Association between Insertion-Deletion Polymorphism of the Angiotensin-Converting Enzyme Gene and Treatment Response to Antipsychotic Medications: A Study of Antipsychotic-Naïve First-Episode Psychosis Patients and Nonadherent Chronic Psychosis Patients
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nawaz, S.K.; Hasnain, S. Pleiotropic effects of ACE polymorphism. Biochem. Med. 2008, 19, 36–49. [Google Scholar] [CrossRef] [Green Version]
- Riordan, J.F. Angiotensin-I-converting enzyme and its relatives. Genome Biol. 2003, 4, 225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rigat, B.; Hubert, C.; Alhenc-Gelas, F.; Cambien, F.; Corvol, P.; Soubrier, F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Investig. 1990, 86, 1343–1346. [Google Scholar] [CrossRef] [Green Version]
- Nani, J.V.; Dal Mas, C.; Yonamine, C.M.; Ota, V.K.; Noto, C.; Belangero, S.I.; Mari, J.J.; Bressan, R.; Cordeiro, Q.; Gadelha, A.; et al. A study in first-episode psychosis patients: Does angiotensin I-converting enzyme (ACE) activity associated with genotype predict symptoms severity reductions after treatment with the atypical antipsychotic risperidone? Int. J. Neuropsychopharmacol. 2020, 22, 721–730. [Google Scholar] [CrossRef]
- Jenkins, T.A.; Allen, A.M.; Chai, S.Y.; MacGregor, D.P.; Paxinos, G.; Mendelsohn, F.A. Interactions of angiotensin II with central dopamine. Adv. Exp. Med. Biol. 1996, 396, 93–103. [Google Scholar] [CrossRef]
- Jenkins, T.A.; Mendelsohn, F.A.; Chai, S.Y. Angiotensin-converting enzyme modulates dopamine turnover in the striatum. J. Neurochem. 1997, 68, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Obata, T.; Takahashi, S.; Kashiwagi, Y.; Kubota, S. Protective effect of captopril and enalaprilat, angiotensin-converting enzyme inhibitors, on para-nonylphenol-induced OH generation and dopamine efflux in rat striatum. Toxicology 2008, 250, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Nadalin, S.; Buretić-Tomljanović, A.; Rubeša, G.; Jonovska, S.; Tomljanović, D.; Ristić, S. Angiotensin-converting enzyme gene insertion/deletion polymorphism is not associated with schizophrenia in a Croatian population. Psychiatr. Genet. 2012, 22, 267–268. [Google Scholar] [CrossRef]
- Hui, L.; Wu, J.Q.; Zhang, X.; Lv, J.; Du, W.L.; Kou, C.G.; Yu, Y.Q.; Lv, M.H.; Chen, D.C.; Zhang, X.Y. Association between the angiotensin-converting enzyme gene insertion/deletion polymorphism and first-episode patients with schizophrenia in a Chinese Han population. Hum. Psychopharmacol. 2014, 29, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Gadelha, A.; Yonamine, C.M.; Ota, V.K.; Oliveira, V.; Sato, J.R.; Belangero, S.I.; Bressan, R.A.; Hayashi, M.A. ACE I/D genotype-related increase in ACE plasma activity is a better predictor for schizophrenia diagnosis than the genotype alone. Schizophr. Res. 2015, 164, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Hui, L.; Wu, J.Q.; Ye, M.J.; Zheng, K.; He, J.C.; Zhang, X.; Liu, J.H.; Tian, H.J.; Gong, B.H.; Chen, D.C.; et al. Association of angiotensin-converting enzyme gene polymorphism with schizophrenia and depressive symptom severity in a Chinese population. Hum. Psychopharmacol. 2015, 30, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, H.; Saadat, M. Association between insertion/deletion polymorphism in angiotension converting enzyme and susceptibility to schizophrenia. Iran. J. Public Health 2015, 44, 369–373. [Google Scholar] [PubMed]
- Song, G.G.; Lee, Y.H. The insertion/deletion polymorphism in the angiotensin-converting enzyme and susceptibility to schizophrenia or Parkinson’s disease: A meta-analysis. J. Renin-Angiotensin-Aldosterone Syst. 2015, 16, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Nadalin, S.; Buretić-Tomljanović, A.; Ristić, S.; Jonovska, S.; Tomljanović, D. The impact of ACE gene I/D polymorphism on plasma glucose and lipid concentrations in schizophrenia patients. Psychiatry Res. 2015, 227, 71–72. [Google Scholar] [CrossRef] [PubMed]
