Association between Insertion-Deletion Polymorphism of the Angiotensin-Converting Enzyme Gene and Treatment Response to Antipsychotic Medications: A Study of Antipsychotic-Naïve First-Episode Psychosis Patients and Nonadherent Chronic Psychosis Patients
Abstract
1. Introduction
2. Results
3. Discussion
4. Materials and Methods
Statistical Analyses
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nawaz, S.K.; Hasnain, S. Pleiotropic effects of ACE polymorphism. Biochem. Med. 2008, 19, 36–49. [Google Scholar] [CrossRef]
- Riordan, J.F. Angiotensin-I-converting enzyme and its relatives. Genome Biol. 2003, 4, 225. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rigat, B.; Hubert, C.; Alhenc-Gelas, F.; Cambien, F.; Corvol, P.; Soubrier, F. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J. Clin. Investig. 1990, 86, 1343–1346. [Google Scholar] [CrossRef]
- Nani, J.V.; Dal Mas, C.; Yonamine, C.M.; Ota, V.K.; Noto, C.; Belangero, S.I.; Mari, J.J.; Bressan, R.; Cordeiro, Q.; Gadelha, A.; et al. A study in first-episode psychosis patients: Does angiotensin I-converting enzyme (ACE) activity associated with genotype predict symptoms severity reductions after treatment with the atypical antipsychotic risperidone? Int. J. Neuropsychopharmacol. 2020, 22, 721–730. [Google Scholar] [CrossRef]
- Jenkins, T.A.; Allen, A.M.; Chai, S.Y.; MacGregor, D.P.; Paxinos, G.; Mendelsohn, F.A. Interactions of angiotensin II with central dopamine. Adv. Exp. Med. Biol. 1996, 396, 93–103. [Google Scholar] [CrossRef]
- Jenkins, T.A.; Mendelsohn, F.A.; Chai, S.Y. Angiotensin-converting enzyme modulates dopamine turnover in the striatum. J. Neurochem. 1997, 68, 1304–1311. [Google Scholar] [CrossRef] [PubMed]
- Obata, T.; Takahashi, S.; Kashiwagi, Y.; Kubota, S. Protective effect of captopril and enalaprilat, angiotensin-converting enzyme inhibitors, on para-nonylphenol-induced OH generation and dopamine efflux in rat striatum. Toxicology 2008, 250, 96–99. [Google Scholar] [CrossRef] [PubMed]
- Nadalin, S.; Buretić-Tomljanović, A.; Rubeša, G.; Jonovska, S.; Tomljanović, D.; Ristić, S. Angiotensin-converting enzyme gene insertion/deletion polymorphism is not associated with schizophrenia in a Croatian population. Psychiatr. Genet. 2012, 22, 267–268. [Google Scholar] [CrossRef]
- Hui, L.; Wu, J.Q.; Zhang, X.; Lv, J.; Du, W.L.; Kou, C.G.; Yu, Y.Q.; Lv, M.H.; Chen, D.C.; Zhang, X.Y. Association between the angiotensin-converting enzyme gene insertion/deletion polymorphism and first-episode patients with schizophrenia in a Chinese Han population. Hum. Psychopharmacol. 2014, 29, 274–279. [Google Scholar] [CrossRef] [PubMed]
- Gadelha, A.; Yonamine, C.M.; Ota, V.K.; Oliveira, V.; Sato, J.R.; Belangero, S.I.; Bressan, R.A.; Hayashi, M.A. ACE I/D genotype-related increase in ACE plasma activity is a better predictor for schizophrenia diagnosis than the genotype alone. Schizophr. Res. 2015, 164, 109–114. [Google Scholar] [CrossRef] [PubMed]
- Hui, L.; Wu, J.Q.; Ye, M.J.; Zheng, K.; He, J.C.; Zhang, X.; Liu, J.H.; Tian, H.J.; Gong, B.H.; Chen, D.C.; et al. Association of angiotensin-converting enzyme gene polymorphism with schizophrenia and depressive symptom severity in a Chinese population. Hum. Psychopharmacol. 2015, 30, 100–107. [Google Scholar] [CrossRef] [PubMed]
- Mazaheri, H.; Saadat, M. Association between insertion/deletion polymorphism in angiotension converting enzyme and susceptibility to schizophrenia. Iran. J. Public Health 2015, 44, 369–373. [Google Scholar] [PubMed]
- Song, G.G.; Lee, Y.H. The insertion/deletion polymorphism in the angiotensin-converting enzyme and susceptibility to schizophrenia or Parkinson’s disease: A meta-analysis. J. Renin-Angiotensin-Aldosterone Syst. 2015, 16, 434–442. [Google Scholar] [CrossRef] [PubMed]
- Nadalin, S.; Buretić-Tomljanović, A.; Ristić, S.; Jonovska, S.; Tomljanović, D. The impact of ACE gene I/D polymorphism on plasma glucose and lipid concentrations in schizophrenia patients. Psychiatry Res. 2015, 227, 71–72. [Google Scholar] [CrossRef] [PubMed]
