Polycystic Ovary Syndrome: A Comprehensive Review of Pathogenesis, Management, and Drug Repurposing
Abstract
:1. Introduction
2. Methods
3. Diagnosis
4. Etiology and Risk Factors
4.1. External Factors
4.1.1. Epigenetic Mechanism
4.1.2. Environmental Toxicants
4.1.3. Physical and Emotional Stress
4.1.4. Diet
4.2. Internal Factors
4.2.1. Insulin Resistance
4.2.2. Hyperandrogenism
4.2.3. Inflammation
4.2.4. Oxidative Stress
4.2.5. Obesity
5. Management
5.1. Lifestyle Modification and Non-Pharmacological Approaches
5.1.1. Weight Loss
5.1.2. Diet
5.1.3. Exercise
5.2. Complementary and Alternative Medicine (CAM)
5.2.1. Acupuncture
5.2.2. Supplementations
5.3. Pharmacological Treatments
5.4. Drug Repurposing in PCOS
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Deans, R. Polycystic ovary syndrome in adolescence. Med. Sci. 2019, 7, 101. [Google Scholar] [CrossRef] [Green Version]
- Witchel, S.F.; E Oberfield, S.; Peña, A.S. Polycystic Ovary Syndrome: Pathophysiology, Presentation, and Treatment With Emphasis on Adolescent Girls. J. Endocr. Soc. 2019, 3, 1545–1573. [Google Scholar] [CrossRef] [PubMed]
- Polycystic Ovary Syndrome. Available online: https://www.womenshealth.gov/a-z-topics/polycystic-ovary-syndrome (accessed on 22 September 2021).
- Bednarska, S.; Siejka, A. The pathogenesis and treatment of polycystic ovary syndrome: What’s new? Adv. Clin. Exp. Med. 2017, 26, 359–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganie, M.A.; Vasudevan, V.; Wani, I.A.; Baba, M.S.; Arif, T.; Rashid, A. Epidemiology, pathogenesis, genetics & management of polycystic ovary syndrome in India. Indian J. Med Res. 2019, 150, 333–344. [Google Scholar] [CrossRef]
- Glueck, C.J.; Goldenberg, N. Characteristics of obesity in polycystic ovary syndrome: Etiology, treatment, and genetics. Metab. 2019, 92, 108–120. [Google Scholar] [CrossRef]
- Damone, A.L.; Joham, A.E.; Loxton, D.; Earnest, A.; Teede, H.J.; Moran, L.J. Depression, anxiety and perceived stress in women with and without PCOS: A community-based study. Psychol. Med. 2019, 49, 1510–1520. [Google Scholar] [CrossRef]
- Escobar-Morreale, H.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment. Nat. Rev. Endocrinol. 2018, 14, 270–284. [Google Scholar] [CrossRef] [PubMed]
- Sadeghi, H.M.; Adeli, I.; Mousavi, T.; Daniali, M.; Nikfar, S.; Abdollahi, M. Drug Repurposing for the Management of Depression: Where Do We Stand Currently? Life 2021, 11, 774. [Google Scholar] [CrossRef]
- Differential Diagnosis of PCOS. Available online: https://www.verywellhealth.com/what-is-the-differential-diagnosis-of-pcos-2616642 (accessed on 6 December 2021).
- Witchel, S.F.; Burghard, A.C.; Tao, R.H.; Oberfield, S.E. The diagnosis and treatment of PCOS in adolescents. Curr. Opin. Pediatr. 2019, 31, 562–569. [Google Scholar] [CrossRef]
- Polycystic Ovary Syndrome (PCOS). Available online: https://www.mayoclinic.org/diseases-conditions/pcos/diagnosis-treatment/drc-20353443 (accessed on 6 December 2021).
- Diagnosis of Polycystic Ovary Syndrome. Available online: https://www.nhs.uk/conditions/polycystic-ovary-syndrome-pcos/diagnosis/ (accessed on 22 September 2021).
- European Society of Human Reproduction and Embryology. International Evidence-Based Guideline for the Assessment and Management of Polycystic Ovary Syndrome. 2018. Available online: https://www.eshre.eu/Guidelines-and-Legal/Guidelines/Polycystic-Ovary-Syndrome (accessed on 22 September 2021).
- Ilie, I.R.; Georgescu, C.E. Polycystic Ovary Syndrome-Epigenetic Mechanisms and Aberrant MicroRNA. Adv. Virus Res. 2015, 71, 25–45. [Google Scholar] [CrossRef]
- Casadesús, J.; Noyer-Weidner, M. Epigenetics. In Brenner’s Encyclopedia of Genetics, 2nd ed.; Maloy, S., Hughes, K., Eds.; Academic Press: San Diego, CA, USA, 2013; pp. 500–503. [Google Scholar]
- Mukherjee, S.; Sagvekar, P.; Azarnezhad, R.; Patil, K. Pathomechanisms of polycystic ovary syndrome Multidimensional approaches. Front. Biosci. 2018, 10, 384–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ibanez, L.; Oberfield, S.E.; Witchel, S.F.; Auchus, R.J.; Chang, R.J.; Codner, E.; Dabadghao, P.; Darendeliler, F.; Elbarbary, N.; Gambineri, A.; et al. An International Consortium Update: Pathophysiology, Diagnosis, and Treatment of Polycystic Ovarian Syndrome in Adolescence. Horm. Res. Paediatr. 2017, 88, 371–395. [Google Scholar] [CrossRef]
- Fenichel, P.; Rougier, C.; Hieronimus, S.; Chevalier, N. Which origin for polycystic ovaries syndrome: Genetic, environmental or both? Ann. d’Endocrinol. 2017, 78, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Abbott, D.H.; A Dumesic, D.; E Levine, J. Hyperandrogenic origins of polycystic ovary syndrome – implications for pathophysiology and therapy. Expert Rev. Endocrinol. Metab. 2019, 14, 131–143. [Google Scholar] [CrossRef]
- Rutkowska, A.; Diamanti-Kandarakis, E. Polycystic ovary syndrome and environmental toxins. Fertil. Steril. 2016, 106, 948–958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, F.; Wang, F.-F.; Yin, R.; Ding, G.-L.; El-Prince, M.; Gao, Q.; Shi, B.-W.; Pan, H.-H.; Huang, Y.-T.; Jin, M.; et al. A molecular mechanism underlying ovarian dysfunction of polycystic ovary syndrome: Hyperandrogenism induces epigenetic alterations in the granulosa cells. J. Mol. Med. 2012, 90, 911–923. [Google Scholar] [CrossRef]
- Li, Y.; Chen, C.; Ma, Y.; Xiao, J.; Luo, G.; Li, Y.; Wu, D. Multi-system reproductive metabolic disorder: Significance for the pathogenesis and therapy of polycystic ovary syndrome (PCOS). Life Sci. 2019, 228, 167–175. [Google Scholar] [CrossRef]
- Rocha, A.L.; Oliveira, F.R.; Azevedo, R.C.; Silva, V.A.; Peres, T.M.; Candido, A.L.; Gomes, K.B.; Reis, F.M. Recent advances in the understanding and management of polycystic ovary syndrome. F1000Research 2019, 8, 565. [Google Scholar] [CrossRef] [Green Version]
- Jones, L.; Regan, F. Endocrine Disrupting Chemicals. In Encyclopedia of Analytical Science, 3rd ed.; Worsfold, P., Poole, C., Townshend, A., Miró, M., Eds.; Academic Press: Oxford, UK, 2019; pp. 31–38. [Google Scholar]
- Merkin, S.S.; Phy, J.L.; Sites, C.K.; Yang, D. Environmental determinants of polycystic ovary syndrome. Fertil. Steril. 2016, 106, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Calina, D.; Docea, A.O.; Golokhvast, K.S.; Sifakis, S.; Tsatsakis, A.; Makrigiannakis, A. Management of Endocrinopathies in Pregnancy: A Review of Current Evidence. Int. J. Environ. Res. Public Health 2019, 16, 781. [Google Scholar] [CrossRef] [Green Version]
