mTOR: A Potential New Target in Nonalcoholic Fatty Liver Disease
Abstract
:1. Introduction
2. Architecture of mTORC1 and mTORC2
3. mTOR Regulates Liver Lipid Metabolism through SREBPs
4. mTOR Regulates Hepatic IR through Foxo1 and Lipin1
5. mTOR Regulates OS through PIG3, P53, JNK
6. mTOR Regulates the Intestinal Flora through TLRs
7. mTOR Regulates Liver Autophagy
8. mTOR Regulates Liver Inflammation
9. mTOR Regulates Liver Genetic Polymorphisms and Epigenetics
10. Crosstalk between mTOR and Novel Pathways: A Source of Potential New Targets for the Treatment of NAFLD-Associated HCC
11. Discussion
- (1)
- Since mTOR is closely related to various influencing factors in NAFLD, it is speculated that mTOR can be used as one of the early noninvasive diagnostic indicators.
- (2)
- The molecular mechanism of mTOR regulating NAFLD was elaborated upon.
- (3)
- The therapeutic effect of crosstalk between mTOR and Hippo, Hedgehog, and Notch on NAFLD-HCC was predicted.
- (4)
- mTOR can be used as a new therapeutic target for NAFLD in clinic.
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, D.; El-Serag, H.; Loomba, R. Global epidemiology of NAFLD-related HCC: Trends, predictions, risk factors and prevention. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, J.; Nunes, G.; Fonseca, C.; Canhoto, M.; Barata, A.; Santos, C. Comment to: “EASL-EASD-EASO Clinical Practice Guidelines for the management of non-alcoholic fatty liver disease”. J. Hepatol. 2017, 66, 465–466. [Google Scholar] [CrossRef] [PubMed]
- Cernea, S.; Roiban, A.; Both, E.; Huţanu, A. Serum leptin and leptin resistance correlations with NAFLD in patients with type 2 diabetes. Diabetes/Metab. Res. Rev. 2018, 34, e3050. [Google Scholar] [CrossRef] [PubMed]
- Fang, Y.; Chen, H.; Wang, C.; Liang, L. Pathogenesis of non-alcoholic fatty liver disease in children and adolescence: From “two hit theory” to “multiple hit model”. World J. Gastroenterol. 2018, 24, 2974–2983. [Google Scholar] [CrossRef] [PubMed]
- Postic, C.; Girard, J. The role of the lipogenic pathway in the development of hepatic steatosis. Diabetes Metab. 2008, 34, 643–648. [Google Scholar] [CrossRef]
- Tilg, H.; Moschen, A. Evolution of inflammation in nonalcoholic fatty liver disease: The multiple parallel hits hypothesis. Hepatology 2010, 52, 1836–1846. [Google Scholar] [CrossRef]
- Gelli, C.; Tarocchi, M.; Abenavoli, L.; di Renzo, L.; Galli, A.; de Lorenzo, A. Effect of a counseling-supported treatment with the Mediterranean diet and physical activity on the severity of the non-alcoholic fatty liver disease. World J. Gastroenterol. 2017, 23, 3150–3162. [Google Scholar] [CrossRef]
- Wang, Z.; Li, S.; Wang, R.; Guo, L.; Xu, D.; Zhang, T.; Xu, Y.; Wang, W.; Wang, M.; Gan, Z.; et al. The protective effects of the β3 adrenergic receptor agonist BRL37344 against liver steatosis and inflammation in a rat model of high-fat diet-induced nonalcoholic fatty liver disease (NAFLD). Mol. Med. 2020, 26, 54. [Google Scholar] [CrossRef]
- Park, E.; Lee, J.; Yu, G.; He, G.; Ali, S.; Holzer, R.; Osterreicher, C.; Takahashi, H.; Karin, M. Dietary and genetic obesity promote liver inflammation and tumorigenesis by enhancing IL-6 and TNF expression. Cell 2010, 140, 197–208. [Google Scholar] [CrossRef]
- Baffy, G.; Brunt, E.; Caldwell, S. Hepatocellular carcinoma in non-alcoholic fatty liver disease: An emerging menace. J. Hepatol. 2012, 56, 1384–1391. [Google Scholar] [CrossRef]