- Carli, M.; Kolachalam, S.; Longoni, B.; Pintaudi, A.; Baldini, M.; Aringhieri, S.; Fasciani, I.; Annibale, P.; Maggio, R.; Scarselli, M. Atypical Antipsychotics and Metabolic Syndrome: From Molecular Mechanisms to Clinical Differences. Pharmaceuticals 2021, 14, 238. [Google Scholar] [CrossRef]
- Goh, K.K.; Chen, C.Y.; Wu, T.H.; Chen, C.H.; Lu, M.L. Crosstalk between schizophrenia and metabolic syndrome: The role of oxytocinergic dysfunction. Int. J. Mol. Sci. 2022, 23, 7092. [Google Scholar] [CrossRef]
- Alvarez-Aguilar, C.; Enríquez-Ramírez, M.L.; Figueroa-Nuñez, B.; Gómez-García, A.; Rodríguez-Ayala, E.; Morán-Moguel, C.; Farias-Rodriguez, V.M.; Mino-Leon, D.; Lopez-Meza, J.E. Association between angiotensin-1 converting enzyme gene polymorphism and the metabolic syndrome in a Mexican population. Exp. Mol. Med. 2007, 39, 327–334. [Google Scholar] [CrossRef]
- Niu, W.; Qi, Y.; Gao, P.; Zhu, D. Angiotensin converting enzyme D allele is associated with an increased risk of type 2 diabetes: Evidence from a meta-analysis. Endocr. J. 2010, 57, 431–438. [Google Scholar] [CrossRef]
- Mittal, G.; Gupta, V.; Haque, S.F.; Khan, A.S. Effect of angiotensin converting enzyme gene I/D polymorphism in patients with metabolic syndrome in North Indian population. Chin. Med. J. 2011, 124, 45–48. [Google Scholar]
- Zhong, W.; Jiang, Z.; Zhou, T.B. Association between the ACE I/D gene polymorphism and T2DN susceptibility: The risk of T2DM developing into T2DN in the Asian population. J. Renin-Angiotensin-Aldosterone Syst. 2015, 16, NP35. [Google Scholar] [CrossRef]
- Herrera-Estrella, M.; Apiquian, R.; Fresan, A.; Sanchez-Torres, I. The effects of amisulpride on five dimensions of psychopathology in patients with schizophrenia: A prospective open-label study. BMC Psychiatry 2005, 5, 22. [Google Scholar] [CrossRef] [PubMed]
- Anderson, A.; Wilcox, M.; Savitz, A.; Chung, H.; Li, Q.; Salvadore, G.; Wang, D.; Nuamah, I.; Riese, S.P.; Bilder, R.M. Sparse factors for the positive and negative syndrome scale: Which symptoms and stage of illness? Psychiatry Res. 2015, 225, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Nadalin, S.; Ristić, S.; Rebić, J.; Šendula Jengić, V.; Kapović, M.; Buretić-Tomljanović, A. The insertion/deletion polymorphism in the angiotensin-converting enzyme gene and nicotine dependence in schizophrenia patients. J. Neural Transm. 2017, 124, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Ristić, S.; Lovrecić, L.; Starcević-Cizmarević, N.; Brajenović-Milić, B.; Jazbec, S.S.; Barac-Latas, V.; Vejnović, D.; Sepcić, J.; Kapović, M.; Peterlin, B. No association of CCR5D32 gene mutation with multiple sclerosis in Croatian and Slovenian patients. Mult. Scler. 2006, 12, 360–362. [Google Scholar] [CrossRef] [PubMed]
- Nadalin, S.; Flego, V.; Pavlić, S.D.; Volarić, D.; Radojčić Badovinac, A.; Kapović, M.; Ristić, S. Association between the ACE-I/D polymorphism and nicotine dependence amongst patients with lung cancer. Biomed. Rep. 2020, 13, 58. [Google Scholar] [CrossRef] [PubMed]
- Bergovec, M.; Reiner, Z.; Milicić, D.; Vrazić, H. Differences in risk factors for coronary heart disease in patients from continental and Mediterranean regions of Croatia. Wien Klin. Wochenschr. 2008, 120, 684–692. [Google Scholar] [CrossRef] [PubMed]
- Fister, K.; Vuletić, S.; Kern, J. Paving the way for personalised behaviourally based prevention of obesity: Systematic search of the literature. Coll. Antropol. 2012, 36, 201–210. [Google Scholar] [CrossRef][Green Version]
- Milanović, S.M.; Ivanković, D.; Uhernik, A.I.; Fister, K.; Peternel, R.; Vuletić, S. Obesity-new threat to Croatian longevity. Coll. Antropol. 2012, 36, 113–116. [Google Scholar]
- National Library of Medicine. Available online: http://www.ncbi.nlm.nih.gov/snp/?term=rs1799752 (accessed on 14 August 2022).