- Carli, M.; Kolachalam, S.; Longoni, B.; Pintaudi, A.; Baldini, M.; Aringhieri, S.; Fasciani, I.; Annibale, P.; Maggio, R.; Scarselli, M. Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences. Pharmaceuticals 2021, 14, 238. [Google Scholar] [CrossRef]
- Goh, K.K.; Chen, C.Y.; Wu, T.H.; Chen, C.H.; Lu, M.L. Crosstalk between schizophrenia and metabolic syndrome: The role of oxytocinergic dysfunction. Int. J. Mol. Sci. 2022, 23, 7092. [Google Scholar] [CrossRef]
- Alvarez-Aguilar, C.; Enríquez-Ramírez, M.L.; Figueroa-Nuñez, B.; Gómez-García, A.; Rodríguez-Ayala, E.; Morán-Moguel, C.; Farias-Rodriguez, V.M.; Mino-Leon, D.; Lopez-Meza, J.E. Association between angiotensin-1 converting enzyme gene polymorphism and the metabolic syndrome in a Mexican population. Exp. Mol. Med. 2007, 39, 327–334. [Google Scholar] [CrossRef]
- Niu, W.; Qi, Y.; Gao, P.; Zhu, D. Angiotensin converting enzyme D allele is associated with an increased risk of type 2 diabetes: Evidence from a meta-analysis. Endocr. J. 2010, 57, 431–438. [Google Scholar] [CrossRef] [Green Version]
- Mittal, G.; Gupta, V.; Haque, S.F.; Khan, A.S. Effect of angiotensin converting enzyme gene I/D polymorphism in patients with metabolic syndrome in North Indian population. Chin. Med. J. 2011, 124, 45–48. [Google Scholar]
- Zhong, W.; Jiang, Z.; Zhou, T.B. Association between the ACE I/D gene polymorphism and T2DN susceptibility: The risk of T2DM developing into T2DN in the Asian population. J. Renin-Angiotensin-Aldosterone Syst. 2015, 16, NP35. [Google Scholar] [CrossRef] [Green Version]
- Herrera-Estrella, M.; Apiquian, R.; Fresan, A.; Sanchez-Torres, I. The effects of amisulpride on five dimensions of psychopathology in patients with schizophrenia: A prospective open-label study. BMC Psychiatry 2005, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.; Wilcox, M.; Savitz, A.; Chung, H.; Li, Q.; Salvadore, G.; Wang, D.; Nuamah, I.; Riese, S.P.; Bilder, R.M. Sparse factors for the positive and negative syndrome scale: Which symptoms and stage of illness? Psychiatry Res. 2015, 225, 283–290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nadalin, S.; Ristić, S.; Rebić, J.; Šendula Jengić, V.; Kapović, M.; Buretić-Tomljanović, A. The insertion/deletion polymorphism in the angiotensin-converting enzyme gene and nicotine dependence in schizophrenia patients. J. Neural Transm. 2017, 124, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Ristić, S.; Lovrecić, L.; Starcević-Cizmarević, N.; Brajenović-Milić, B.; Jazbec, S.S.; Barac-Latas, V.; Vejnović, D.; Sepcić, J.; Kapović, M.; Peterlin, B. No association of CCR5D32 gene mutation with multiple sclerosis in Croatian and Slovenian patients. Mult. Scler. 2006, 12, 360–362. [Google Scholar] [CrossRef] [PubMed]
- Nadalin, S.; Flego, V.; Pavlić, S.D.; Volarić, D.; Radojčić Badovinac, A.; Kapović, M.; Ristić, S. Association between the ACE-I/D polymorphism and nicotine dependence amongst patients with lung cancer. Biomed. Rep. 2020, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Bergovec, M.; Reiner, Z.; Milicić, D.; Vrazić, H. Differences in risk factors for coronary heart disease in patients from continental and Mediterranean regions of Croatia. Wien Klin. Wochenschr. 2008, 120, 684–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fister, K.; Vuletić, S.; Kern, J. Paving the way for personalised behaviourally based prevention of obesity: Systematic search of the literature. Coll. Antropol. 2012, 36, 201–210. [Google Scholar] [CrossRef] [Green Version]
- Milanović, S.M.; Ivanković, D.; Uhernik, A.I.; Fister, K.; Peternel, R.; Vuletić, S. Obesity-new threat to Croatian longevity. Coll. Antropol. 2012, 36, 113–116. [Google Scholar]
- National Library of Medicine. Available online: http://www.ncbi.nlm.nih.gov/snp/?term=rs1799752 (accessed on 14 August 2022).
