Macromolecular Structure of Linearly Arranged Eukaryotic Chromosomes
Abstract
:1. Introduction
2. Organization and Visualization of the Nuclear Material
3. Methods Applied for Permeabilization
3.1. Physical Methods
3.1.1. Permeabilization by Pore Formation in Membranes
3.1.2. Organic Solvents
3.1.3. Mild Detergents
3.1.4. Enzymatic Digestion
3.2. Agents Affecting Membrane Fluidity
Cryoprotectants
4. Methods
4.1. Reversible Permeabilization
4.2. Cells
4.2.1. Murine Thymic Cells
4.2.2. CHO-K1
4.2.3. Indian Muntjac (IM) Cells
4.2.4. Myeloid l—Leukemia Cells
4.3. Nascent DNA Synthesized in Reversibly Permeabilized Cells
Growth of Cells
4.4. Reversible Permeabilizations of Cells
4.4.1. Isolation of Nuclei from Permeabilized Cells
4.4.2. Visualization of Interphase Chromatin Structures and Chromosomes
5. The Linear Arrangement of Intermediates of Chromatin Condensation
5.1. Intermediates of Chromatin Folding in Nuclei of CHO-K1 Cells
5.2. Isolation of Interphase Chromosomes from Synchronized Cells
5.2.1. Chromatin Structures from Decondensed Chromatin to Metaphase Chromosomes
5.2.2. Chromatin Image Analysis of Condensed Chromosomes inside the Nucleus of CHO Cells
5.3. Chromosome Order in Drosophila Cells
5.4. Visualizing the Chromosome Order of Indian Muntjac Cells
5.5. Interphase Chromosomes in Murine Pre-B Cells
5.6. Organization Principles in Garden Snail (Helix pomata) Chromosomes
6. Discussion
Utilization of Permeable Cells
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liveive, L. A nonspecific increase in permeability in Escherichia coli produced by EDTA. Proc. Natl. Acad. Sci. USA 1965, 63, 745. [Google Scholar] [CrossRef] [PubMed]
- Boye, E. DNA repair and replication in cells of Escherichia coli made permeable with hypotonic buffers. Radiat. Res. 1980, 84, 35–45. [Google Scholar] [CrossRef] [PubMed]
- Buttin, G.; Kornberg, A.J. Enzymatic synthesis of deoxyribonucleic acid. XXI. Utilization of deoxyribonucleoside triphosphates by Escherichia coli cells. Biol. Chem. 1966, 241, 5419–5427. [Google Scholar] [CrossRef]
- Moses, R.E.; Richardson, C.C. Replication and repair of DNA in cells of Escherichia coli treated with toluene. Proc. Natl. Acad. Sci. USA 1970, 67, 674–681. [Google Scholar] [CrossRef]
- Banfalvi, G.; Sarkar, N. Analysis of the 5′-termini of nascent DNA chains synthesized in permeable cells of Bacillus subtilis. J. Mol. Biol. 1983, 163, 147–169. [Google Scholar] [CrossRef]
- Berger, N.A.; Erickson, W.P.; Weber, G. Histone inhibition of DNA synthesis in eukaryotic cells permeable to macromolecules. Biochim. Biophys. Acta 1976, 447, 65–75. [Google Scholar] [CrossRef]
- Berger, N.A.; Kauff, R.A.; Sikorski, G.W. ATP-independent DNA synthesis in vaccinia-infected L cells. Biochim. Biophys. Acta 1978, 520, 531–538. [Google Scholar] [CrossRef]
- Berger, N.A.; Weber, G.; Kaichi, A.S. Characterization and comparison of poly (adenosine dephosphoribose) synthesis and DNA synthesis in nucleotide-permeable cells. Biochim. Biophys. Acta 1978, 519, 87–104. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Sarkar, N. Study of deoxyribonucleic acid replication in permeable cells of Bacillus subtilis using mercurated nucleotide substrates. Biochemistry 1981, 20, 3029. [Google Scholar] [CrossRef]
- Banfalvi, G.; Sarkar, N. Origin and degradation of the RNA primers at the 4’ termini of nascent chains in Bacillus subtilis. J. Mol. Biol. 1985, 186, 275–282. [Google Scholar] [CrossRef]
