Disclosing an In-Frame Deletion of the Titin Gene as the Possible Predisposing Factor of Anthracycline-Induced Cardiomyopathy: A Case Report
Abstract
:1. Introduction
2. Materials and Methods
3. Case Presentation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| CCM | chemotherapy-related cardiomyopathy |
| NGS | next-generation sequencing |
| WES | whole exome sequences |
| PBMCs | peripheral blood mononuclear cells |
| QCII | QIAGEN Clinical Insight Interpret |
| VUS | variants of unknown significance |
| DCM | dilated cardiomyopathy |
References
- O’Hare, M.; Sharma, A.; Murphy, K.; Mookadam, F.; Lee, H. Cardio-oncology Part I: Chemotherapy and cardiovascular toxicity. Expert Rev. Cardiovasc. Ther. 2015, 13, 511–518. [Google Scholar] [CrossRef] [PubMed]
- Ewer, M.S.; Ewer, S.M. Cardiotoxicity of anticancer treatments. Nat. Rev. Cardiol. 2015, 12, 547–558. [Google Scholar] [CrossRef] [PubMed]
- Vallakati, A.; Konda, B.; Lenihan, D.J.; Baliga, R.R. Management of Cancer Therapeutics–Related Cardiac Dysfunction. Heart Fail. Clin. 2018, 14, 553–567. [Google Scholar] [CrossRef] [PubMed]
- Bin Wu, B.; Leung, K.T.; Poon, E.N.-Y. Mitochondrial-Targeted Therapy for Doxorubicin-Induced Cardiotoxicity. Int. J. Mol. Sci. 2022, 23, 1912. [Google Scholar] [CrossRef]
- Agunbiade, T.A.; Zaghlol, R.Y.; Barac, A. Heart Failure in Relation to Anthracyclines and Other Chemotherapies. Methodist DeBakey Cardiovasc. J. 2019, 15, 243–249. [Google Scholar] [CrossRef]
- McGowan, J.V.; Chung, R.; Maulik, A.; Piotrowska, I.; Walker, J.M.; Yellon, D.M. Anthracycline Chemotherapy and Cardiotoxicity. Cardiovasc. Drugs Ther. 2017, 31, 63–75. [Google Scholar] [CrossRef]
- Aminkeng, F.; Ross, C.J.D.; Rassekh, S.R.; Hwang, S.; Rieder, M.J.; Bhavsar, A.P.; Smith, A.; Sanatani, S.; Gelmon, K.A.; Bernstein, D.; et al. Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br. J. Clin. Pharmacol. 2016, 82, 683–695. [Google Scholar] [CrossRef]
- Armenian, S.; Bhatia, S. Predicting and Preventing Anthracycline-Related Cardiotoxicity. Am. Soc. Clin. Oncol. Educ. Book Am. Soc. Clin. Oncol. Annu. Meet. 2018, 38, 3–12. [Google Scholar] [CrossRef]
- Darwanto, A.; Hein, A.-M.; Strauss, S.; Kong, Y.; Sheridan, A.; Richards, D.; Lader, E.; Ngowe, M.; Pelletier, T.; Adams, D.; et al. Use of the QIAGEN GeneReader NGS system for detection of KRAS mutations, validated by the QIAGEN Therascreen PCR kit and alternative NGS platform. BMC Cancer 2017, 17, 358. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–424. [Google Scholar] [CrossRef]
- Thorvaldsdóttir, H.; Robinson, J.T.; Mesirov, J.P. Integrative Genomics Viewer (IGV): High-performance genomics data visualization and exploration. Brief. Bioinform. 2013, 14, 178–192. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Pavia, P.; Kim, Y.; Restrepo-Cordoba, M.A.; Lunde, I.G.; Wakimoto, H.; Smith, A.M.; Toepfer, C.N.; Getz, K.; Gorham, J.; Patel, P.; et al. Genetic Variants Associated with Cancer Therapy–Induced Cardiomyopathy. Circulation 2019, 140, 31–41. [Google Scholar] [CrossRef] [PubMed]