- Nagamine, T. Serum substance P levels in patients with chronic schizophrenia treated with typical or atypical antipsychotics. Neuropsychiatr. Dis. Treat. 2008, 4, 289–294. [Google Scholar] [CrossRef] [Green Version]
- Fawaz, C.S.; Martel, P.; Leo, D.; Trudeau, L.E. Presynaptic action of neurotensin on dopamine release through inhibition of D2 receptor function. BMC Neurosci. 2009, 10, 96. [Google Scholar] [CrossRef] [Green Version]
- Servonnet, A.; Minogianis, E.A.; Bouchard, C.; Bédard, A.M.; Lévesque, D.; Rompré, P.P.; Samaha, A.N. Neurotensin in the nucleus accumbens reverses dopamine supersensitivity evoked by antipsychotic treatment. Neuropharmacology 2017, 123, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Heath, E.; Chieng, B.; Christie, M.J.; Balleine, B.W. Substance P and dopamine interact to modulate the distribution of delta-opioid receptors on cholinergic interneurons in the striatum. Eur. J. Neurosci. 2018, 47, 1159–1173. [Google Scholar] [CrossRef] [PubMed]
- Sanada, M.; Higashi, Y.; Nakagawa, K.; Sasaki, S.; Kodama, I.; Tsuda, M.; Nagai, N.; Ohama, K. Relationship between the angiotensin-converting enzyme genotype and the forearm vasodilator response to estrogen replacement therapy in postmenopausal women. J. Am. Coll. Cardiol. 2001, 37, 1529–1535. [Google Scholar] [CrossRef] [Green Version]
- Sumino, H.; Ichikawa, S.; Ohyama, Y.; Nakamura, T.; Kanda, T.; Sakamoto, H.; Sakamaki, T.; Mizunuma, H.; Kurabayashi, M. Effects of hormone replacement therapy on serum angiotensin-converting enzyme activity and plasma bradykinin in postmenopausal women according to angiotensin-converting enzyme-genotype. Hypertens. Res. 2003, 26, 53–58. [Google Scholar] [CrossRef] [Green Version]
- Jacobs, E.; D’Esposito, M. Estrogen shapes dopamine-dependent cognitive processes: Implications for women’s health. J. Neurosci. 2011, 31, 5286–5293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barth, C.; Villringer, A.; Sacher, J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front. Neurosci. 2015, 9, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Del Río, J.P.; Alliende, M.I.; Molina, N.; Serrano, F.G.; Molina, S.; Vigil, P. Steroid hormones and their action in women’s brains: The importance of hormonal balance. Front. Public Health. 2018, 6, 141. [Google Scholar] [CrossRef] [Green Version]
- van der Gaag, M.; Hoffman, T.; Remijsen, M.; Hijman, R.; de Haan, L.; van Meijel, B.; van Harten, P.N.; Valmaggia, L.; de Hert, M.; Cuijpers, A.; et al. The five-factor model of the Positive and Negative Syndrome Scale II: A ten-fold cross-validation of a revised model. Schizophr. Res. 2006, 85, 280–287. [Google Scholar] [CrossRef]
- Giesbrecht, C.J.; O’Rourke, N.; Leonova, O.; Strehlau, V.; Paquet, K.; Vila-Rodriguez, F.; Panenka, W.J.; MacEwan, G.W.; Smith, G.N.; Thornton, A.E.; et al. The positive and negative syndrome scale (PANSS): A three-factor model of psychopathology in marginally housed persons with substance dependence and psychiatric illness. PLoS ONE 2016, 11, e0151648. [Google Scholar] [CrossRef] [Green Version]