- Burgers, P.M. Solution to the 50-year-old Okazaki-fragment problem. Proc. Natl. Acad. Sci. USA 2019, 116, 3358–3360. [Google Scholar] [CrossRef] [PubMed]
- Banfalvi, G.; Sooki-Toth, A.; Sarkar, N.; Csuzi, S.; Antoni, F. Nascent DNA chains synthesized in reversibly permeable cells of mouse thymocytes. Eur. J. Biochem. 1984, 139, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Rabl, C. Über Zelltheilung. Morphologisches Jahrbuch; Gegenbaur, C., Ed.; Springer: Berlin/Heidelberg, Germany, 1885; Volume 10, pp. 214–330. [Google Scholar]
- Satzinger, H. Theodor and Marcella Boveri. Chromosomes and cytoplasm in heredity and development. Nat. Rev. Genet. 2008, 9, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Boveri, T. Die Blastomerenkerne von Ascaris megalocephala und die Theorie der Chromosomeindividualitat. Arch. Zellforsch. 1909, 3, 181–268. [Google Scholar]
- Boveri, T. Zellen Studien; Verlag Von Gustav Fischer: Jena, Germany, 1888. [Google Scholar]
- Cremer, T.; Kreth, G.; Koester, H.; Fink, R.H.; Heintzmann, R.; Cremer, M.; Solovei, I.; Zink, D.; Cremer, C. Chromosome territories, interchromatin domain compartment, and nuclear matrix: An integrated view of the functional nuclear architecture. Crit. Rev. Eukaryot. Gene Expr. 2000, 10, 179–212. [Google Scholar] [CrossRef]
- Cremer, T.; Cremer, C. Rise, fall and resurrection of chromosome territories: A historical perspective. Part II. Fall and resurrection of chromosome territories during the 1950s to 1980s. Part III. Chromosome territories and the functional nuclear architecture: Experiments and models from the 1990s to the present. Eur. J. Histochem. 2006, 50, 223–272. [Google Scholar]
- Cremer, T.; Cremer, C.; Baumann, H.; Luedtke, E.K.; Sperling, K.; Teuber, V.; Zorn, C. Rabl’s model of the interphase chromosome arrangement tested in Chinese hamster cells by premature chromosome condensation and laser-UV-microbeam experiments. Hum. Genet. 1982, 60, 46–56. [Google Scholar] [CrossRef]
- Bolzer, A.; Kreth, G.; Solovei, I.; Koehler, D.; Saracoglu, K.; Fauth, C.; Müller, S.; Eils, R.; Cremer, C.; Speicher, M.R.; et al. Three-dimensional maps of all chromosomes in human male fibroblast nuclei and prometaphase rosettes. PLoS Biol. 2005, 3, e157. [Google Scholar] [CrossRef]
- Lichter, P.; Cremer, T.; Borden, J.; Manuelidis, L.; Ward, D.C. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum. Genet. 1988, 80, 224–234. [Google Scholar] [CrossRef]
- Pinkel, D.; Landegent, J.; Collins, C.; Fuscoe, J.; Segraves, R.; Lucas, J.; Gray, J. Fluorescence in situ hybridization with human chromosome-specific libraries: Detection of trisomy 21 and translocations of chromosome 4. Proc. Nat. Acad. Sci. USA 1988, 85, 9138–9142. [Google Scholar] [CrossRef]
- Heride, C.; Rico, M.; Kiêu, K.; von Hase, J.; Guillemot, V.; Cremer, C.; Dubrana, K.; Sabatier, L. Distance between homologous chromosomes results from chromosome positioning constraints. J. Cell Sci. 2010, 123, 4063–4075. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, S.; Dixon, J.R.; Bansal, V.; Ren, B. Whole-genome haplotype reconstruction using proximity-ligation and shotgun sequencing. Nat. Biotechnol. 2013, 31, 1111–1118. [Google Scholar] [CrossRef] [PubMed]
- Kurz, A.; Lampel, S.; Nickolenko, J.E.; Bradl, J.; Benner, A.; Zirbel, R.M.; Cremer, T.; Lichter, P. Active and inactive genes localize preferentially in the periphery of chromosome territories. J. Cell Biol. 1996, 135, 1195–1205. [Google Scholar] [CrossRef] [PubMed]