- Nagamine, T. Serum substance P levels in patients with chronic schizophrenia treated with typical or atypical antipsychotics. Neuropsychiatr. Dis. Treat. 2008, 4, 289–294. [Google Scholar] [CrossRef]
- Fawaz, C.S.; Martel, P.; Leo, D.; Trudeau, L.E. Presynaptic action of neurotensin on dopamine release through inhibition of D2 receptor function. BMC Neurosci. 2009, 10, 96. [Google Scholar] [CrossRef]
- Servonnet, A.; Minogianis, E.A.; Bouchard, C.; Bédard, A.M.; Lévesque, D.; Rompré, P.P.; Samaha, A.N. Neurotensin in the nucleus accumbens reverses dopamine supersensitivity evoked by antipsychotic treatment. Neuropharmacology 2017, 123, 10–21. [Google Scholar] [CrossRef] [PubMed]
- Heath, E.; Chieng, B.; Christie, M.J.; Balleine, B.W. Substance P and dopamine interact to modulate the distribution of delta-opioid receptors on cholinergic interneurons in the striatum. Eur. J. Neurosci. 2018, 47, 1159–1173. [Google Scholar] [CrossRef] [PubMed]
- Sanada, M.; Higashi, Y.; Nakagawa, K.; Sasaki, S.; Kodama, I.; Tsuda, M.; Nagai, N.; Ohama, K. Relationship between the angiotensin-converting enzyme genotype and the forearm vasodilator response to estrogen replacement therapy in postmenopausal women. J. Am. Coll. Cardiol. 2001, 37, 1529–1535. [Google Scholar] [CrossRef]
- Sumino, H.; Ichikawa, S.; Ohyama, Y.; Nakamura, T.; Kanda, T.; Sakamoto, H.; Sakamaki, T.; Mizunuma, H.; Kurabayashi, M. Effects of hormone replacement therapy on serum angiotensin-converting enzyme activity and plasma bradykinin in postmenopausal women according to angiotensin-converting enzyme-genotype. Hypertens. Res. 2003, 26, 53–58. [Google Scholar] [CrossRef]
- Jacobs, E.; D’Esposito, M. Estrogen shapes dopamine-dependent cognitive processes: Implications for women’s health. J. Neurosci. 2011, 31, 5286–5293. [Google Scholar] [CrossRef] [PubMed]
- Barth, C.; Villringer, A.; Sacher, J. Sex hormones affect neurotransmitters and shape the adult female brain during hormonal transition periods. Front. Neurosci. 2015, 9, 37. [Google Scholar] [CrossRef] [PubMed]
- Del Río, J.P.; Alliende, M.I.; Molina, N.; Serrano, F.G.; Molina, S.; Vigil, P. Steroid hormones and their action in women’s brains: The importance of hormonal balance. Front. Public Health. 2018, 6, 141. [Google Scholar] [CrossRef]
- van der Gaag, M.; Hoffman, T.; Remijsen, M.; Hijman, R.; de Haan, L.; van Meijel, B.; van Harten, P.N.; Valmaggia, L.; de Hert, M.; Cuijpers, A.; et al. The five-factor model of the Positive and Negative Syndrome Scale II: A ten-fold cross-validation of a revised model. Schizophr. Res. 2006, 85, 280–287. [Google Scholar] [CrossRef]
- Giesbrecht, C.J.; O’Rourke, N.; Leonova, O.; Strehlau, V.; Paquet, K.; Vila-Rodriguez, F.; Panenka, W.J.; MacEwan, G.W.; Smith, G.N.; Thornton, A.E.; et al. The positive and negative syndrome scale (PANSS): A three-factor model of psychopathology in marginally housed persons with substance dependence and psychiatric illness. PLoS ONE 2016, 11, e0151648. [Google Scholar] [CrossRef][Green Version]