- Cuthbert, B.N.; Insel, T.R. Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Med. 2013, 11, 126. [Google Scholar] [CrossRef] [Green Version]
- Postolache, T.T.; Del Bosque-Plata, L.; Jabbour, S.; Vergare, M.; Wu, R.; Gragnoli, C. Co-shared genetics and possible risk gene pathway partially explain the comorbidity of schizophrenia, major depressive disorder, type 2 diabetes, and metabolic syndrome. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2019, 180, 186–203. [Google Scholar] [CrossRef]
- Paderina, D.Z.; Boiko, A.S.; Pozhidaev, I.V.; Mednova, I.A.; Goncharova, A.A.; Bocharova, A.V.; Fedorenko, O.Y.; Kornetova, E.G.; Semke, A.V.; Bokhan, N.A.; et al. The Gender-Specific Association of DRD2 Polymorphism with Metabolic Syndrome in Patients with Schizophrenia. Genes. 2022, 13, 1312. [Google Scholar] [CrossRef] [PubMed]
- Wincewicz, D.; Braszko, J.J. Validation of brain angiotensin system blockade as a novel drug target in pharmacological treatment of neuropsychiatric disorders. Pharmacopsychiatry 2017, 50, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Trieu, B.H.; Remmers, B.C.; Toddes, C.; Brandner, D.D.; Lefevre, E.M.; Kocharian, A.; Retzlaff, C.L.; Dick, R.M.; Mashal, M.A.; Gauthier, E.A.; et al. Angiotensin-converting enzyme gates brain circuit-specific plasticity via an endogenous opioid. Science 2022, 375, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Wahlbeck, K.; Ahokas, A.; Miettinen, K.; Nikkilä, H.; Rimón, R. Higher cerebrospinal fluid angiotensin-converting enzyme levels in neuroleptic-treated than in drug-free patients with schizophrenia. Schizophr. Bull. 1998, 24, 391–397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahlbeck, K.; Rimón, R.; Fyhrquist, F. Elevated angiotensin-converting enzyme (kininase II) in the cerebrospinal fluid of neuroleptic-treated schizophrenic patients. Schizophr. Res. 1993, 9, 77–82. [Google Scholar] [CrossRef]
- Beckmann, H.; Saavedra, J.M.; Gattaz, W.F. Low angiotensin-converting enzyme activity (kininase II) in cerebrospinal fluid of schizophrenics. Biol. Psychiatry 1984, 19, 679–684. [Google Scholar] [PubMed]
- Wallwork, R.S.; Fortgang, R.; Hashimoto, R.; Weinberger, D.R.; Dickinson, D. Searching for a consensus five-factor model of the Positive and Negative Syndrome Scale for schizophrenia. Schizophr. Res. 2012, 137, 246–250. [Google Scholar] [CrossRef] [Green Version]
- Jiang, J.; See, Y.M.; Subramaniam, M.; Lee, J. Investigation of cigarette smoking among male schizophrenia patients. PLoS ONE. 2013, 8, e71343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misiak, B.; Kiejna, A.; Frydecka, D. Assessment of cigarette smoking status with respect to symptomatic manifestation in first-episode schizophrenia patients. Compr. Psychiatry 2015, 58, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, V.; Sell, K.W.; Saha, B.K. Mistyping ACE heterozygotes. PCR Methods Appl. 1993, 3, 120–121. [Google Scholar] [CrossRef] [PubMed]
- Computation of Effect Sizes. Available online: http://www.psychometrica.de/effect_size.html (accessed on 14 August 2022).