- Sobolewski, M.; Barrett, E.S. Polycystic Ovary Syndrome: Do Endocrine-Disrupting Chemicals Play a Role? Semin. Reprod. Med. 2014, 32, 166–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soave, I.; Occhiali, T.; Assorgi, C.; Marci, R.; Caserta, D. Environmental toxin exposure in polycystic ovary syndrome women and possible ovarian neoplastic repercussion. Curr. Med Res. Opin. 2020, 36, 693–703. [Google Scholar] [CrossRef]
- Palioura, E.; Diamanti-Kandarakis, E. Polycystic ovary syndrome (PCOS) and endocrine disrupting chemicals (EDCs). Rev. Endocr. Metab. Disord. 2015, 16, 365–371. [Google Scholar] [CrossRef] [PubMed]
- Palioura, E.; Diamanti-Kandarakis, E. Industrial endocrine disruptors and polycystic ovary syndrome. J. Endocrinol. Investig. 2013, 36, 1105–1111. [Google Scholar] [CrossRef]
- Wang, J.; Wu, D.; Guo, H.; Li, M. Hyperandrogenemia and insulin resistance: The chief culprit of polycystic ovary syndrome. Life Sci. 2019, 236, 116940. [Google Scholar] [CrossRef] [PubMed]
- Stefanaki, C.; Pervanidou, P.; Boschiero, D.; Chrousos, G.P. Chronic stress and body composition disorders: Implications for health and disease. Hormones 2018, 17, 33–43. [Google Scholar] [CrossRef] [Green Version]
- Steegers-Theunissen, R.; Wiegel, R.; Jansen, P.; Laven, J.; Sinclair, K. Polycystic Ovary Syndrome: A Brain Disorder Characterized by Eating Problems Originating during Puberty and Adolescence. Int. J. Mol. Sci. 2020, 21, 8211. [Google Scholar] [CrossRef]
- Yang, S.; Yang, C.; Pei, R.; Li, C.; Li, X.; Huang, X.; Wu, S.; Liu, D. Investigation on the association of occupational stress with risk of polycystic ovary syndrome and mediating effects of HOMA-IR. Gynecol. Endocrinol. 2018, 34, 961–964. [Google Scholar] [CrossRef]
- Szczuko, M.; Kikut, J.; Szczuko, U.; Szydłowska, I.; Nawrocka-Rutkowska, J.; Ziętek, M.; Verbanac, D.; Saso, L. Nutrition Strategy and Life Style in Polycystic Ovary Syndrome—Narrative Review. Nutrients 2021, 13, 2452. [Google Scholar] [CrossRef]
- Faghfoori, Z.; Fazelian, S.; Shadnoush, M.; Goodarzi, R. Nutritional management in women with polycystic ovary syndrome: A review study. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S429–S432. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Altieri, B.; de Angelis, C.; Palomba, S.; Pivonello, R.; Colao, A.; Orio, F. Shedding new light on female fertility: The role of vitamin D. Rev. Endocr. Metab. Disord. 2017, 18, 273–283. [Google Scholar] [CrossRef]
- Ciebiera, M.; Esfandyari, S.; Siblini, H.; Prince, L.; Elkafas, H.; Wojtyła, C.; Al-Hendy, A.; Ali, M. Nutrition in Gynecological Diseases: Current Perspectives. Nutrients 2021, 13, 1178. [Google Scholar] [CrossRef] [PubMed]
- Greenwood, E.A.; Huddleston, H.G. Insulin resistance in polycystic ovary syndrome: Concept versus cutoff. Fertil. Steril. 2019, 112, 827–828. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petrakis, D.; Vassilopoulou, L.; Mamoulakis, C.; Psycharakis, C.; Anifantaki, A.; Sifakis, S.; Docea, A.O.; Tsiaoussis, J.; Makrigiannakis, A.; Tsatsakis, A.M. Endocrine Disruptors Leading to Obesity and Related Diseases. Int. J. Environ. Res. Public Health 2017, 14, 1282. [Google Scholar] [CrossRef] [PubMed]
- Shang, Y.; Zhou, H.; Hu, M.; Feng, H. Effect of Diet on Insulin Resistance in Polycystic Ovary Syndrome. J. Clin. Endocrinol. Metab. 2020, 105. [Google Scholar] [CrossRef] [PubMed]
- Dabadghao, P. Polycystic ovary syndrome in adolescents. Best Pr. Res. Clin. Endocrinol. Metab. 2019, 33, 101272. [Google Scholar] [CrossRef]
- Rosenfield, R.L.; Ehrmann, D.A. The Pathogenesis of Polycystic Ovary Syndrome (PCOS): The Hypothesis of PCOS as Functional Ovarian Hyperandrogenism Revisited. Endocr. Rev. 2016, 37, 467–520. [Google Scholar] [CrossRef]
- Rothenberg, S.S.; Beverley, R.; Barnard, E.; Baradaran-Shoraka, M.; Sanfilippo, J.S. Polycystic ovary syndrome in adolescents. Best Pr. Res. Clin. Obstet. Gynaecol. 2018, 48, 103–114. [Google Scholar] [CrossRef]
- Jeanes, Y.; Reeves, S. Metabolic consequences of obesity and insulin resistance in polycystic ovary syndrome: Diagnostic and methodological challenges. Nutr. Res. Rev. 2017, 30, 97–105. [Google Scholar] [CrossRef]
- Polak, K.; Czyzyk, A.; Simoncini, T.; Meczekalski, B. New markers of insulin resistance in polycystic ovary syndrome. J. Endocrinol. Investig. 2017, 40, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Zhang, C.; Hu, J.; Wang, W.; Sun, Y.; Sun, K. HMGB1-induced aberrant autophagy contributes to insulin resistance in granulosa cells in PCOS. FASEB J. 2020, 34, 9563–9574. [Google Scholar] [CrossRef]
- He, F.-F.; Li, Y.-M. Role of gut microbiota in the development of insulin resistance and the mechanism underlying polycystic ovary syndrome: A review. J. Ovarian Res. 2020, 13, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Bannigida, D.M.; Nayak, B.S.; Vijayaraghavan, R. Insulin resistance and oxidative marker in women with PCOS. Arch. Physiol. Biochem. 2018, 126, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Avery, P.J.; Jorgensen, A.; Hamberg, A.K.; Wadelius, M.; Pirmohamed, M.; Kamali, F. A Proposal for an Individualized Pharmacogenetics-Based Warfarin Initiation Dose Regimen for Patients Commencing Anticoagulation Therapy. Clin. Pharmacol. Ther. 2011, 90, 701–706. [Google Scholar] [CrossRef]
- Zeng, X.; Xie, Y.-J.; Liu, Y.-T.; Long, S.-L.; Mo, Z.-C. Polycystic ovarian syndrome: Correlation between hyperandrogenism, insulin resistance and obesity. Clin. Chim. Acta 2020, 502, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Docea, A.O.; Vassilopoulou, L.; Fragou, D.; Arsene, A.L.; Fenga, C.; Kovatsi, L.; Petrakis, D.; Rakitskii, V.N.; Nosyrev, A.E.; Izotov, B.N.; et al. CYP polymorphisms and pathological conditions related to chronic exposure to organochlorine pesticides. Toxicol. Rep. 2017, 4, 335–341. [Google Scholar] [CrossRef]
- Cassar, S.; Misso, M.L.; Hopkins, W.G.; Shaw, C.S.; Teede, H.; Stepto, N.K. Insulin resistance in polycystic ovary syndrome: A systematic review and meta-analysis of euglycaemic–hyperinsulinaemic clamp studies. Hum. Reprod. 2016, 31, 2619–2631. [Google Scholar] [CrossRef] [Green Version]
- Condorelli, R.A.; Calogero, A.E.; Di Mauro, M.; La Vignera, S. PCOS and diabetes mellitus: From insulin resistance to altered beta pancreatic function, a link in evolution. Gynecol. Endocrinol. 2017, 33, 665–667. [Google Scholar] [CrossRef] [Green Version]