- Cuthbert, B.N.; Insel, T.R. Toward the future of psychiatric diagnosis: The seven pillars of RDoC. BMC Med. 2013, 11, 126. [Google Scholar] [CrossRef]
- Postolache, T.T.; Del Bosque-Plata, L.; Jabbour, S.; Vergare, M.; Wu, R.; Gragnoli, C. Co-shared genetics and possible risk gene pathway partially explain the comorbidity of schizophrenia, major depressive disorder, type 2 diabetes, and metabolic syndrome. Am. J. Med. Genet. B. Neuropsychiatr. Genet. 2019, 180, 186–203. [Google Scholar] [CrossRef]
- Paderina, D.Z.; Boiko, A.S.; Pozhidaev, I.V.; Mednova, I.A.; Goncharova, A.A.; Bocharova, A.V.; Fedorenko, O.Y.; Kornetova, E.G.; Semke, A.V.; Bokhan, N.A.; et al. The Gender-Specific Association of DRD2 Polymorphism with Metabolic Syndrome in Patients with Schizophrenia. Genes. 2022, 13, 1312. [Google Scholar] [CrossRef] [PubMed]
- Wincewicz, D.; Braszko, J.J. Validation of brain angiotensin system blockade as a novel drug target in pharmacological treatment of neuropsychiatric disorders. Pharmacopsychiatry 2017, 50, 233–247. [Google Scholar] [CrossRef] [PubMed]
- Trieu, B.H.; Remmers, B.C.; Toddes, C.; Brandner, D.D.; Lefevre, E.M.; Kocharian, A.; Retzlaff, C.L.; Dick, R.M.; Mashal, M.A.; Gauthier, E.A.; et al. Angiotensin-converting enzyme gates brain circuit-specific plasticity via an endogenous opioid. Science 2022, 375, 1177–1182. [Google Scholar] [CrossRef] [PubMed]
- Wahlbeck, K.; Ahokas, A.; Miettinen, K.; Nikkilä, H.; Rimón, R. Higher cerebrospinal fluid angiotensin-converting enzyme levels in neuroleptic-treated than in drug-free patients with schizophrenia. Schizophr. Bull. 1998, 24, 391–397. [Google Scholar] [CrossRef] [PubMed]
- Wahlbeck, K.; Rimón, R.; Fyhrquist, F. Elevated angiotensin-converting enzyme (kininase II) in the cerebrospinal fluid of neuroleptic-treated schizophrenic patients. Schizophr. Res. 1993, 9, 77–82. [Google Scholar] [CrossRef]
- Beckmann, H.; Saavedra, J.M.; Gattaz, W.F. Low angiotensin-converting enzyme activity (kininase II) in cerebrospinal fluid of schizophrenics. Biol. Psychiatry 1984, 19, 679–684. [Google Scholar] [PubMed]
- Wallwork, R.S.; Fortgang, R.; Hashimoto, R.; Weinberger, D.R.; Dickinson, D. Searching for a consensus five-factor model of the Positive and Negative Syndrome Scale for schizophrenia. Schizophr. Res. 2012, 137, 246–250. [Google Scholar] [CrossRef]
- Jiang, J.; See, Y.M.; Subramaniam, M.; Lee, J. Investigation of cigarette smoking among male schizophrenia patients. PLoS ONE. 2013, 8, e71343. [Google Scholar] [CrossRef] [PubMed]
- Misiak, B.; Kiejna, A.; Frydecka, D. Assessment of cigarette smoking status with respect to symptomatic manifestation in first-episode schizophrenia patients. Compr. Psychiatry 2015, 58, 146–151. [Google Scholar] [CrossRef] [PubMed]
- Shanmugam, V.; Sell, K.W.; Saha, B.K. Mistyping ACE heterozygotes. PCR Methods Appl. 1993, 3, 120–121. [Google Scholar] [CrossRef] [PubMed]
- Computation of Effect Sizes. Available online: http://www.psychometrica.de/effect_size.html (accessed on 14 August 2022).