- Cremer, T.; Cremer, C. Chromosome territories, nuclear architecture and gene regulation in mammalian cells. Nat. Rev. Genet. 2001, 2, 292–301. [Google Scholar] [CrossRef]
- Flemming, W. Beitraege zur Kenntniss der Zelle und ihrer LebenserscheinungenArch. Mikroskop. Anat. 1878, 16, 302–436. [Google Scholar] [CrossRef]
- Trojer, P.; Reinberg, D. Facultative heterochromatin: Is there a distinctive molecular signature? Mol. Cell. 2007, 28, 1–13. [Google Scholar] [CrossRef]
- Kouzarides, T. Chromatin modifications and their function. Cell 2007, 128, 693–705. [Google Scholar] [CrossRef]
- Banfalvi, G. Chromatin condensation. In Apoptotic Chromatin Changes; Springer: Dordrecht, The Netherlands, 2009; pp. 125–202. [Google Scholar]
- Cole, K. Permeability and impermeability of cell membranes for ions. Cold Spring Harb. Symp. Quant. Biol. 1940, 8, 110–122. [Google Scholar] [CrossRef]
- Rothballer, A.; Kutay, U. Poring over pores: Nuclear pore complex insertion into the nuclear envelope. Chromosoma 2013, 38, 6292–6301. [Google Scholar] [CrossRef]
- Feldherr, C.M.; Akin, D. The permeability of the nuclear envelope in dividing and nondividing cell cultures. J. Cell Biol. 1990, 111, 1–8. [Google Scholar] [CrossRef]
- Lombard, J. Once upon a time the cell membranes: 175 years of cell boundary research. Biol. Direct. 2014, 9, 32. [Google Scholar] [CrossRef]
- Kleinzeller, A. Charles Ernest Overton’s Concept of a Cell Membrane. In Membrane Permeability: 100 Years since Ernest Overton; Deamer, D.W., Kleinzeller, A., Fambrough, D.M.F., Eds.; Academic Press: San Diego, CA, USA, 1998; pp. 1–18. [Google Scholar]
- Melan, M.A. Immunolocalization procedures allow one to detect well-characterized cellular structures and provide information about newly characterized proteins and carbohydrates. Methods Mol. Biol. 1994, 34, 55–66. [Google Scholar] [PubMed]
- Jamur, M.C.; Oliver, C. Permeabilization of cell membranes. Methods Mol. Biol. 2010, 588, 63–66. [Google Scholar] [CrossRef] [PubMed]
- Chow, S.; Hedley, D.; Grom, P.; Magari, R.; Jacobberger Grom, P.J.W.; Shankey, T.V. Whole blood fixation and permeabilization protocol with red blood cell lysis for flow cytometry of intracellular phosphorylated epitopes in leukocyte subpopulations. Cytometry A 2005, 67, 4–17. [Google Scholar] [CrossRef] [PubMed]
- Naglak, T.J.; Hettwer, D.J.; Wang, H.Y. Chemical permeabilization of cells for intracellular product release. Bioprocess. Technol. 2021, 44, 1866–1871. [Google Scholar]
- Kornberg, R.D. Structure of chromatin. Annu. Rev. Biochem. 1977, 46, 931–954. [Google Scholar] [CrossRef]
- Klug, A.; Butler, P.J. The structure of nucleosomes and chromatin. Horiz. Biochem. Biophys. 1983, 7, 1–41. [Google Scholar]
- Kireeva, N.; Lakonishok, M.; Kireev, I.; Hirano, T.; Belmont, A.S. Visualization of early chromosome condensation: A hierarchical folding, axial glue model of chromosome structure. J. Cell Biol. 2004, 166, 775–785. [Google Scholar] [CrossRef]
- Nemeth, A.; Langst, G. Chromatin higher order structure: Opening up chromatin for transcription. Brief. Funct. Genom. Proteomic 2004, 2, 334–343. [Google Scholar] [CrossRef]
- Ujvarosi, K.; Hunyadi, J.; Nagy, G.; Pocsi, I.; Banfalvi, G. Preapoptotic chromatin changes induced by ultraviolet B irradiation in human erythroleukemia K562 cells. Apoptosis 2007, 12, 2089–2099. [Google Scholar] [CrossRef]