Males (N = 99) | Females (N = 87) | p | |
---|---|---|---|
Antipsychotic-naïve first-episode patients/nonadherent chronic patients | 41/58 | 26/61 | 0.102 |
Age, years | 31.9 ± 11.7 | 41.6 ± 14.9 | <0.001 |
Age of onset, years | 25.6 ± 8.3 | 32.1 ± 12.3 | <0.001 |
Number of psychotic episodes | 2.7 ± 2.0 | 3.1 ± 2.0 | 0.131 |
PANSS positive symptom score | 22.4 ± 6.4 | 22.0 ± 5.8 | 0.884 |
PANSS negative symptom score | 26.6 ± 7.0 | 26.2 ± 8.0 | 0.674 |
PANSS general psychopathology score | 50.8 ± 9.0 | 49.2 ± 8.7 | 0.238 |
PANSS total symptom score | 99.8 ± 17.7 | 97.4 ± 18.4 | 0.434 |
PANSS positive factor | 13.3 ± 4.1 | 12.9 ± 3.8 | 0.445 |
PANSS negative factor | 19.0 ± 5.2 | 18.9 ± 6.3 | 0.833 |
PANSS excitement factor | 8.4 ± 2.7 | 8.2 ± 2.7 | 0.645 |
PANSS depression factor | 9.6 ± 2.7 | 9.1 ± 3.0 | 0.260 |
PANSS cognitive factor | 5.9 ± 1.8 | 5.8 ± 2.1 | 0.731 |
Total cholesterol, mmol/L | 4.6 ± 1.0 | 4.9 ± 1.1 | 0.032 |
LDL cholesterol, mmol/L | 2.7 ± 0.8 | 3.0 ± 1.0 | 0.091 |
HDL cholesterol, mmol/L | 1.1 ± 0.3 | 1.3 ± 0.4 | <0.001 |
Triglycerides, mmoL/L | 1.5 ± 1.1 | 1.2 ± 0.5 | 0.024 |
Glucose, mmol/L | 5.6 ± 1.6 | 5.5 ± 1.0 | 0.878 |
Body mass index, kg/m2 | 25.6 ± 4.7 | 23.8 ± 4.2 | 0.011 |
Genotypes (%) | Alleles (%) | ||||
---|---|---|---|---|---|
DD | ID | II | D | I | |
Males (N = 99) a | 28 (28.3) | 57 (57.6) | 14 (14.1) | 113 (57.1) | 83 (42.9) |
Females (N = 87) b | 26 (30.2) | 50 (57.0) | 11 (12.8) | 102 (58.6) | 72 (41.4) |
χ2 = 0.12, df = 2, p = 0.942 | χ2 = 0.04, df = 1, p = 0.851 |
Males (N = 99) | Mean ± SD | z | p | Females (N = 87) | Mean ± SD | z | p | |
---|---|---|---|---|---|---|---|---|
PANSS positive symptom score | DD, ID II | −8.6 ± 9.5 −1.0 ± 12.4 | −1.96 | 0.049 | DD, ID II | −9.0 ± 8.9 −7.0 ± 7.5 | −1.11 | 0.270 |
II, ID DD | −8.2 ± 9.4 −7.1 ± 11.5 | −0.18 | 0.858 | II, ID DD | −8.1 ± 9.8 −10.1 ± 5.5 | −0.68 | 0.502 | |
PANSS negative symptom score | DD, ID II | −6.4 ± 9.5 −6.8 ± 11.0 | −0.17 | 0.864 | DD, ID II | −7.8 ± 8.3 −6.2 ± 11.7 | −0.09 | 0.926 |
II, ID DD | −6.6 ± 9.1 −6.0 ± 10.8 | −0.11 | 0.909 | II, ID DD | −7.5 ± 9.8 −7.9 ± 5.6 | −0.21 | 0.837 | |
PANSS general psychopathology score | DD, ID II | −13.5 ± 18.2 −9.4 ± 18.5 | −0.71 | 0.479 | DD, ID II | −14.9 ± 13.7 −8.3 ± 19.2 | −1.10 | 0.296 |
II, ID DD | −12.5 ± 16.7 −14.5 ± 21.4 | 1.34 | 0.180 | II, ID DD | −12.9 ± 16.0 −16.6 ± 10.1 | −1.33 | 0.185 | |