- Lizneva, D.V.; Gavrilova-Jordan, L.; Walker, W.; Azziz, R. Androgen excess: Investigations and management. Best Pr. Res. Clin. Obstet. Gynaecol. 2016, 37, 98–118. [Google Scholar] [CrossRef]
- Macut, D.; Bjekić-Macut, J.; Rahelić, D.; Doknić, M. Insulin and the polycystic ovary syndrome. Diabetes Res. Clin. Pr. 2017, 130, 163–170. [Google Scholar] [CrossRef]
- Baskind, N.E.; Balen, A.H. Hypothalamic–pituitary, ovarian and adrenal contributions to polycystic ovary syndrome. Best Pr. Res. Clin. Obstet. Gynaecol. 2016, 37, 80–97. [Google Scholar] [CrossRef] [PubMed]
- Ianoşi, S.; Ianoşi, G.; Neagoe, D.; Ionescu, O.; Zlatian, O.; Docea, A.O.; Badiu, C.; Sifaki, M.; Tsoukalas, D.; Tsatsakis, A.; et al. Age-dependent endocrine disorders involved in the pathogenesis of refractory acne in women. Mol. Med. Rep. 2016, 14, 5501–5506. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, A.M.; Campbell, R.E. Polycystic ovary syndrome: Understanding the role of the brain. Front. Neuroendocr. 2017, 46, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Coyle, C.; Campbell, R.E. Pathological pulses in PCOS. Mol. Cell. Endocrinol. 2019, 498, 110561. [Google Scholar] [CrossRef]
- Ruddenklau, A.; E Campbell, R. Neuroendocrine Impairments of Polycystic Ovary Syndrome. Endocrinology 2019, 160, 2230–2242. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, Z.; Feng, W.-J.; Long, S.-L.; Mo, Z.-C. Sex hormone-binding globulin and polycystic ovary syndrome. Clin. Chim. Acta 2019, 499, 142–148. [Google Scholar] [CrossRef]
- Li, Y.; Zheng, Q.; Sun, D.; Cui, X.; Chen, S.; Bulbul, A.; Liu, S.; Yan, Q. Dehydroepiandrosterone stimulates inflammation and impairs ovarian functions of polycystic ovary syndrome. J. Cell. Physiol. 2018, 234, 7435–7447. [Google Scholar] [CrossRef]
- Sanchez-Garrido, M.A.; Tena-Sempere, M. Metabolic dysfunction in polycystic ovary syndrome: Pathogenic role of androgen excess and potential therapeutic strategies. Mol. Metab. 2020, 35, 100937. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, H.; Li, Z.; Fan, H.; Yan, X.; Liu, X.; Xuan, J.; Feng, D.; Wei, X. The Release of Peripheral Immune Inflammatory Cytokines Promote an Inflammatory Cascade in PCOS Patients via Altering the Follicular Microenvironment. Front. Immunol. 2021, 12, 685724. [Google Scholar] [CrossRef]
- Zuo, T.; Zhu, M.; Xu, W. Roles of Oxidative Stress in Polycystic Ovary Syndrome and Cancers. Oxidative Med. Cell. Longev. 2016, 2016, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Rudnicka, E.; Suchta, K.; Grymowicz, M.; Calik-Ksepka, A.; Smolarczyk, K.; Duszewska, A.; Smolarczyk, R.; Meczekalski, B. Chronic Low Grade Inflammation in Pathogenesis of PCOS. Int. J. Mol. Sci. 2021, 22, 3789. [Google Scholar] [CrossRef]
- Shorakae, S.; Ranasinha, S.; Abell, S.; Lambert, G.; Lambert, E.; De Courten, B.; Teede, H. Inter-related effects of insulin resistance, hyperandrogenism, sympathetic dysfunction and chronic inflammation in PCOS. Clin. Endocrinol. 2018, 89, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Stepto, N.K.; Moreno-Asso, A.; McIlvenna, L.; A Walters, K.; Rodgers, R.J. Molecular Mechanisms of Insulin Resistance in Polycystic Ovary Syndrome: Unraveling the Conundrum in Skeletal Muscle? J. Clin. Endocrinol. Metab. 2019, 104, 5372–5381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancini, A.; Bruno, C.; Vergani, E.; D′abate, C.; Giacchi, E.; Silvestrini, A. Oxidative Stress and Low-Grade Inflammation in Polycystic Ovary Syndrome: Controversies and New Insights. Int. J. Mol. Sci. 2021, 22, 1667. [Google Scholar] [CrossRef] [PubMed]
- Mizgier, M.; Jarząbek-Bielecka, G.; Wendland, N.; Jodłowska-Siewert, E.; Nowicki, M.; Brożek, A.; Kędzia, W.; Formanowicz, D.; Opydo-Szymaczek, J. Relation between Inflammation, Oxidative Stress, and Macronutrient Intakes in Normal and Excessive Body Weight Adolescent Girls with Clinical Features of Polycystic Ovary Syndrome. Nutrients 2021, 13, 896. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Liu, H.; Bai, H.; Zhang, Y.; Liu, Q.; Guan, L.; Fan, P. Oxidative stress status in Chinese women with different clinical phenotypes of polycystic ovary syndrome. Clin. Endocrinol. 2017, 86, 88–96. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, Z.; Zhao, S.; Cheng, L.; Man, Y.; Gao, X.; Zhao, H. Oxidative stress markers in the follicular fluid of patients with polycystic ovary syndrome correlate with a decrease in embryo quality. J. Assist. Reprod. Genet. 2021, 38, 471–477. [Google Scholar] [CrossRef]
- Di Segni, C.; Silvestrini, A.; Fato, R.; Bergamini, C.; Guidi, F.; Raimondo, S.; Meucci, E.; Romualdi, D.; Apa, R.; Lanzone, A.; et al. Plasmatic and Intracellular Markers of Oxidative Stress in Normal Weight and Obese Patients with Polycystic Ovary Syndrome. Exp. Clin. Endocrinol. Diabetes 2017, 125, 506–513. [Google Scholar] [CrossRef] [Green Version]
- Lai, Q.; Xiang, W.; Li, Q.; Zhang, H.; Li, Y.; Zhu, G.; Xiong, C.; Jin, L. Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome. Front. Med. 2018, 12, 518–524. [Google Scholar] [CrossRef]
- Lu, J.; Wang, Z.; Cao, J.; Chen, Y.; Dong, Y. A novel and compact review on the role of oxidative stress in female reproduction. Reprod. Biol. Endocrinol. 2018, 16, 1–18. [Google Scholar] [CrossRef]
- Uyanikoglu, H.; Sabuncu, T.; Dursun, H.; Sezen, H.; Aksoy, N. Circulating levels of apoptotic markers and oxidative stress parameters in women with polycystic ovary syndrome: A case-controlled descriptive study. Biomarkers 2017, 46, 1–5. [Google Scholar] [CrossRef]
- Özer, A.; Bakacak, M.; Kiran, H.; Ercan, O.; Kostu, B.; Pektas, M.K.; Kilinç, M.; Aslan, F. Increased oxidative stress is associated with insulin resistance and infertility in polycystic ovary syndrome. Ginekol. Pol. 2016, 87, 733–738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guzmán Hernández, E.A.; Díaz Portillo, S.A.; Villafuerte Anaya, Ó.C.; González Valle, M.D.R.; Benítez Flores, J.D.C.; Chávez, R.S.M.; Galindo, G.C.; Mondragón, L.D.V.; Cobos, D.S.; Guerrero, G.A.M.; et al. Renoprotective and Hepatoprotective Effects Of Hippocratea Excelsa On Metabolic Syndrome In Fructose-Fed Rats. Farmacia 2020, 68, 1106–1119. [Google Scholar] [CrossRef]