- Kanazawa, T.; Hoashi, Y.; Ibaraki, H.; Takashima, Y.; Okada, H. Electroporation-based ex vivo gene delivery into dendritic cells by anionic polymer-coated versatile nuclear localization signal/PDA complex. Biol. Pharm. Bull. 2021, 44, 1866–1871. [Google Scholar] [CrossRef]
- Wang, W.; Shao, S.; Chen, W.; Wang, W.; Chuai, Y.; Li, Y.; Guo, Y.; Han, S.; Shu, M.; Wang, Q.; et al. Electrofusion stimulation is an independent factor of chromosome abnormality in mice oocytes reconstructed via spindle transfer. Front. Endocrinol. 2021, 12, 705837. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yu, L.-C. Microinjection as a tool of mechanical delivery. Curr. Opin. Biotechnol. 2008, 19, 506–510. [Google Scholar] [CrossRef] [PubMed]
- Tanimoto, C.R.; Thurm, A.R.; Brandt, D.S.; Knobler, C.M.; Gelbart, W.M.J. The non-monotonic dose dependence of protein expression in cells transfected with self-amplifying RNA. Virol. Methods. 2021, 28, 114386. [Google Scholar] [CrossRef] [PubMed]
- Siukstaite, L.; Rosato, F.; Mitrovic, A.; Müller, P.F.; Kraus, K.; Notova, S.; Imberty, A.; Römer, W. The two sweet sides of Janus lectin drive crosslinking of liposomes to cancer cells and material uptake. Toxins 2021, 13, 92. [Google Scholar] [CrossRef] [PubMed]
- Chang, D.C. Cell poration and cell fusion using an oscillating electric field. Biophys. J. 1989, 56, 641–652. [Google Scholar] [CrossRef]
- López-Vidal, E.M.; Schissel, C.K.; Mohapatra, S.; Bellovoda, K.; Wu, C.-L.; Wood, J.A.; Malmberg, A.B.; Loas, A.; Gómez-Bombarelli, R.; Pentelute, B.L. Deep learning enables discovery of a short nuclear targeting peptide for efficient delivery of antisense oligomers. JACS 2020, 1, 2009–2020. [Google Scholar] [CrossRef]
- Gould, H.J., 3rd; Miller, P.R.; Edenfield, S.; Sherman, K.J.; Brady, C.K.; Paul, D. Emergency use of targeted osmotic lysis for the treatment of a patient with aggressive late-stage squamous cell carcinoma of the cervix. Curr. Oncol. 2021, 28, 2115–2122. [Google Scholar] [CrossRef]
- Burri, C.; Hutfilz, A.; Grimm, L.; Salzmann, S.; Arnold, P.; Povazay, B.; Meier, C.; Ebneter, A.; Theisen-Kunde, D.; Brinkman, R. Dynamic oct signal loss for determining RPE radiant exposure damage thresholds in microsecond laser microsurgery. Appl. Sci. 2021, 11, 5535. [Google Scholar] [CrossRef]
- Fennell, D.F.; Whatley, R.E.; Mclntyre, T.M.; Prescott, S.M.; Zimmerman, G.A. Endothelial cells reestablish functional integrity after reversible permeabilization. Arterioscler. Thromb. 1991, 11, 97. [Google Scholar] [CrossRef]
- Donato, M.; Soto, C.; Lanio, M.E.; Itri, R.; Alvarez, C. The pore-forming activity of sticholysin I is enhanced by the presence of a phospholipid hydroperoxide in memthe brane. Toxicon 2021, 204, 44–55. [Google Scholar] [CrossRef]
- Xu, K.; Li, M.O. Delivery of membrane-impermeable molecules to primary mouse T lymphocytes. STAR Protocols 2021, 2, 100757. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Wang, B.; Li, S.; Yang, S.J. Pyroptosis, and its role in central nervous system disease. Mol. Biol. 2021, 25, 167379. [Google Scholar] [CrossRef] [PubMed]
- Bogard, A.F.; Finn, P.W.; McKinney, F.; Flacau, I.M.; Smith, A.R.; Whiting, R.; Fologea, D. The ionic selectivity of lysenin channels in open and sub-conducting states. Membranes 2021, 11, 897. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-B. Channelopathies. Korean J. Pediatr. 2014, 57, 1–18. [Google Scholar] [CrossRef]