- Rotman, Y.; Sanyal, A. Current and upcoming pharmacotherapy for non-alcoholic fatty liver disease. Gut 2017, 66, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhou, X. Research progress of mTOR inhibitors. Eur. J. Med. Chem. 2020, 208, 112820. [Google Scholar] [CrossRef] [PubMed]
- Guertin, D.; Stevens, D.; Thoreen, C.; Burds, A.; Kalaany, N.; Moffat, J.; Brown, M.; Fitzgerald, K.; Sabatini, D. Ablation in mice of the mTORC components raptor, rictor, or mLST8 reveals that mTORC2 is required for signaling to Akt-FOXO and PKCalpha, but not S6K1. Dev. Cell 2006, 11, 859–871. [Google Scholar] [CrossRef] [PubMed]
- Vézina, C.; Kudelski, A.; Sehgal, S. Rapamycin (AY-22989), a new antifungal antibiotic. I. Taxonomy of the producing streptomycete and isolation of the active principle. J. Antibiot. 1975, 28, 721–726. [Google Scholar] [CrossRef]
- Liu, G.; Sabatini, D. mTOR at the nexus of nutrition, growth, ageing and disease. Nat. Rev. Mol. Cell Biol. 2020, 21, 183–203. [Google Scholar] [CrossRef]
- Laplante, M.; Sabatini, D. An emerging role of mTOR in lipid biosynthesis. Curr. Biol. CB 2009, 19, R1046–R1052. [Google Scholar] [CrossRef]
- Hara, K.; Maruki, Y.; Long, X.; Yoshino, K.; Oshiro, N.; Hidayat, S.; Tokunaga, C.; Avruch, J.; Yonezawa, K. Raptor, a binding partner of target of rapamycin (TOR), mediates TOR action. Cell 2002, 110, 177–189. [Google Scholar] [CrossRef]
- Yip, C.; Murata, K.; Walz, T.; Sabatini, D.; Kang, S. Structure of the human mTOR complex I and its implications for rapamycin inhibition. Mol. Cell 2010, 38, 768–774. [Google Scholar] [CrossRef]
- Dougherty, M.; Lehman, C.; Spencer, A.; Mendez, R.; David, A.; Taniguchi, L.; Wulfkuhle, J.; Petricoin, E.; Gioeli, D.; Jameson, M. PRAS40 Phosphorylation Correlates with Insulin-Like Growth Factor-1 Receptor-Induced Resistance to Epidermal Growth Factor Receptor Inhibition in Head and Neck Cancer Cells. Mol. Cancer Res. MCR 2020, 18, 1392–1401. [Google Scholar] [CrossRef]
- Peterson, T.; Laplante, M.; Thoreen, C.; Sancak, Y.; Kang, S.; Kuehl, W.; Gray, N.; Sabatini, D. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009, 137, 873–886. [Google Scholar] [CrossRef]
- Gao, X.; Yang, H.; Su, J.; Xiao, W.; Ni, W.; Gu, Y. Aescin Protects Neuron from Ischemia-Reperfusion Injury via Regulating the PRAS40/mTOR Signaling Pathway. Oxidative Med. Cell. Longev. 2020, 2020, 7815325. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Rudge, D.; Koos, J.; Vaidialingam, B.; Yang, H.; Pavletich, N. mTOR kinase structure, mechanism and regulation. Nature 2013, 497, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Hwang, Y.; Kim, L.; Song, W.; Edwards, D.; Cook, R.; Chen, J. In VivoDisruption of the Scaffolding Function of mLST8 Selectively Inhibits mTORC2 Assembly and Function and Suppresses mTORC2-Dependent Tumor Growth. Cancer Res. 2019, 79, 3178–3184. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Liu, M.; Tian, Y.; Li, J.; Qi, Y.; Zhao, D.; Wu, Z.; Huang, M.; Wong, C.; Wang, H.; et al. Cryo-EM structure of human mTOR complex 2. Cell Res. 2018, 28, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Alessi, D.; Pearce, L.; García-Martínez, J. New insights into mTOR signaling: mTORC2 and beyond. Sci. Signal. 2009, 2, pe27. [Google Scholar] [CrossRef] [PubMed]
- Zou, Z.; Chen, J.; Yang, J.; Bai, X. Targeted Inhibition of Rictor/mTORC2 in Cancer Treatment: A New Era after Rapamycin. Curr. Cancer Drug Targets 2016, 16, 288–304. [Google Scholar] [CrossRef]