- Delitala, A.; Capobianco, G.; Delitala, G.; Cherchi, P.L.; Dessole, S. Polycystic ovary syndrome, adipose tissue and metabolic syndrome. Arch. Gynecol. Obstet. 2017, 296, 405–419. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, T.; Watanabe-Kominato, K.; Takahashi, Y.; Kojima, M.; Watanabe, R. Adipose Tissue-Derived Omentin-1 Function and Regulation. Compr. Pshysiol. 2017, 7, 765–781. [Google Scholar] [CrossRef]
- Dumesic, D.A.; Abbott, D.H.; Sanchita, S.; Chazenbalk, G.D. Endocrine–metabolic dysfunction in polycystic ovary syndrome: An evolutionary perspective. Curr. Opin. Endocr. Metab. Res. 2020, 12, 41–48. [Google Scholar] [CrossRef]
- Zeind, C.S.; Carvalho, M.G. Applied Therapeutics: The Clinical Use of Drugs; Wolters Kluwer Health: Philadelphia, PA, USA, 2017. [Google Scholar]
- Liu, H.-Y.; Liu, J.-Q.; Mai, Z.-X.; Zeng, Y.-T. A Subpathway-Based Method of Drug Reposition for Polycystic Ovary Syndrome. Reprod. Sci. 2014, 22, 423–430. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zheng, Y.; Guo, Y.; Lai, Z. The Effect of Low Carbohydrate Diet on Polycystic Ovary Syndrome: A Meta-Analysis of Randomized Controlled Trials. Int. J. Endocrinol. 2019, 2019, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Brennan, L.; Teede, H.; Skouteris, H.; Linardon, J.; Hill, B.; Moran, L. Lifestyle and Behavioral Management of Polycystic Ovary Syndrome. J. Women’s Health 2017, 26, 836–848. [Google Scholar] [CrossRef]
- Hakimi, O.; Cameron, L.-C. Effect of Exercise on Ovulation: A Systematic Review. Sports Med. 2016, 47, 1555–1567. [Google Scholar] [CrossRef]
- Jia, L.-Y.; Feng, J.-X.; Li, J.-L.; Liu, F.-Y.; Xie, L.-Z.; Luo, S.-J.; Han, F.-J. The Complementary and Alternative Medicine for Polycystic Ovary Syndrome: A Review of Clinical Application and Mechanism. Evid.-Based Complement. Altern. Med. 2021, 2021, 1–12. [Google Scholar] [CrossRef]
- Shen, W.; Jin, B.; Pan, Y.; Han, Y.; You, T.; Zhang, Z.; Qu, Y.; Liu, S.; Zhang, Y. The Effects of Traditional Chinese Medicine-Associated Complementary and Alternative Medicine on Women with Polycystic Ovary Syndrome. Evid.-Based Complement. Altern. Med. 2021, 2021, 1–26. [Google Scholar] [CrossRef]
- Raja-Khan, N.; Stener-Victorin, E.; Wu, X.; Legro, R.S. The physiological basis of complementary and alternative medicines for polycystic ovary syndrome. Am. J. Physiol. Metab. 2011, 301, E1–E10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Guo, X.; Ma, S.; Ma, H.; Li, H.; Wang, Y.; Qin, Z.; Wu, X.; Han, Y.; Han, Y. The Treatment with Complementary and Alternative Traditional Chinese Medicine for Menstrual Disorders with Polycystic Ovary Syndrome. Evid.-Based Complement. Altern. Med. 2021, 2021, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Shirvani-Rad, S.; Tabatabaei-Malazy, O.; Mohseni, S.; Hasani-Ranjbar, S.; Soroush, A.-R.; Hoseini-Tavassol, Z.; Ejtahed, H.-S.; Larijani, B. Probiotics as a Complementary Therapy for Management of Obesity: A Systematic Review. Evid.-Based Complement. Altern. Med. 2021, 2021, 1–11. [Google Scholar] [CrossRef]
- Li, Y.; Peng, C.; Cao, G.; Li, W.; Hou, L. Tai chi for overweight/obese adolescent and young women with polycystic ovary syndrome: Study protocol for a randomized controlled trial. Trials 2018, 19, 512. [Google Scholar] [CrossRef]
- Mohseni, M.; Eghbali, M.; Bahrami, H.; Dastaran, F.; Amini, L. Yoga Effects on Anthropometric Indices and Polycystic Ovary Syndrome Symptoms in Women Undergoing Infertility Treatment: A Randomized Controlled Clinical Trial. Evid.-Based Complement. Altern. Med. 2021, 2021, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Thomson, R.L.; Spedding, S.; Brinkworth, G.D.; Noakes, M.; Buckley, J.D. Seasonal effects on vitamin D status influence outcomes of lifestyle intervention in overweight and obese women with polycystic ovary syndrome. Fertil. Steril. 2013, 99, 1779–1785. [Google Scholar] [CrossRef]
- Legro, R.S.; Duguech, L.M.M. Pharmacologic Treatment of Polycystic Ovary Syndrome: Alternate and Future Paths. Semin. Reprod. Med. 2017, 35, 326–343. [Google Scholar] [CrossRef]
- Ortega, I.; A Villanueva, J.; Wong, D.H.; Cress, A.B.; Sokalska, A.; Stanley, S.D.; Duleba, A.J. Resveratrol potentiates effects of simvastatin on inhibition of rat ovarian theca-interstitial cells steroidogenesis. J. Ovarian Res. 2014, 7, 21. [Google Scholar] [CrossRef] [Green Version]
- Crandall, J.P.; Oram, V.; Trandafirescu, G.; Reid, M.; Kishore, P.; Hawkins, M.; Cohen, H.W.; Barzilai, N. Pilot Study of Resveratrol in Older Adults With Impaired Glucose Tolerance. J. Gerontol. Ser. A Boil. Sci. Med Sci. 2012, 67, 1307–1312. [Google Scholar] [CrossRef] [Green Version]
- Rondanelli, M.; Infantino, V.; Riva, A.; Petrangolini, G.; Faliva, M.A.; Peroni, G.; Naso, M.; Nichetti, M.; Spadaccini, D.; Gasparri, C.; et al. Polycystic ovary syndrome management: A review of the possible amazing role of berberine. Arch. Gynecol. Obstet. 2020, 301, 53–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naka, K.K.; Kalantaridou, S.N.; Kravariti, M.; Bechlioulis, A.; Kazakos, N.; Calis, K.A.; Makrigiannakis, A.; Katsouras, C.S.; Chrousos, G.P.; Tsatsoulis, A.; et al. Effect of the insulin sensitizers metformin and pioglitazone on endothelial function in young women with polycystic ovary syndrome: A prospective randomized study. Fertil. Steril. 2011, 95, 203–209. [Google Scholar] [CrossRef]
- Ethinyl Estradiol and Levonorgestrel. Available online: https://www.drugs.com/mtm/ethinyl-estradiol-and-levonorgestrel.html (accessed on 8 October 2021).
- Mircette® Drug Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020713s010lbl.pdf (accessed on 4 September 2021).
- Diane-35® Drug Information. Available online: https://www.bayer.com/sites/default/files/DIANE_35_EN_PI.pdf (accessed on 4 September 2021).
- Yasmin® Drug Infromation. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/021098s019lbl.pdf (accessed on 4 September 2021).
- Yaz® Drug Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/021676s012lbl.pdf (accessed on 4 September 2021).
- Natazia® Drug Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/022252s001lbl.pdf (accessed on 4 September 2021).
- Zahradnik, H. Belara®–A Reliable Oral Contraceptive with Additional Benefits for Health and Efficacy in Dysmenorrhoea. Eur. J. Contracept. Reprod. Health Care 2005, 10, 12–18. [Google Scholar] [CrossRef]
- Provera® Drug Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2007/011839s071lbl.pdf (accessed on 4 September 2021).