- Linschoten, M.; Teske, A.J.; Baas, A.F.; Vink, A.; Dooijes, D.; Baars, H.F.; Asselbergs, F.W. Truncating Titin (TTN) Variants in Chemotherapy-Induced Cardiomyopathy. J. Card. Fail. 2017, 23, 476–479. [Google Scholar] [CrossRef] [PubMed]
- Tripaydonis, A.; Conyers, R.; Elliott, D.A. Pediatric Anthracycline-Induced Cardiotoxicity: Mechanisms, Pharmacogenomics, and Pluripotent Stem-Cell Modeling. Clin. Pharmacol. Ther. 2019, 105, 614–624. [Google Scholar] [CrossRef]
- Chaudhari, U.; Nemade, H.; Wagh, V.; Gaspar, J.A.; Ellis, J.K.; Srinivasan, S.P.; Spitkovski, D.; Nguemo, F.; Louisse, J.; Bremer, S.; et al. Identification of Genomic Biomarkers for Anthracycline-Induced Cardiotoxicity in Human IPSC-Derived Cardiomyocytes: An in Vitro Repeated Exposure Toxicity Approach for Safety Assessment. Arch. Toxicol. 2016, 90, 2763–2777. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, H.; Wu, G.; Luo, X.; Zhang, C.; Zou, Y.; Wang, H.; Hui, R.; Wang, J.; Song, L. Titin-Truncating Variants Increase the Risk of Cardiovascular Death in Patients with Hypertrophic Cardiomyopathy. Can. J. Cardiol. 2017, 33, 1292–1297. [Google Scholar] [CrossRef]
- Burstein, D.S.; Gaynor, J.W.; Griffis, H.; Ritter, A.; Connor, M.J.O.; Rossano, J.W.; Lin, K.Y.; Ahrens-Nicklas, R.C. Genetic Variant Burden and Adverse Outcomes in Pediatric Cardiomyopathy. Pediatr. Res. 2021, 89, 1470–1476. [Google Scholar] [CrossRef]
- Garfinkel, A.C.; Seidman, J.G.; Seidman, C.E. Genetic Pathogenesis of Hypertrophic and Dilated Cardiomyopathy. Heart Fail. Clin. 2018, 14, 139–146. [Google Scholar] [CrossRef]
- Yotti, R.; Seidman, C.E.; Seidman, J.G. Advances in the Genetic Basis and Pathogenesis of Sarcomere Cardiomyopathies. Annu. Rev. Genom. Hum. Genet. 2019, 20, 129–153. [Google Scholar] [CrossRef]
- Yang, X.; Li, G.; Yang, T.; Guan, M.; An, N.; Yang, F.; Dai, Q.; Zhong, C.; Luo, C.; Gao, Y.; et al. Possible Susceptibility Genes for Intervention against Chemotherapy-Induced Cardiotoxicity. Oxid. Med. Cell. Longev. 2020, 2020, 4894625. [Google Scholar] [CrossRef]
- Schneider, V.A.; Graves-Lindsay, T.; Howe, K.; Bouk, N.; Chen, H.-C.; Kitts, P.A.; Murphy, T.D.; Pruitt, K.D.; Thibaud-Nissen, F.; Albracht, D.; et al. Evaluation of GRCh38 and de Novo Haploid Genome Assemblies Demonstrates the Enduring Quality of the Reference Assembly. Genome Res. 2017, 27, 849–864. [Google Scholar] [CrossRef] [PubMed]

| Gene | Ensembl Gene ID |
|---|---|
| ABCB1 | ENSG00000085563 |
| ABCC9 | ENSG00000069431 |
| ACTA1 | ENSG00000143632 |
| ACTN2 | ENSG00000077522 |
| ANK2 | ENSG00000145362 |
| ANKRD1 | ENSG00000148677 |
| ATP1A2 | ENSG00000018625 |
| BAG3 | ENSG00000151929 |
| CACNA2D2 | ENSG00000007402 |
| CASQ2 | ENSG00000118729 |
