from 13 to 59 years of age, a heterozygous alteration in a Japanese family with 4 affected individuals [62,63]. |
MODY14 | APPL1 | AD | Very rare, <<1% | Regulation of insulin secretion by AKT2 binding [64] | Loss of function and significant reduction of phosphorylation of AKT2 and GSK3β Diminished insulin secretion Increased of β-cells apoptosis [65] | Phenotype similar to T2D; Two heterozygous pathogenic variants in APPL1 in 2 out of 60 families [65]; |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, M.; Rego, T.; Armas, J.B. Insights into the Genetics and Signaling Pathways in Maturity-Onset Diabetes of the Young. Int. J. Mol. Sci. 2022, 23, 12910. https://doi.org/10.3390/ijms232112910
Sousa M, Rego T, Armas JB. Insights into the Genetics and Signaling Pathways in Maturity-Onset Diabetes of the Young. International Journal of Molecular Sciences. 2022; 23(21):12910. https://doi.org/10.3390/ijms232112910
Chicago/Turabian StyleSousa, Madalena, Teresa Rego, and Jácome Bruges Armas. 2022. "Insights into the Genetics and Signaling Pathways in Maturity-Onset Diabetes of the Young" International Journal of Molecular Sciences 23, no. 21: 12910. https://doi.org/10.3390/ijms232112910
APA StyleSousa, M., Rego, T., & Armas, J. B. (2022). Insights into the Genetics and Signaling Pathways in Maturity-Onset Diabetes of the Young. International Journal of Molecular Sciences, 23(21), 12910. https://doi.org/10.3390/ijms232112910