- Food and Drug Administration (FDA). GLUCOPHAGE®(Metformin Hydrochloride) Tablets. GLUCOPHAGE® XR (Metformin Hydrochloride) Extended-Release Tablets. Label. 2017. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/020357s037s039,021202s021s023lbl.pdf (accessed on 4 September 2021).
- Highlights of Prescribing Information-Aldactone® (Spironolactone) Tablets, for Oral Use. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/012151s075lbl.pdf (accessed on 10 April 2021).
- Propecia® Drug Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/020788s020s021s023lbl.pdf (accessed on 4 September 2021).
- Clomid® Drug Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/016131s026lbl.pdf (accessed on 4 September 2021).
- Femara® Drug Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/020726s027lbl.pdf (accessed on 4 September 2021).
- Zocor® Drug Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/019766s085lbl.pdf (accessed on 4 September 2021).
- Cassidy-Vu, L.; Joe, E.; Kirk, J.K. Role of Statin Drugs for Polycystic Ovary Syndrome. J. Fam. Reprod. Health 2016, 10, 165–175. [Google Scholar]
- Lipitor® Drug Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020702s056lbl.pdf (accessed on 4 September 2021).
- Food and Drug Administration (FDA). ACTOS (Pioglitazone Hydrochloride) Tablets for Oral Use. Label. 2011. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2011/021073s043s044lbl.pdf (accessed on 4 September 2021).
- Xu, Y.; Wu, Y.; Huang, Q. Comparison of the effect between pioglitazone and metformin in treating patients with PCOS:a meta-analysis. Arch. Gynecol. Obstet. 2017, 296, 661–677. [Google Scholar] [CrossRef] [Green Version]
- Jardiance® Drug Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/204629s023lbl.pdf (accessed on 4 September 2021).
- Marinkovic-Radosevic, J.; Berkovic, M.C.; Kruezi, E.; Bilic-Curcic, I.; Mrzljak, A. Exploring new treatment options for polycystic ovary syndrome: Review of a novel antidiabetic agent SGLT2 inhibitor. World J. Diabetes 2021, 12, 932–938. [Google Scholar] [CrossRef]
- Farxiga® Drug Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2020/202293s020lbl.pdf (accessed on 4 September 2021).
- Invokana® Drug Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2018/204042s027lbl.pdf (accessed on 4 September 2021).
- Januvia® Drug Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2012/021995s019lbl.pdf (accessed on 4 September 2021).
- Abdalla, M.A.; Deshmukh, H.; Atkin, S.; Sathyapalan, T. The potential role of incretin-based therapies for polycystic ovary syndrome: A narrative review of the current evidence. Ther. Adv. Endocrinol. Metab. 2021, 12, 2042018821989238. [Google Scholar] [CrossRef] [PubMed]
- Victoza® Drug Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/022341s027lbl.pdf (accessed on 4 September 2021).
- Cena, H.; Chiovato, L.; E Nappi, R. Obesity, Polycystic Ovary Syndrome, and Infertility: A New Avenue for GLP-1 Receptor Agonists. J. Clin. Endocrinol. Metab. 2020, 105, e2695–e2709. [Google Scholar] [CrossRef]
- Ozempic® Drug Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2017/209637lbl.pdf (accessed on 4 September 2021).
- Byetta® Drug Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/021773s9s11s18s22s25lbl.pdf (accessed on 4 September 2021).
- Cetylev® Drug Information. Available online: https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/207916s000lbl.pdf (accessed on 4 September 2021).
- Sandhu, J.K.; Waqar, A.; Jain, A.; Joseph, C.; Srivastava, K.; Ochuba, O.; Alkayyali, T.; Ruo, S.W.; Poudel, S. Oxidative Stress in Polycystic Ovarian Syndrome and the Effect of Antioxidant N-Acetylcysteine on Ovulation and Pregnancy Rate. Cureus 2021, 13. [Google Scholar] [CrossRef] [PubMed]
- Tehran University of Medical Sciences. The Effect of Astaxanthin on Oxidative Stress Indices in Patients With Polycystic Ovary Syndrome. Available online: https://ClinicalTrials.gov/show/NCT03991286 (accessed on 14 September 2021).
- Azienda di Servizi alla Persona di Pavia. Berberine and Polycystic Ovary Syndrome. Available online: https://ClinicalTrials.gov/show/NCT04932070 (accessed on 14 September 2021).
- Woman’s; AstraZeneca. EQW, DAPA, EQW/DAPA, DAPA/MET ER and PHEN/TPM ER in Obese Women With PolycysticOvary Syndrome (PCOS). Available online: https://ClinicalTrials.gov/show/NCT02635386 (accessed on 14 September 2021).
- Biosearch, S.A. Evaluation of the Mixture Myoinositol:D-Chiro-Inositol 3.6:1 in Women With Polycystic Ovary Syndrome. Available online: https://ClinicalTrials.gov/show/NCT03201601 (accessed on 14 September 2021).
- Hull University Teaching Hospitals NHS Trust. Empagliflozin vs. Metformin in PCOS. Available online: https://ClinicalTrials.gov/show/NCT03008551 (accessed on 14 September 2021).
- Javed, Z.; Papageorgiou, M.; Deshmukh, H.; Rigby, A.S.; Qamar, U.; Abbas, J.; Khan, A.Y.; Kilpatrick, E.S.; Atkin, S.L.; Sathyapalan, T. Effects of empagliflozin on metabolic parameters in polycystic ovary syndrome: A randomized controlled study. Clin. Endocrinol. 2019, 90, 805–813. [Google Scholar] [CrossRef] [PubMed]
- RenJi Hospital. Research of Exenatide for Overweight/Obese PCOS Patients With IGR. Available online: https://ClinicalTrials.gov/show/NCT03352869 (accessed on 14 September 2021).
- Tao, T.; Zhang, Y.; Zhu, Y.-C.; Fu, J.-R.; Wang, Y.-Y.; Cai, J.; Ma, J.-Y.; Xu, Y.; Gao, Y.-N.; Sun, Y.; et al. Exenatide, Metformin, or Both for Prediabetes in PCOS: A Randomized, Open-label, Parallel-group Controlled Study. J. Clin. Endocrinol. Metab. 2021, 106, e1420–e1432. [Google Scholar] [CrossRef] [PubMed]
- AGUNCO Obstetrics and Gynecology Centre; Hospital Juarez de Mexico. Myo-inositol, Alpha-Lactalbumin and Folic Acid Treatment in PCOS. Available online: https://ClinicalTrials.gov/show/NCT04645745 (accessed on 14 September 2021).
- Lo.Li.Pharma s.r.l. Improved Effects of MI Plus Alpha-LA in PCOS. Available online: https://ClinicalTrials.gov/show/NCT03422289 (accessed on 14 September 2021).
- Oliva, M.M.; Buonomo, G.; Calcagno, M.; Unfer, V. Effects of myo-inositol plus alpha-lactalbumin in myo-inositol-resistant PCOS women. J. Ovarian Res. 2018, 11, 38. [Google Scholar] [CrossRef]
- Pharmarte srl. Myoinositol Plus L-Tyrosine, Selenium and Chromium in PCOS. Available online: https://ClinicalTrials.gov/show/NCT03673995 (accessed on 14 September 2021).
- Medical University of Vienna. Micronutrient Supplementation in PCO-Syndrome. Available online: https://ClinicalTrials.gov/show/NCT03306745 (accessed on 14 September 2021).
- Hager, M.; Nouri, K.; Imhof, M.; Egarter, C.; Ott, J. The impact of a standardized micronutrient supplementation on PCOS-typical parameters: A randomized controlled trial. Arch. Gynecol. Obstet. 2019, 300, 455–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Universitaire Ziekenhuizen Leuven. The Gut Microbiome in Women With Polycystic Ovary Syndrome. Available online: https://ClinicalTrials.gov/show/NCT03642600 (accessed on 14 September 2021).
- Ain Shams University. L-Carnitine and Clomiphene Citrate for Induction of Ovulation in Women With Polycystic Ovary Syndrome. Available online: https://ClinicalTrials.gov/show/NCT03476356 (accessed on 14 September 2021).