- Lamming, D.; Ye, L.; Katajisto, P.; Goncalves, M.; Saitoh, M.; Stevens, D.; Davis, J.; Salmon, A.; Richardson, A.; Ahima, R.; et al. Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 2012, 335, 1638–1643. [Google Scholar] [CrossRef]
- Li, T.; Weng, J.; Zhang, Y.; Liang, K.; Fu, G.; Li, Y.; Bai, X.; Gao, Y. mTOR direct crosstalk with STAT5 promotes de novo lipid synthesis and induces hepatocellular carcinoma. Cell Death Dis. 2019, 10, 619. [Google Scholar] [CrossRef]
- Wang, Y.; Viscarra, J.; Kim, S.; Sul, H. Transcriptional regulation of hepatic lipogenesis. Nat. Rev. Mol. Cell Biol. 2015, 16, 678–689. [Google Scholar] [CrossRef]
- Brown, N.; Stefanovic-Racic, M.; Sipula, I.; Perdomo, G. The mammalian target of rapamycin regulates lipid metabolism in primary cultures of rat hepatocytes. Metab. Clin. Exp. 2007, 56, 1500–1507. [Google Scholar] [CrossRef]
- Younossi, Z.; Koenig, A.; Abdelatif, D.; Fazel, Y.; Henry, L.; Wymer, M. Global epidemiology of nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016, 64, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Mauvoisin, D.; Rocque, G.; Arfa, O.; Radenne, A.; Boissier, P.; Mounier, C. Role of the PI3-kinase/mTor pathway in the regulation of the stearoyl CoA desaturase (SCD1) gene expression by insulin in liver. J. Cell Commun. Signal. 2007, 1, 113–125. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Qiu, D.; Liang, X.; Huang, Y.; Wang, Y.; Jia, X.; Li, K.; Zhao, J.; Du, C.; Qiu, X.; et al. Lipotoxicity-induced STING1 activation stimulates MTORC1 and restricts hepatic lipophagy. Autophagy 2022, 18, 860–876. [Google Scholar] [CrossRef] [PubMed]
- Gosis, B.; Wada, S.; Thorsheim, C.; Li, K.; Jung, S.; Rhoades, J.; Yang, Y.; Brandimarto, J.; Li, L.; Uehara, K.; et al. Inhibition of nonalcoholic fatty liver disease in mice by selective inhibition of mTORC1. Science 2022, 376, eabf8271. [Google Scholar] [CrossRef]
- Porstmann, T.; Santos, C.; Griffiths, B.; Cully, M.; Wu, M.; Leevers, S.; Griffiths, J.; Chung, Y.; Schulze, A. SREBP activity is regulated by mTORC1 and contributes to Akt-dependent cell growth. Cell Metab. 2008, 8, 224–236. [Google Scholar] [CrossRef]
- Düvel, K.; Yecies, J.; Menon, S.; Raman, P.; Lipovsky, A.; Souza, A.; Triantafellow, E.; Ma, Q.; Gorski, R.; Cleaver, S.; et al. Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol. Cell 2010, 39, 171–183. [Google Scholar] [CrossRef]
- Yecies, J.; Zhang, H.; Menon, S.; Liu, S.; Yecies, D.; Lipovsky, A.; Gorgun, C.; Kwiatkowski, D.; Hotamisligil, G.; Lee, C.; et al. Akt stimulates hepatic SREBP1c and lipogenesis through parallel mTORC1-dependent and independent pathways. Cell Metab. 2011, 14, 21–32. [Google Scholar] [CrossRef]
- Menendez, J.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer 2007, 7, 763–777. [Google Scholar] [CrossRef]
- Zhou, G.; Myers, R.; Li, Y.; Chen, Y.; Shen, X.; Fenyk-Melody, J.; Wu, M.; Ventre, J.; Doebber, T.; Fujii, N.; et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Investig. 2001, 108, 1167–1174. [Google Scholar] [CrossRef]
- Bentzinger, C.; Romanino, K.; Cloëtta, D.; Lin, S.; Mascarenhas, J.; Oliveri, F.; Xia, J.; Casanova, E.; Costa, C.; Brink, M.; et al. Skeletal muscle-specific ablation of raptor, but not of rictor, causes metabolic changes and results in muscle dystrophy. Cell Metab. 2008, 8, 411–424. [Google Scholar] [CrossRef]