| CAT | ENSG00000121691 |
| CELF4 | ENSG00000101489 |
| CORIN | ENSG00000145244 |
| CRYAB | ENSG00000109846 |
| DES | ENSG00000175084 |
| DSP | ENSG00000096696 |
| ERBB3 | ENSG00000065361 |
| FLNC | ENSG00000128591 |
| ILK | ENSG00000166333 |
| KCNH2 | ENSG00000055118 |
| KCNQ1 | ENSG00000053918 |
| LAMA4 | ENSG00000112769 |
| LDB3 | ENSG00000122367 |
| MIB2 | ENSG00000197530 |
| MYH6 | ENSG00000197616 |
| MYH7 | ENSG00000092054 |
| MYL10 | ENSG00000106436 |
| MYL5 | ENSG00000215375 |
| MYL6B | ENSG00000196465 |
| MYL7 | ENSG00000106631 |
| MYLK | ENSG00000065534 |
| MYLK4 | ENSG00000145949 |
| MYLKP1 | ENSG00000228868 |
| MYO10 | ENSG00000145555 |
| MYO16 | ENSG00000041515 |
| MYO1A | ENSG00000166866 |
| MYO1G | ENSG00000136286 |
| MYO1H | ENSG00000174527 |
| MYO3A | ENSG00000095777 |
| MYO3B | ENSG00000071909 |
| MYO5BP1 | ENSG00000235130 |
| MYO5BP2 | ENSG00000238245 |
| MYO6 | ENSG00000196586 |
| MYO7A | ENSG00000137474 |
| MYO7B | ENSG00000169994 |
| MYOF | ENSG00000138119 |
| MYOG | ENSG00000122180 |
| MYOM2 | ENSG00000036448 |
| MYOM3 | ENSG00000142661 |
| MYPN | ENSG00000138347 |
| MYRF | ENSG00000124920 |
| MYRFL | ENSG00000166268 |
| MYSM1 | ENSG00000162601 |
| MYT1L | ENSG00000186487 |
| NEBL | ENSG00000078114 |
| NEXN | ENSG00000162614 |
| NRAP | ENSG00000197893 |
| PKP2 | ENSG00000057294 |
| PRDM16 | ENSG00000142611 |
| PRKAG2 | ENSG00000106617 |
| RAC2 | ENSG00000128340 |
| RARG | ENSG00000172819 |
| RBM20 | ENSG00000203867 |
| RYR2 | ENSG00000198626 |
| SCN5A | ENSG00000183873 |
| SGCD | ENSG00000170624 |
| SLC22A16 | ENSG00000004809 |
| SLC28A3 | ENSG00000197506 |
| TGFBI | ENSG00000120708 |
| TMEM43 | ENSG00000170876 |
| TMPO | ENSG00000120802 |
| TNN | ENSG00000120332 |
| TNNI1 | ENSG00000159173 |
| TNNT2 | ENSG00000118194 |
| TNNT3 | ENSG00000130595 |
| TTN | ENSG00000155657 |
| Gene | Alteration | Function | Impact | Population Frequency (East Asia, gnomAD) | Pathogenicity 1 |
|---|---|---|---|---|---|
| MYO1A | c.1630C > T p.R544W | Normal | Missense | 0.17% | Uncertain significance |
| TTN | c.55637_55639delAAG p.E18546del | Loss | In-frame deletion | 0.05% | Uncertain significance |
| RYR2 | c.9336T > C p.I3112I | Normal | Synonymous | 0.006% | Likely benign |
| Case No. | Sex | Diagnosis | Anthracycline | CCM |
|---|---|---|---|---|
| TAIT-CCM-00 | Male | AML | + | + |
| TAIT-CCM-01 (CCM parents) | Male | Health donor | _ | _ |
| TAIT-CCM-02 (CCM parents) | Female | Health donor | _ | _ |
| TAIT-CCM-03 (CCM parents) | Male | Health donor | _ | _ |
| TAIT-CCM-04 | Female | Health donor | _ | _ |
| TAIT-CCM-05 | Female | Health donor | _ | _ |
| TAIT-CCM-06 | Female | Health donor | _ | _ |
| TAIT-CCM-07 | Male | Health donor | _ | _ |
| TAIT-CCM-08 (DNA QC fail) | Male | Colon cancer | _ | _ |
| TAIT-CCM-09 | Female | Colon cancer | _ | _ |
| TAIT-CCM-10 | Female | Colon cancer | _ | _ |
| TAIT-CCM-11 | Male | Colon cancer | _ | _ |