- University, A. Adding L-Carnitine to Clomiphene Citrate for Induction of Ovulation in Women with Polycystic Ovary Syndrome. Available online: https://ClinicalTrials.gov/show/NCT03630341 (accessed on 14 September 2021).
- Woman’s; A/S, N.N. Liraglutide 3mg (Saxenda) on Weight, Body Composition, Hormonal and Metabolic Parameters in Obese Women with PCOS. Available online: https://ClinicalTrials.gov/show/NCT03480022 (accessed on 14 September 2021).
- University, A.S. NAC in CC Resistant PCOS After LOD. Available online: https://ClinicalTrials.gov/show/NCT02775734 (accessed on 14 September 2021).
- Shiraz University of Medical Sciences. Effects of Cyproterone Compound-spironolactone, Metformin and Pioglitazone on Inflammatory Markers in PCOS. Available online: https://ClinicalTrials.gov/show/NCT02689843 (accessed on 14 September 2021).
- Peshawar, K.M.U. Treatment with Metformin and Combination of Metformin and Pioglitazone in Polycystic Ovarian Syndrome. Available online: https://ClinicalTrials.gov/show/NCT03117517 (accessed on 14 September 2021).
Generic Name (Brand)/Ref | Mechanism of Action | Purpose of Therapy | Common Side Effects | Contraindications |
---|---|---|---|---|
COCs (estrogen and progestin) | ||||
Levonorgestrel/Ethinyl estradiol—LD and HD [100] | Inhibition of ovulation via negative feedback on the hypothalamus alters the regular pattern of gonadotropin secretion of FSH and LH from the anterior pituitary gland | Menstrual cyclicity, hirsutism, acne | Nausea and vomiting (especially at first), breast tenderness, breakthrough bleeding, weight gain, acne or darkening of facial skin, etc. | Oral contraceptives should not be used in women who currently have the following conditions:
|
Desogestrel/Ethinyl estradiol (Marvelon®, Mircette®) [101] | Menstrual cyclicity | Depression, headache, migraine, mood changes, skin rash, urticaria, decreased or increased libido, weight gain or loss, abdominal pain, diarrhea, nausea and vomiting, breast hypertrophy and tenderness, vaginal discharge, hypersensitivity reactions, etc. | ||
Cyproterone acetate/Ethinyl estradiol (Diane 35®) [102] | Menstrual cyclicity | Dysmenorrhea, breast tenderness, change in libido, headache, depression, nervousness, chloasma, varicosity, edema, dizziness | ||
Drospirenone/Ethinyl estradiol (Yasmin®) [103] | Menstrual cyclicity, hirsutism, acne | PMS, headache or migraine, breast pain/tenderness/discomfort, nausea and vomiting, abdominal pain/tenderness/discomfort, mood changes | ||
Drospirenone/Ethinyl estradiol (Yaz®) [104] | Menstrual cyclicity, hirsutism, acne | Headache or migraine, menstrual irregularities, nausea and vomiting, breast pain or tenderness, mood changes, fatigue, irritability, decreased libido, increased weight | ||
Dienogest/estradiol valerate (Natazia®) [105] | Menstrual cyclicity, hirsutism, acne | Headaches, irregular uterine bleeding, breast tenderness, nausea and vomiting, acne, and increased weight | ||
Chlormadinone acetate/Ethinyl estradiol (Belara®) [106] | Menstrual cyclicity, hirsutism, acne | Breast pain or tension, depressed state, loss of libido, migraine or headache | ||
Progestins | ||||
Medroxyprogesterone acetate (Provera®) [107] | Inhibition of secretion of pituitary gonadotropins, Prevention of follicular maturation and ovulation | Menstrual cyclicity, | Amenorrhea, change in menstrual flow, hot flash, weight gain or weight loss, menstrual disease, abdominal pain, headache, nervousness |
|
Biguanides | ||||
Metformin (Glucophage®) [108] | ↓hepatic glucose production ↓intestinal absorption, ↑insulin sensitivity | Impaired glucose tolerance, type II diabetes | Diarrhea, nausea and vomiting, flatulence, asthenia, indigestion, abdominal discomfort, headache |
|
Antiandrogens | ||||
Spironolactone (Aldactone®) [109] | Competitive antagonistic activity against aldosterone receptors causes potassium retention, sodium and water excretion | Hirsutism, acne | Gynecomastia |
|
Finasteride (Propecia®) [110] | A competitive and specific inhibitor of Type II 5-alpha-reductase, an enzyme that converts the androgen testosterone into DHT | Hirsutism, acne | Decreased libido, erectile dysfunction, and ejaculation disorder |
|
Antiestrogens | ||||
Clomiphene citrate (Clomid®) [111] | Occupying ERs for a longer duration than estrogen, inhibiting normal estrogen negative feedback, which results in increased pulsatile GnRH secretion from the hypothalamus and pituitary gonadotropin release | Ovulation induction | Ovarian enlargement, vasomotor flushes, abdominal-pelvic discomfort/distention/bloating, nausea and vomiting, breast discomfort, blurred vision, lights/ floaters/waves/unspecified visual complaints, photophobia, diplopia, scotomata, phosphenes, headache, abnormal uterine bleeding, intermenstrual spotting, menorrhagia |
|
Aromatase inhibitors | ||||
Letrozole (Femara®) [112] | Nonsteroidal competitive inhibitor of the aromatase enzyme which catalyzes the conversion of androgens to estrogens | Ovulation induction | Hot flashes, arthralgia, flushing, asthenia, edema, arthralgia, headache, dizziness, hypercholesterolemia, sweating increased, bone pain |
|
Generic Name (Brand)/Ref | Pharmacological Category | Mechanisms of Action | USFDA Approved Indication(s) | Common Adverse Events (≥5%) | Contraindications and Drug Interactions |
---|---|---|---|---|---|
Simvastatin (Zocor®) [113] | Antilipemic HMG-CoA reductase inhibitor | ↓ HMG-CoA ↓ cholesterol biosynthesis | Heterozygous familial hypercholesterolemia, homozygous familial hypercholesterolemia, prevention of atherosclerotic cardiovascular disease | Upper respiratory infections headache abdominal pain constipation nausea | Hypersensitivity to any component of this medication Concomitant administration of potent CYP3A4 inhibitors Concomitant administration of gemfibrozil, cyclosporine, or danazol Active liver disease, which may include unexplained persistent elevations in hepatic transaminase levels Women who are pregnant or may become pregnant and nursing mothers |
Atorvastatin (Lipitor®) [114] | Nasopharyngitis arthralgia diarrhea pain in extremity | Hypersensitivity to atorvastatin Active liver disease, unexplained persistent elevation of serum transaminases Pregnancy, breastfeeding Concurrent therapy with cyclosporine, clarithromycin, itraconazole, HIV protease inhibitors (ritonavir plus saquinavir or lopinavir plus ritonavir), etc. | |||
Pioglitazone (Actos®) [115] | Antidiabetic thiazolidinedione | ↓ blood glucose ↑ target cell response to insulin | Treatment of type II diabetes mellitus | Upper respiratory tract infection, headache, pharyngitis, sinusitis myalgia, | Do not initiate in patients with established NYHA Class III or IV heart failure Do not use in patients with a history of a severe hypersensitivity reaction to it |