- Abe, M.; Nishihara, R.; Kim, S.B.; Suzuki, K. Near-infrared bioluminescence imaging of animal cells with through-bond energy transfer cassette. Methods Mol. Biol. 2021, 2274, 103–110. [Google Scholar] [CrossRef]
- Uscanga-Palomeque, A.C.; Zapata-Benavides, P.; Saavedra-Alonso, S.; Zamora-Ávila, D.E.; Franco-Molina, M.A.; Arellano-Rodríguez, M.; Manilla-Muñoz, E.; Martínez-Torres, A.C.; Trejo-Ávila, L.M.; Rodríguez-Padilla, C. Inhibitory effect of Cuphea aequipetala extracts on murine B16F10 melanoma in vitro and in vivo. Biomed. Res. Int. 2019, 29, 8560527. [Google Scholar] [CrossRef]
- Naghdi, S.; Slovinsky, W.S.; Madesh, M.; Rubin, E.; Hajnóczky, G. Mitochondrial fusion and Bid-mediated mitochondrial apoptosis are perturbed by alcohol with distinct dependence on its metabolism. Cell Death Dis. 2018, 9, 1028. [Google Scholar] [CrossRef]
- Romani, M.; Auwerx, J. Phalloidin staining of actin filaments for visualization of muscle fibres in Caenorhabditis elegans. Bio-Protocol 2021, 11, e4183. [Google Scholar] [CrossRef]
- Fontanille, P.; Larroche, C. Optimization of isonovalal production from alpha-pinene oxide using permeabilized cells of Pseudomonas Rhodesiae CIP 107491. Appl. Microbiol. Biotechnol. 2003, 60, 534–540. [Google Scholar] [CrossRef]
- Lagadec, F.; Carlon-Andres, I.; Rogues, J.; Port, S.; Wodrich, H.; Kehlenbach, R.H. CRM1 promotes capsid disassembly and nuclear envelope translocation of adenovirus independently of its export function. J. Virol. 2021, 10, JVI0127321. [Google Scholar] [CrossRef]
- Schulz, I. Permeabilizing cells: Some methods and applications for the study of intracellular processes. Methods Enzymol. 1990, 192, 280–300. [Google Scholar] [CrossRef] [PubMed]
- Weigel, P.H.; Ray, D.A.; Oka, J.A. Quantitation of intracellular membrane-bound enzymes and receptors in digitonin-permeabilized cells. Anal. Biochem. 1963, 133, 437–449. [Google Scholar] [CrossRef]
- Lei, X.H.; Bochner, B.R. Optimization of cell permeabilization in electron flow based mitochondrial function assays. Free Radic. Biol. Med. 2021, 177, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Zhou, B.; Das, A.; Zhong, M.; Guo, Q.; Zhang, D.-W.; Hing, K.A.; Sobrino, J.; Titirici, M.-M.; Krause, S. Photoelectrochemical imaging system with high h spatiotemporal resolution for visualizing dynamic cellular responses. Biosens. Bioelectron. 2021, 180, 113121. [Google Scholar] [CrossRef] [PubMed]
- Amidzadeh, Z.; Behbahani, A.B.; Erfani, N.; Sharifzadeh, S.; Ranjbaran, R.; Moezi, L.; Aboualizadeh, F.; Okhovat, A.O.; Alavi, P.; Azarpira, N. Assessment of different permeabilization methods of minimizing damage to the adherent cells for detection of intracellular RNA by flow cytometry. Med. Biotechnol. 2014, 6, 38–46. [Google Scholar]
- Miller, M.R.; Cas Castello, J., Jr.; Pardee, A.B. A permeable animal cell preparation for studying macromolecular synthesis. DNA synthesis and the role of deoxyribonucleotides in S phase initiation. Biochemistry 1978, 17, 1073–1080. [Google Scholar] [CrossRef]
- Basnakian, A.; Banfalvi, G.; Sarkar, N. Contribution of DNA polymerase delta to DNA replication in permeable CHO cells synchronized in S phase. Nucleic Acids Res. 1989, 17, 4757–4767. [Google Scholar] [CrossRef]
- Röhme, D. Prematurely condensed chromosomes of the Indian muntjac: A model system for the analysis of chromosome condensation and banding. Hereditas 1974, 76, 251–258. [Google Scholar] [CrossRef]