Males (N = 99) | Females (N = 87) | p | |
---|---|---|---|
Antipsychotic-naïve first-episode patients/nonadherent chronic patients | 41/58 | 26/61 | 0.102 |
Age, years | 31.9 ± 11.7 | 41.6 ± 14.9 | <0.001 |
Age of onset, years | 25.6 ± 8.3 | 32.1 ± 12.3 | <0.001 |
Number of psychotic episodes | 2.7 ± 2.0 | 3.1 ± 2.0 | 0.131 |
PANSS positive symptom score | 22.4 ± 6.4 | 22.0 ± 5.8 | 0.884 |
PANSS negative symptom score | 26.6 ± 7.0 | 26.2 ± 8.0 | 0.674 |
PANSS general psychopathology score | 50.8 ± 9.0 | 49.2 ± 8.7 | 0.238 |
PANSS total symptom score | 99.8 ± 17.7 | 97.4 ± 18.4 | 0.434 |
PANSS positive factor | 13.3 ± 4.1 | 12.9 ± 3.8 | 0.445 |
PANSS negative factor | 19.0 ± 5.2 | 18.9 ± 6.3 | 0.833 |
PANSS excitement factor | 8.4 ± 2.7 | 8.2 ± 2.7 | 0.645 |
PANSS depression factor | 9.6 ± 2.7 | 9.1 ± 3.0 | 0.260 |
PANSS cognitive factor | 5.9 ± 1.8 | 5.8 ± 2.1 | 0.731 |
Total cholesterol, mmol/L | 4.6 ± 1.0 | 4.9 ± 1.1 | 0.032 |
LDL cholesterol, mmol/L | 2.7 ± 0.8 | 3.0 ± 1.0 | 0.091 |
HDL cholesterol, mmol/L | 1.1 ± 0.3 | 1.3 ± 0.4 | <0.001 |
Triglycerides, mmoL/L | 1.5 ± 1.1 | 1.2 ± 0.5 | 0.024 |
Glucose, mmol/L | 5.6 ± 1.6 | 5.5 ± 1.0 | 0.878 |
Body mass index, kg/m2 | 25.6 ± 4.7 | 23.8 ± 4.2 | 0.011 |
Genotypes (%) | Alleles (%) | ||||
---|---|---|---|---|---|
DD | ID | II | D | I | |
Males (N = 99) a | 28 (28.3) | 57 (57.6) | 14 (14.1) | 113 (57.1) | 83 (42.9) |
Females (N = 87) b | 26 (30.2) | 50 (57.0) | 11 (12.8) | 102 (58.6) | 72 (41.4) |
χ2 = 0.12, df = 2, p = 0.942 | χ2 = 0.04, df = 1, p = 0.851 |
Males (N = 99) | Mean ± SD | z | p | Females (N = 87) | Mean ± SD | z | p | |
---|---|---|---|---|---|---|---|---|
PANSS positive symptom score | DD, ID II | −8.6 ± 9.5 −1.0 ± 12.4 | −1.96 | 0.049 | DD, ID II | −9.0 ± 8.9 −7.0 ± 7.5 | −1.11 | 0.270 |
II, ID DD | −8.2 ± 9.4 −7.1 ± 11.5 | −0.18 | 0.858 | II, ID DD | −8.1 ± 9.8 −10.1 ± 5.5 | −0.68 | 0.502 | |
PANSS negative symptom score | DD, ID II | −6.4 ± 9.5 −6.8 ± 11.0 | −0.17 | 0.864 | DD, ID II | −7.8 ± 8.3 −6.2 ± 11.7 | −0.09 | 0.926 |
II, ID DD | −6.6 ± 9.1 −6.0 ± 10.8 | −0.11 | 0.909 | II, ID DD | −7.5 ± 9.8 −7.9 ± 5.6 | −0.21 | 0.837 | |
PANSS general psychopathology score | DD, ID II | −13.5 ± 18.2 −9.4 ± 18.5 | −0.71 | 0.479 | DD, ID II | −14.9 ± 13.7 −8.3 ± 19.2 | −1.10 | 0.296 |
II, ID DD | −12.5 ± 16.7 −14.5 ± 21.4 | 1.34 | 0.180 | II, ID DD | −12.9 ± 16.0 −16.6 ± 10.1 | −1.33 | 0.185 | |
PANSS total symptom score | DD, ID II | −28.2 ± 4.7 −17.2 ± 34.1 | −1.19 | 0.235 | DD, ID II | −31.7 ± 28.3 −21.5 ± 37.4 | −0.89 | 0.376 |