Empagliflozin (Jardiance®) [116] | Antidiabetic SGLT-2 inhibitor | ↓ reabsorption of filtered glucose from the tubular lumen of the proximal renal tubules lowering the renal threshold for glucose | Treatment of type II diabetes mellitus | Urinary tract infections female genital mycotic infections | History of severe hypersensitivity reaction Severe renal impairment, end-stage renal disease, or dialysis |
Dapagliflozin (Farxiga®) [117] | Treatment of type II diabetes mellitus, heart failure with a reduced ejection fraction | Female genital mycotic infections, nasopharyngitis, urinary tract infections | History of severe hypersensitivity reaction Severe renal impairment, end-stage renal disease, or dialysis | ||
Canagliflozin (Invokana®) [118] | Treatment of type II diabetes mellitus | Female genital mycotic infections, urinary tract infection, increased urination | History of serious hypersensitivity reaction Severe renal impairment, ESRD, or on dialysis | ||
Sitagliptin (Januvia®) [119] | Antidiabetic DPP-4 inhibitor | ↓ DPP-4 enzyme, ↑ incretin levels, ↑ insulin synthesis by pancreatic beta cells. | Treatment of type II diabetes mellitus | Upper respiratory tract infection, nasopharyngitis, headache | History of a severe hypersensitivity reaction, such as anaphylaxis or angioedema |
Liraglutide (Saxenda®, Victoza®) [120] | Antidiabetic GLP-1 receptor agonist | Long-acting analog of GLP-1 ↑ glucose-dependent insulin secretion ↓ gastric emptying ↓ food intake ↓ inappropriate glucagon secretion | Treatment of type II diabetes mellitus, weight management | ↑ heart rate, hypoglycemia, constipation/diarrhea, nausea and vomiting, gastroenteritis, ↓ appetite, ↓ dyspepsia | In patients with a personal or family history of MTC or patients with MEN-2 History of a severe hypersensitivity reaction to the drug or any component of the formulation |
Semaglutide (Ozempic®) [30] | Treatment of type II diabetes mellitus | Abdominal pain, nausea, vomiting, constipation, diarrhea | |||
Exenatide (Byetta®) [121] | Treatment of type II diabetes mellitus | Nausea and vomiting, hypoglycemia, diarrhea, feeling jittery, dizziness, headache, dyspepsia | History of a severe hypersensitivity reaction to the drug or any component of the formulation | ||
N-acetyl cysteine (Cetylev®) [122] | Antidote, mucolytic agent | ↑ glutathione, mucolytic | Mucolytic, acetaminophen overdose | Nausea and vomiting, autoimmune disease, anaphylactoid reaction | History of a severe hypersensitivity reaction to the drug or any component of the formulation Hypersensitivity reactions, including urticarial ↑ Risk of upper GI bleeding |
Treatment (Tx) Phase/Year First Posted Ref | Dosage (Duration of Therapy) | Subjects Condition Groups | Study Design | Results | Non-Serious AEs (%) (Treatment-Related) | Serious AEs (%) (Treatment-Related) |
---|---|---|---|---|---|---|
Astaxanthin Not applicable/2019 [123] | Exp: 8 mg astaxanthin + clomiphene citrate P: matching placebo + clomiphene citrate (NA) | 48 PCOS Exp = NA P = NA | R, PA, QB | NA | NA | NA |
Berberine Not applicable/2021 [124] | 550 mg berberine tablet, BID (before lunch and dinner) (NA) | 12 PCOS | SGA, OL | NA | NA | NA |
Dapagliflozin and exenatide Phase III/2019 [125] | Exp 1: 2 mg exenatide, SC injection, once every week Exp 2: 10 mg dapagliflozin pill, PO, QD, a.m. Exp 3: 2 mg exenatide, SC injection, once every week + 10 mg dapagliflozin pill, PO, QD, a.m. Exp 4: 5 mg dapagliflozin-1000 mg glucophage pill, PO, QD, a.m. for 4 weeks after those 2 pills, PO, QD, a.m. AC: 3.75 mg phentermine-23 mg topiramate pill, PO, QD, a.m. for 2 weeks after that 7.5 mg pheniramine-46 mg topiramate pill, PO, QD, a.m. (24 weeks) | 119 PCOS, obesity Exp1 = 23 Exp2 = 23 Exp3 = 22 Exp4 = 26 AC = 25 | R, PA, SB | NA | Yeast infection or UTI, kidney stone, nausea and upset stomach, insomnia, fatigue, headache, lightheadedness, injection site reaction, vaginal irritation, prolonged menstrual cycle, rapid heartbeat, stuffy nose | Pregnancy |
D-chiro-inositol and myo-inositol Phase II and phase III/2017 [126] | Exp: 500 mg myo-inositol capsule, BID (every 12 h) + 150 mg D-chiro-inositol capsule, BID (every 12 h) AC: 500 mg myo-inositol capsule, BID (every 12 h) + 13.8 mg D-chiro-inositol capsule, BID (every 12 h) (12 weeks) | 60 PCOS, infertility Exp = NA AC = NA | R, PA, QB, controlled, multicenter | NA | NA | NA |
Empagliflozin Phase II and phase III/2017 [127,128] | Exp: 25 mg empagliflozin per day AC: 1500 mg metformin per day (3 months) | 40 PCOS, irregular period and biochemical hyperandrogenism Exp = 19 C = 20 | R, PA, OL | Significant improvement in anthropometric parameters and body composition in overweight or obese women in the empagliflozin group, no change in hormonal or metabolic parameters | Headache dizziness, mild rash | Not reported |
Exenatide Phase IV/2017 [129,130] | Exp1: 5 mcg or 10 mcg exenatide, BID AC: 500 mg metformin, TID or 1000 mg metformin, BID Exp2: 5 mcg or 10 mcg exenatide, BID + 500 mg metformin, TID or 1000 mg metformin, BID (12 weeks) | 183 PCOS, overweight or obesity, a disorder of glucose regulation Exp1 = 61 AC = 61 Exp2 = 61 | R, PA, OL | Compared with metformin monotherapy, exenatide alone or in combination with metformin gives a higher remission rate in pre-diabetes PCOS women as it improves postprandial insulin secretion. | Nausea and vomiting, headache | Not reported |
Folic acid and myo-inositol Not applicable/2022 [131] | Exp: 200 mcg folic acid, 2 g myo-inositol, 50 mg alpha-lactalbumin, BID (6 months) | 36 PCOS, insulin resistance Exp = 36 | R, SGA, OL | NA | NA | NA |
Folic acid and myo-inositol Not applicable/2018 [132,133] | Exp1: 2 mg myo-inositol, 0.2 mg folic acid, PO, BID Exp2: 2 mg myo-inositol, 0.2 mg folic acid, 50 mg alpha-lactalbumin, PO, BID (3 months) | 37 PCOS, anovulation, and infertility more than one year Exp1 = 37 Exp2 = 14 | NR, SA, OL | Administration of myo-inositol with alpha-lactalbumin improves PCOS treatment in a patient resistant to myo-inositol | NA | NA |
Folic acid and myo-inositol Not applicable/2018 [134] | 2000 mg myo-inositol-500 mg L-tyrosine-40 mcg chromium picolinate-55 mcg selenium-200 mcg folic acid sachet, QD (6 months) | 186 PCOS, menstrual problems, hirsutism | SGA, OL | Improve in symptoms | NA | NA |
Folic acid and omega-3 free fatty acid Not applicable/2017 [135,136] | Exp: omega-3 fatty acid, 500 mg soft capsule, QD + 800 mg folic acid-70 mg selenium- 30 mg vitamin E-4 mg catechin-12 mg glycyrrhizin-30 mg Q10 coenzyme tablet, QD P: folic acid, 200 mcg capsule, BID (3 months) | 60 PCOS, infertility, micronutrient deficiency, oligomenorrhea, or complete amenorrhea for at least 90 days Exp = NA P = NA | R, PA, DB | LH/FSH ratio, testosterone, and AMH significantly decreased in the experimental group | NA | NA |