| TAIT-CCM-12 | Female | Breast cancer | _ | _ |
| TAIT-CCM-13 | Male | Lymphoma | + | _ |
| TAIT-CCM-14 | Female | Colon cancer | _ | _ |
| Case No. | Alteration | Function | Impact | Population Frequency (East Asia, gnomAD) | Pathogenicity |
|---|---|---|---|---|---|
| TAIT-CCM-00 | c.55637_55639delAAG p.E18546del | Loss | In-frame deletion | 0.05% | Uncertain significance |
| TAIT-CCM-01 | No alteration | - | - | _ | _ |
| TAIT-CCM-02 | c.55637_55639delAAG p.E18546del | Loss | In-frame deletion | 0.05% | Uncertain significance |
| TAIT-CCM-03 | c.55637_55639delAAG p.E18546del | Loss | In-frame deletion | 0.05% | Uncertain significance |
| TAIT-CCM-04 | No alteration | - | - | _ | _ |
| TAIT-CCM-05 | c.65504A > G p.N21835S | Loss | Missense | 0.44% | Uncertain significance |
| TAIT-CCM-06 | No alteration | - | - | _ | _ |
| TAIT-CCM-07 | c.13250G > A p.S4417N | Loss | Missense | 0.10% | Uncertain significance |
| c.23008G > A p.D7670N | Loss | Missense | 0.006% | Uncertain significance | |
| TAIT-CCM-09 | No alteration | - | - | _ | _ |
| TAIT-CCM-10 | c.27596G > A p.R9199H | Loss | Missense | 0.50% | Likely benign |
| c.37143T > C p.A12381A | Normal | Synonymous | 0.06% | Likely benign | |
| c.58211C > G p.S19404C | Loss | Missense | 0.54% | Likely benign | |
| TAIT-CCM-11 | c.17618T > C p.V5873A | Normal | Missense | 0.20% | Uncertain significance |
| TAIT-CCM-12 | c.36157C > T p.R12053W | Loss | Missense | 0.15% | Likely benign |
| TAIT-CCM-13 | c.34081C > T p.L11361F | Normal | Missense | 0.10% | Likely benign |
| TAIT-CCM-14 | c.1709C > T p.A570V | Normal | Missense | 0.74% | Likely benign |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Y.-W.; Weng, H.-Y.; Tsai, S.-F.; Fan, F.S. Disclosing an In-Frame Deletion of the Titin Gene as the Possible Predisposing Factor of Anthracycline-Induced Cardiomyopathy: A Case Report. Int. J. Mol. Sci. 2022, 23, 9261. https://doi.org/10.3390/ijms23169261
Chang Y-W, Weng H-Y, Tsai S-F, Fan FS. Disclosing an In-Frame Deletion of the Titin Gene as the Possible Predisposing Factor of Anthracycline-Induced Cardiomyopathy: A Case Report. International Journal of Molecular Sciences. 2022; 23(16):9261. https://doi.org/10.3390/ijms23169261
Chicago/Turabian StyleChang, Yu-Wei, Hui-Ying Weng, Shih-Feng Tsai, and Frank Sheng Fan. 2022. "Disclosing an In-Frame Deletion of the Titin Gene as the Possible Predisposing Factor of Anthracycline-Induced Cardiomyopathy: A Case Report" International Journal of Molecular Sciences 23, no. 16: 9261. https://doi.org/10.3390/ijms23169261
APA StyleChang, Y.-W., Weng, H.-Y., Tsai, S.-F., & Fan, F. S. (2022). Disclosing an In-Frame Deletion of the Titin Gene as the Possible Predisposing Factor of Anthracycline-Induced Cardiomyopathy: A Case Report. International Journal of Molecular Sciences, 23(16), 9261. https://doi.org/10.3390/ijms23169261