PANSS total symptom score | DD, ID II | −28.2 ± 4.7 −17.2 ± 34.1 | −1.19 | 0.235 | DD, ID II | −31.7 ± 28.3 −21.5 ± 37.4 | −0.89 | 0.376 |
II, ID DD | −27.2 ± 31.9 −26.6 ± 40.5 | 0.30 | 0.765 | II, ID DD | −28.5 ± 33.2 −34.6 ± 18.8 | −1.14 | 0.255 | |
PANSS positive factor | DD, ID II | −6.4 ± 3.3 −5.6 ± 6.6 | −0.24 | 0.810 | DD, ID II | −5.9 ± 3.9 −6.1 ± 3.5 | −0.24 | 0.813 |
II, ID DD | −6.2 ± 4.0 −6.6 ± 3.3 | 0.30 | 0.767 | II, ID DD | −5.7 ± 3.9 −6.2 ± 3.8 | −0.86 | 0.391 | |
PANSS negative factor | DD, ID II | −6.7 ± 4.2 −7.2 ± 5.9 | 0.24 | 0.810 | DD, ID II | −6.8 ± 5.7 −7.0 ± 4.7 | −0.03 | 0.971 |
II, ID DD | −6.8 ± 4.4 −6.7 ± 4.5 | −0.20 | 0.837 | II, ID DD | −7.2 ± 5.8 −6.2 ± 5.0 | 0.25 | 0.797 | |
PANSS excitement factor | DD, ID II | −4.3 ± 2.7 −2.0 ± 1.8 | −2.62 | 0.007 | DD, ID II | −3.7 ± 2.9 −2.5 ± 2.7 | −1.90 | 0.059 |
II, ID DD | −4.1 ± 2.8 −3.9 ± 2.4 | 0.09 | 0.928 | II, ID DD | −3.5 ± 3.1 −3.7 ± 2.2 | −0.54 | 0.591 | |
PANSS depression factor | DD, ID II | −8.0 ± 2.6 −7.6 ± 2.0 | −0.41 | 0.686 | DD, ID II | −7.3 ± 2.9 −6.3 ± 2.7 | −0.88 | 0.384 |
II, ID DD | −7.6 ± 2.3 −8.6 ± 2.8 | 1.71 | 0.092 | II, ID DD | −6.6 ± 2.8 −8.4 ± 2.8 | −2.53 | 0.010 | |
PANSS cognitive factor | DD, ID II | −2.0 ± 1.6 −0.9 ± 1.4 | −2.21 | 0.030 | DD, ID II | −1.7 ± 1.9 −1.0 ± 1.4 | −0.96 | 0.353 |
II, ID DD | −1.7 ± 1.6 −2.2 ± 1.7 | 1.26 | 0.222 | II, ID DD | −1.7 ± 2.1 −1.5 ± 1.2 | 0.04 | 0.967 | |
Total cholesterol, mmol/L | DD, ID II | 0.5 ± 0.8 0.0 ± 0.4 | 1.60 | 0.112 | DD, ID II | 0.4 ± 0.9 −0.0 ± 0.6 | 1.34 | 0.182 |
II, ID DD | 0.4 ± 0.8 0.5 ± 0.7 | −0.91 | 0.367 | II, ID DD | 0.3 ± 0.9 0.5 ± 0.9 | 0.93 | 0.350 | |
LDL cholesterol, mmol/L | DD, ID II | 0.3 ± 0.6 0.1 ± 0.2 | 0.93 | 0.354 | DD, ID II | 0.2 ± 0.7 0.1 ± 0.6 | 0.36 | 0.718 |
II, ID DD | 0.3 ± 0.6 0.2 ± 0.6 | 0.59 | 0.558 | II, ID DD | 0.1 ± 0.6 0.3 ± 0.8 | 1.60 | 0.109 | |
HDL cholesterol, mmol/L | DD, ID II | 0.1 ± 0.3 0.0 ± 0.3 | 0.40 | 0.687 | DD, ID II | 0.1 ± 0.3 0.0 ± 0.3 | 0.39 | 0.706 |
II, ID DD | −0.0 ± 0.3 0.1 ± 0.3 | −1.23 | 0.219 | II, ID DD | 0.1 ± 0.3 0.1 ± 0.3 | 0.94 | 0.356 | |
Triglycerides, mmoL/L | DD, ID II | 0.3 ± 1.0 0.1 ± 0.8 | 0.29 | 0.774 | DD, ID II | 0.4 ± 1.0 −0.1 ± 0.6 | 1.10 | 0.276 |
II, ID DD | 0.2 ± 1.0 0.4 ± 0.8 | −1.40 | 0.161 | II, ID DD | 0.4 ± 1.2 0.2 ± 0.6 | −0.49 | 0.619 | |