Folic acid, myo-inositol, and liraglutide Phase IV/2018 [137] | AC1: dietary advice + 2 g of myo-inositol and folic acid, BID AC2: dietary advice + liraglutide starting at 0.6 mg, gradually increasing up to a dose of 3 mg per day after four weeks, pen injector (16 weeks) | 21 PCOS, obesity, metabolic syndrome AC1 = NA AC2 = NA | R, PA, OL | NA | NA | NA |
L-carnitine Not applicable/2018 [138] | Exp: 50 mg clomiphene citrate tablet, PO, BID, from the third day of the cycle until the seventh day of the cycle + 1 g carnitine tablet, PO, TID, from the third day of the cycle until the day of the pregnancy test AC: 50 mg clomiphene citrate tablet, PO, BID, from the third day of the cycle until the seventh day of the cycle (14 days) | 106 PCOS Exp = 53 AC = 53 | R, PA, DB | NA | NA | NA |
L-carnitine Phase IV/2018 [139] | Exp: 50 mg clomiphene citrate tablet, PO, BID, from the third day of the cycle until the seventh day of the cycle + 1 g carnitine tablet, PO, TID, from the third day until the day of the pregnancy test AC: 50 mg clomiphene citrate tablet, PO, BID, from the third day of the cycle until the seventh day of the cycle + placebo tablet, PO, TID, from the third day until the day of the pregnancy test (NA) | 150 PCOS, primary or secondary infertility Exp = NA AC = NA | R, PA, QB | NA | NA | NA |
Liraglutide Phase III/2018 [140] | Exp: 0.6 mg liraglutide, SC pen injector, QD for one week, step up to 1.2 mg, SC pen injector, QD for one week, to 1.8 mg, SC pen injector, QD for one week, 2.4 mg, SC pen injector, QD for one week, to 3 mg, SC pen injector, QD final dose P: 0.6 mg placebo liraglutide, SC pen injector, QD for one week, step up to 1.2 mg, SC pen injector, QD for one week, to 1.8 mg, SC pen injector, QD for one week, 2.4 mg, SC pen injector, QD for one week, to 3 mg, SC pen injector (30 weeks) | 88 PCOS, pre-diabetes, obesity android Exp = NA P = NA | R, PA, QB, PC | NA | NA | NA |
N-acetyl cysteine Phase II and phase III/2016 [141] | AC1: 1200 mg N-acetyl cysteine per day for 5 days, starting from the second day of the cycle to the sixth day of the cycle + 50 mg clomiphene citrate, PO, BID + laparoscopic ovarian drilling AC2: 50 mg clomiphene citrate, PO, BID + laparoscopic ovarian drilling (NA) | 144 PCOS, clomiphene citrate resistance, BMI between 25 and 30 kg/m2 AC1 = 60 AC2 = 60 | R, PA, QB, PC | NA | NA | NA |
Pioglitazone Early phase I/2016 [142] | AC1: 2 mg cyproterone acetate-35 mcg ethinyl estradiol tablet, QD + 50 mg spironolactone, BID AC2: 500 mg metformin, TID AC3: 30 mg pioglitazone, QD (3 months) | 90 PCOS AC1 = NA AC2 = NA AC3 = NA | R, PA, TB | NA | NA | NA |
Pioglitazone Early Phase I/2017 [143] | AC: 1000 mg metformin-30 mg pioglitazone tablet Exp: 500 mg metformin tablet, PO, BID (3 months) | 106 PCOS AC = 53 Exp = 53 | R, PA, DB | NA | Not reported | Not reported |
Pioglitazone Early Phase I/2018 [144] | AC: 30 mg pioglitazone tablet, QD + 50 mg clomiphene citrate tablet, QD or BID (every 12 h), from the third day of menstrual cycle and continue for five days during treatment P: metformin 1500 mg, TID + clomiphene citrate 50 mg tablet, QD or BID (every 12 h), from the third day of menstrual cycle and continue for five days during treatment (3 months) | 400 PCOS and infertility AC = NA P = NA | R, SGA, SB | NA | NA | NA |
Resveratrol and myo-inositol Phase II/2021 [145] | AC: 1000 mg resveratrol, BID + 1000 mg myo-inositol, BID Standard therapy group: 500 mg metformin, BID + 15 mg pioglitazone, BID (NA) | 88 PCOS, hirsutism or hyperandrogenism, oligo-ovulation or anovulation AC = 51 Standard therapy group = 51 | R, PA, TB | NA | NA | NA |
Sitagliptin Phase IV/2014 [146,147] | Exp1: 100 mg sitagliptin per day, PO, for 30 days, then one placebo pill per day, PO, for 30 days Exp2: one placebo pill per day, PO, for 30 days, then 100 mg sitagliptin per day, PO, for 30 days (60 days) | 23 PCOS, BMI ≥ 30 kg/m2 Exp1 = 11 Exp2 = 12 | R, CA, TB | ↓Maximum glucose response to oral glucose tolerance test, ↓visceral adiposity, ↑growth hormone half-life, and interval pulse | Dizziness, headache, abdominal pain, nausea | Pancreatitis |
Sitagliptin Phase IV/2017 [148] | Exp1: 100 mg sitagliptin per day + lifestyle intervention Exp2: lifestyle intervention (12 weeks) | 30 PCOS, BMI ≥ 30 kg/m2 Exp1 = NA Exp2 = NA | R, PA, OL | NA | NA | NA |
Vitamin D Phase III/2019 [149,150] | Exp: 6000 IU vitamin D per day, PO + 1000 mg calcium carbonate per day, PO + 1500 mg metformin per day, PO, starting with 500 mg QD for the first week, 500 mg BID in the second week, and 500 mg TID from the third week P: 1500 mg metformin per day, PO, starting with 500 mg QD for the first week, 500 mg BID in the second week, and 500 mg TID from the third week + placebo, PO (8 weeks) | 40 PCOS, Vitamin D deficiency/insufficiency Exp = 20 P = 20 | R, PA. SB, PC | Calcium and vitamin D may support metformin effect on menstrual cycle irregularities in PCOS patients suffering vitamin D deficiency/insufficiency | Headache, gastrointestinal side effects | Not reported |
Vitamin D Not applicable/2019 [151] | AC: 42000 IU vitamin D per week, PO + 500 mg calcium carbonate per day P: 42000 IU vitamin D per week, PO + 500 mg calcium carbonate per day (12 weeks) | 145 PCOS = 95 Healthy = 50 AC = 55 P = 90 | R, PA, DB, PC | NA | NA | NA |
Vitamin D Phase IV/2019 [152] | AC: 100,000 IU vitamin D per month, IM + 1000 mg metformin tablet, BID + 50 mg clomiphene citrate tablet, BID, from the second day to the sixth day of the cycle, starting from the third month to the fifth month P: 1000 mg metformin tablet, BID + 50 mg clomiphene citrate tablet, BID, from the second day to the sixth day of the cycle, starting from the third month to the fifth month (5 months) | 120 PCOS, vitamin D deficiency, infertility, clomiphene resistance AC = 60 P = 60 | R, PA, OL | NA | NA | NA |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadeghi, H.M.; Adeli, I.; Calina, D.; Docea, A.O.; Mousavi, T.; Daniali, M.; Nikfar, S.; Tsatsakis, A.; Abdollahi, M. Polycystic Ovary Syndrome: A Comprehensive Review of Pathogenesis, Management, and Drug Repurposing. Int. J. Mol. Sci. 2022, 23, 583. https://doi.org/10.3390/ijms23020583
Sadeghi HM, Adeli I, Calina D, Docea AO, Mousavi T, Daniali M, Nikfar S, Tsatsakis A, Abdollahi M. Polycystic Ovary Syndrome: A Comprehensive Review of Pathogenesis, Management, and Drug Repurposing. International Journal of Molecular Sciences. 2022; 23(2):583. https://doi.org/10.3390/ijms23020583
Chicago/Turabian StyleSadeghi, Hosna Mohammad, Ida Adeli, Daniela Calina, Anca Oana Docea, Taraneh Mousavi, Marzieh Daniali, Shekoufeh Nikfar, Aristidis Tsatsakis, and Mohammad Abdollahi. 2022. "Polycystic Ovary Syndrome: A Comprehensive Review of Pathogenesis, Management, and Drug Repurposing" International Journal of Molecular Sciences 23, no. 2: 583. https://doi.org/10.3390/ijms23020583