II, ID DD | −27.2 ± 31.9 −26.6 ± 40.5 | 0.30 | 0.765 | II, ID DD | −28.5 ± 33.2 −34.6 ± 18.8 | −1.14 | 0.255 | |
PANSS positive factor | DD, ID II | −6.4 ± 3.3 −5.6 ± 6.6 | −0.24 | 0.810 | DD, ID II | −5.9 ± 3.9 −6.1 ± 3.5 | −0.24 | 0.813 |
II, ID DD | −6.2 ± 4.0 −6.6 ± 3.3 | 0.30 | 0.767 | II, ID DD | −5.7 ± 3.9 −6.2 ± 3.8 | −0.86 | 0.391 | |
PANSS negative factor | DD, ID II | −6.7 ± 4.2 −7.2 ± 5.9 | 0.24 | 0.810 | DD, ID II | −6.8 ± 5.7 −7.0 ± 4.7 | −0.03 | 0.971 |
II, ID DD | −6.8 ± 4.4 −6.7 ± 4.5 | −0.20 | 0.837 | II, ID DD | −7.2 ± 5.8 −6.2 ± 5.0 | 0.25 | 0.797 | |
PANSS excitement factor | DD, ID II | −4.3 ± 2.7 −2.0 ± 1.8 | −2.62 | 0.007 | DD, ID II | −3.7 ± 2.9 −2.5 ± 2.7 | −1.90 | 0.059 |
II, ID DD | −4.1 ± 2.8 −3.9 ± 2.4 | 0.09 | 0.928 | II, ID DD | −3.5 ± 3.1 −3.7 ± 2.2 | −0.54 | 0.591 | |
PANSS depression factor | DD, ID II | −8.0 ± 2.6 −7.6 ± 2.0 | −0.41 | 0.686 | DD, ID II | −7.3 ± 2.9 −6.3 ± 2.7 | −0.88 | 0.384 |
II, ID DD | −7.6 ± 2.3 −8.6 ± 2.8 | 1.71 | 0.092 | II, ID DD | −6.6 ± 2.8 −8.4 ± 2.8 | −2.53 | 0.010 | |
PANSS cognitive factor | DD, ID II | −2.0 ± 1.6 −0.9 ± 1.4 | −2.21 | 0.030 | DD, ID II | −1.7 ± 1.9 −1.0 ± 1.4 | −0.96 | 0.353 |
II, ID DD | −1.7 ± 1.6 −2.2 ± 1.7 | 1.26 | 0.222 | II, ID DD | −1.7 ± 2.1 −1.5 ± 1.2 | 0.04 | 0.967 | |
Total cholesterol, mmol/L | DD, ID II | 0.5 ± 0.8 0.0 ± 0.4 | 1.60 | 0.112 | DD, ID II | 0.4 ± 0.9 −0.0 ± 0.6 | 1.34 | 0.182 |
II, ID DD | 0.4 ± 0.8 0.5 ± 0.7 | −0.91 | 0.367 | II, ID DD | 0.3 ± 0.9 0.5 ± 0.9 | 0.93 | 0.350 | |
LDL cholesterol, mmol/L | DD, ID II | 0.3 ± 0.6 0.1 ± 0.2 | 0.93 | 0.354 | DD, ID II | 0.2 ± 0.7 0.1 ± 0.6 | 0.36 | 0.718 |
II, ID DD | 0.3 ± 0.6 0.2 ± 0.6 | 0.59 | 0.558 | II, ID DD | 0.1 ± 0.6 0.3 ± 0.8 | 1.60 | 0.109 | |
HDL cholesterol, mmol/L | DD, ID II | 0.1 ± 0.3 0.0 ± 0.3 | 0.40 | 0.687 | DD, ID II | 0.1 ± 0.3 0.0 ± 0.3 | 0.39 | 0.706 |
II, ID DD | −0.0 ± 0.3 0.1 ± 0.3 | −1.23 | 0.219 | II, ID DD | 0.1 ± 0.3 0.1 ± 0.3 | 0.94 | 0.356 | |
Triglycerides, mmoL/L | DD, ID II | 0.3 ± 1.0 0.1 ± 0.8 | 0.29 | 0.774 | DD, ID II | 0.4 ± 1.0 −0.1 ± 0.6 | 1.10 | 0.276 |
II, ID DD | 0.2 ± 1.0 0.4 ± 0.8 | −1.40 | 0.161 | II, ID DD | 0.4 ± 1.2 0.2 ± 0.6 | −0.49 | 0.619 | |
Glucose, mmol/L | DD, ID II | 0.2 ± 1.7 0.1 ± 1.0 | −0.35 | 0.729 | DD, ID II | 0.2 ± 1.6 −0.5 ± 1.1 | 1.37 | 0.169 |
II, ID DD | 0.3 ± 1.8 −0.0 ± 1.0 | 0.49 | 0.626 | II, ID DD | 0.2 ± 1.8 −0.1 ± 1.0 | 0.10 | 0.921 | |
Body mass index, kg/m2 | DD, ID II | 0.6 ± 2.0 −0.8 ± 2.2 | 1.86 | 0.062 | DD, ID II | 0.7 ± 1.9 0.8 ± 1.5 | −0.16 | 0.872 |