Glucose, mmol/L | DD, ID II | 0.2 ± 1.7 0.1 ± 1.0 | −0.35 | 0.729 | DD, ID II | 0.2 ± 1.6 −0.5 ± 1.1 | 1.37 | 0.169 |
II, ID DD | 0.3 ± 1.8 −0.0 ± 1.0 | 0.49 | 0.626 | II, ID DD | 0.2 ± 1.8 −0.1 ± 1.0 | 0.10 | 0.921 | |
Body mass index, kg/m2 | DD, ID II | 0.6 ± 2.0 −0.8 ± 2.2 | 1.86 | 0.062 | DD, ID II | 0.7 ± 1.9 0.8 ± 1.5 | −0.16 | 0.872 |
II, ID DD | 0.6 ± 1.6 0.1 ± 2.8 | 0.19 | 0.846 | II, ID DD | 0.7 ± 2.0 0.7 ± 1.6 | 0.10 | 0.912 |
Males (N = 99) | |||||
---|---|---|---|---|---|
Dependent Variable | Predictor | β | R2 Change | F | p |
PANSS positive symptom score | ACE-D allele | −0.23 | 0.054 | 4.59 | 0.035 |
PANSS excitement factor | ACE-D allele | −0.26 | 0.067 | 5.93 | 0.017 |
PANSS cognitive factor | Number of psychotic episodes | 0.25 | 0.062 | 5.39 | 0.023 |
Females (N = 87) | |||||
Dependent Variable | Predictor | β | R2 Change | F | p |
PANSS depression factor | ACE-I allele | 0.30 | 0.087 | 7.50 | 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadalin, S.; Dević Pavlić, S.; Peitl, V.; Karlović, D.; Zatković, L.; Ristić, S.; Buretić-Tomljanović, A.; Jakovac, H. Association between Insertion-Deletion Polymorphism of the Angiotensin-Converting Enzyme Gene and Treatment Response to Antipsychotic Medications: A Study of Antipsychotic-Naïve First-Episode Psychosis Patients and Nonadherent Chronic Psychosis Patients. Int. J. Mol. Sci. 2022, 23, 12180. https://doi.org/10.3390/ijms232012180
Nadalin S, Dević Pavlić S, Peitl V, Karlović D, Zatković L, Ristić S, Buretić-Tomljanović A, Jakovac H. Association between Insertion-Deletion Polymorphism of the Angiotensin-Converting Enzyme Gene and Treatment Response to Antipsychotic Medications: A Study of Antipsychotic-Naïve First-Episode Psychosis Patients and Nonadherent Chronic Psychosis Patients. International Journal of Molecular Sciences. 2022; 23(20):12180. https://doi.org/10.3390/ijms232012180
Chicago/Turabian StyleNadalin, Sergej, Sanja Dević Pavlić, Vjekoslav Peitl, Dalibor Karlović, Lena Zatković, Smiljana Ristić, Alena Buretić-Tomljanović, and Hrvoje Jakovac. 2022. "Association between Insertion-Deletion Polymorphism of the Angiotensin-Converting Enzyme Gene and Treatment Response to Antipsychotic Medications: A Study of Antipsychotic-Naïve First-Episode Psychosis Patients and Nonadherent Chronic Psychosis Patients" International Journal of Molecular Sciences 23, no. 20: 12180. https://doi.org/10.3390/ijms232012180