- Pillidge, L.; Downes, C.S.; Johnson, R.T. Defective post-replication recovery and UV sensitivity in a simian virus 40-transformed Indian muntjac cell line. Int. J. Radiat. Biol. 1986, 50, 119–136. [Google Scholar] [CrossRef]
- Sperling, K.; Lüdtke, E.K. Arrangement of prematurely condensed chromosomes in cultured cells and lymphocytes of the indian muntjac. Chromosoma 1981, 83, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Schweitzer, R.; Sharabany, M.; Seger, R.; Shilo, B.Z. Secreted Spitz triggers the DER signaling pathway and is a limiting component in embryonic ventral endoderm determination. Genes Dev. 1997, 9, 1518–1529. [Google Scholar]
- Trencsenyi, G.; Nagy, G.; Bako, F.; Kertai, P.; Banfalvi, G. Incomplete chromatin condensation in enlarged rat myelocytic leukaemia cells. DNA Cell Biol. 2012, 31, 470–478. [Google Scholar] [CrossRef] [PubMed]
- Banfalvi, G. Permeability of the Biological Membranes; Springer Publishing AG: Cham, Switzerland, 2016. [Google Scholar]
- Uzvolgyi, E.; Katona, A.; Kertai, P. Tumor cell implantation with the use of Gelaspon gelatin sponge disc. Cancer Lett. 1990, 51, 1–5. [Google Scholar] [CrossRef]
- Lozzio, E.B.; Lozzio, B.B. Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 1975, 45, 321–334. [Google Scholar] [CrossRef] [PubMed]
- Trencsenyi, G.; Bako, F.; Nagy, G.; Krertai, P.; Banfalvi, G. Methotrexate induced apoptotic and necrotic chromatin changes in rat myeloid leukemia cells. Inflamm. Res. 2015, 64, 193–203. [Google Scholar] [CrossRef]
- Halldorsson, H.; Gray, D.A.; Shall, S. Poly (ADP-ribose) polymerase activity In nucleotide permeable cells. FEBS Lett. 1978, 85, 349–359. [Google Scholar] [CrossRef]
- Borland, C. Builder 5 for Windows; Inprise Corp.: Austin, TX, USA, 2000; 98/95/NT, ASIN: B001EYJC28. [Google Scholar]
- Banfalvi, G. Apoptotic agents inducing genotoxicity specific chromatin changes. Apoptosis 2014, 19, 1301–1316. [Google Scholar] [CrossRef]
- Banfalvi, G. Linear connection of condensing chromosomes in nuclei of synchronized CHO cells. DNA Cell Biol. 2006, 25, 541–545. [Google Scholar] [CrossRef]
- Trencsenyi, G.; Ujvarosi, K.; Nagy, G.; Banfalvi, G. Transition from chromatin bodies to linear chromosomes in nuclei of murine pre-B cells synchronized in S phase. DNA Cell Biol. 2007, 26, 549–556. [Google Scholar] [CrossRef]
- Oda, T.; Watanabe, S.; Maki, Y.; Iwamoto, H. Nucleotide requirements for DNS. Nucleic Acids Symp Ser. 1981, 10, 159–162. [Google Scholar]
- Belmont, A.S.; Li, G.; Sudlow, G.; Robinett, C. Chapter 13: Visualization of large-scale chromatin structure and dynamics using the lac operator/lac repressor reporter system. Meth. Cell Biol. 1998, 58, 203–222. [Google Scholar]
- Li, G.; Reinberg, D. Chromatin higher-order structures and gene regulation. Curr Opin Genet Dev. 2011, 21, 175–186. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Banfalvi, G. Macromolecular Structure of Linearly Arranged Eukaryotic Chromosomes. Int. J. Mol. Sci. 2022, 23, 9503. https://doi.org/10.3390/ijms23169503
Banfalvi G. Macromolecular Structure of Linearly Arranged Eukaryotic Chromosomes. International Journal of Molecular Sciences. 2022; 23(16):9503. https://doi.org/10.3390/ijms23169503
Chicago/Turabian StyleBanfalvi, Gaspar. 2022. "Macromolecular Structure of Linearly Arranged Eukaryotic Chromosomes" International Journal of Molecular Sciences 23, no. 16: 9503. https://doi.org/10.3390/ijms23169503