II, ID DD | 0.6 ± 1.6 0.1 ± 2.8 | 0.19 | 0.846 | II, ID DD | 0.7 ± 2.0 0.7 ± 1.6 | 0.10 | 0.912 |
Males (N = 99) | |||||
---|---|---|---|---|---|
Dependent Variable | Predictor | β | R2 Change | F | p |
PANSS positive symptom score | ACE-D allele | −0.23 | 0.054 | 4.59 | 0.035 |
PANSS excitement factor | ACE-D allele | −0.26 | 0.067 | 5.93 | 0.017 |
PANSS cognitive factor | Number of psychotic episodes | 0.25 | 0.062 | 5.39 | 0.023 |
Females (N = 87) | |||||
Dependent Variable | Predictor | β | R2 Change | F | p |
PANSS depression factor | ACE-I allele | 0.30 | 0.087 | 7.50 | 0.008 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nadalin, S.; Dević Pavlić, S.; Peitl, V.; Karlović, D.; Zatković, L.; Ristić, S.; Buretić-Tomljanović, A.; Jakovac, H. Association between Insertion-Deletion Polymorphism of the Angiotensin-Converting Enzyme Gene and Treatment Response to Antipsychotic Medications: A Study of Antipsychotic-Naïve First-Episode Psychosis Patients and Nonadherent Chronic Psychosis Patients. Int. J. Mol. Sci. 2022, 23, 12180. https://doi.org/10.3390/ijms232012180
Nadalin S, Dević Pavlić S, Peitl V, Karlović D, Zatković L, Ristić S, Buretić-Tomljanović A, Jakovac H. Association between Insertion-Deletion Polymorphism of the Angiotensin-Converting Enzyme Gene and Treatment Response to Antipsychotic Medications: A Study of Antipsychotic-Naïve First-Episode Psychosis Patients and Nonadherent Chronic Psychosis Patients. International Journal of Molecular Sciences. 2022; 23(20):12180. https://doi.org/10.3390/ijms232012180
Chicago/Turabian StyleNadalin, Sergej, Sanja Dević Pavlić, Vjekoslav Peitl, Dalibor Karlović, Lena Zatković, Smiljana Ristić, Alena Buretić-Tomljanović, and Hrvoje Jakovac. 2022. "Association between Insertion-Deletion Polymorphism of the Angiotensin-Converting Enzyme Gene and Treatment Response to Antipsychotic Medications: A Study of Antipsychotic-Naïve First-Episode Psychosis Patients and Nonadherent Chronic Psychosis Patients" International Journal of Molecular Sciences 23, no. 20: 12180. https://doi.org/10.3390/ijms232012180
APA StyleNadalin, S., Dević Pavlić, S., Peitl, V., Karlović, D., Zatković, L., Ristić, S., Buretić-Tomljanović, A., & Jakovac, H. (2022). Association between Insertion-Deletion Polymorphism of the Angiotensin-Converting Enzyme Gene and Treatment Response to Antipsychotic Medications: A Study of Antipsychotic-Naïve First-Episode Psychosis Patients and Nonadherent Chronic Psychosis Patients. International Journal of Molecular Sciences, 23(20), 12180. https://doi.org/10.3390/ijms232012180