- Porstmann, T.; Santos, C.; Lewis, C.; Griffiths, B.; Schulze, A. A new player in the orchestra of cell growth: SREBP activity is regulated by mTORC1 and contributes to the regulation of cell and organ size. Biochem. Soc. Trans. 2009, 37, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Chen, J. Regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 2004, 53, 2748–2756. [Google Scholar] [CrossRef] [PubMed]
- Ma, N.; Wang, Y.; Xu, S.; Ni, Q.; Zheng, Q.; Zhu, B.; Cao, H.; Jiang, H.; Zhang, F.; Yuan, Y.; et al. PPDPF alleviates hepatic steatosis through inhibition of mTOR signaling. Nat. Commun. 2021, 12, 3059. [Google Scholar] [CrossRef] [PubMed]
- Rajan, M.; Nyman, E.; Kjølhede, P.; Cedersund, G.; Strålfors, P. Systems-wide Experimental and Modeling Analysis of Insulin Signaling through Forkhead Box Protein O1 (FOXO1) in Human Adipocytes, Normally and in Type 2 Diabetes. J. Biol. Chem. 2016, 291, 15806–15819. [Google Scholar] [CrossRef]
- Han, J.; Li, E.; Chen, L.; Zhang, Y.; Wei, F.; Liu, J.; Deng, H.; Wang, Y. The CREB coactivator CRTC2 controls hepatic lipid metabolism by regulating SREBP1. Nature 2015, 524, 243–246. [Google Scholar] [CrossRef]
- Kim, K.; Qiang, L.; Hayden, M.; Sparling, D.; Purcell, N.; Pajvani, U. mTORC1-independent Raptor prevents hepatic steatosis by stabilizing PHLPP2. Nat. Commun. 2016, 7, 10255. [Google Scholar] [CrossRef]
- Shang, P.; Zheng, F.; Han, F.; Song, Y.; Pan, Z.; Yu, S.; Zhuang, X.; Chen, S. Lipin1 mediates cognitive impairment in fld mice via PKD-ERK pathway. Biochem. Biophys. Res. Commun. 2020, 525, 286–291. [Google Scholar] [CrossRef]
- Martinez Calejman, C.; Trefely, S.; Entwisle, S.; Luciano, A.; Jung, S.; Hsiao, W.; Torres, A.; Hung, C.; Li, H.; Snyder, N.; et al. mTORC2-AKT signaling to ATP-citrate lyase drives brown adipogenesis and de novo lipogenesis. Nat. Commun. 2020, 11, 575. [Google Scholar] [CrossRef]
- Lee, J.; Lambert, J.; Hovhannisyan, Y.; Ramos-Roman, M.; Trombold, J.; Wagner, D.; Parks, E. Palmitoleic acid is elevated in fatty liver disease and reflects hepatic lipogenesis. Am. J. Clin. Nutr. 2015, 101, 34–43. [Google Scholar] [CrossRef]
- Podszun, M.; Alawad, A.; Lingala, S.; Morris, N.; Huang, W.; Yang, S.; Schoenfeld, M.; Rolt, A.; Ouwerkerk, R.; Valdez, K.; et al. Vitamin E treatment in NAFLD patients demonstrates that oxidative stress drives steatosis through upregulation of de-novo lipogenesis. Redox Biol. 2020, 37, 101710. [Google Scholar] [CrossRef]
- Yang, H.; Xie, Y.; Yang, D.; Ren, D. Oxidative stress-induced apoptosis in granulosa cells involves JNK, p53 and Puma. Oncotarget 2017, 8, 25310–25322. [Google Scholar] [CrossRef] [PubMed]
- Qi, M.; Zhou, H.; Fan, S.; Li, Z.; Yao, G.; Tashiro, S.; Onodera, S.; Xia, M.; Ikejima, T. mTOR inactivation by ROS-JNK-p53 pathway plays an essential role in psedolaric acid B induced autophagy-dependent senescence in murine fibrosarcoma L929 cells. Eur. J. Pharmacol. 2013, 715, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Chen, Y.; St Clair, D. ROS and p53: A versatile partnership. Free Radic. Biol. Med. 2008, 44, 1529–1535. [Google Scholar] [CrossRef] [PubMed]
- Simabuco, F.; Morale, M.; Pavan, I.; Morelli, A.; Silva, F.; Tamura, R. p53 and metabolism: From mechanism to therapeutics. Oncotarget 2018, 9, 23780–23823. [Google Scholar] [CrossRef]
- Porté, S.; Valencia, E.; Yakovtseva, E.; Borràs, E.; Shafqat, N.; Debreczeny, J.; Pike, A.; Oppermann, U.; Farrés, J.; Fita, I.; et al. Three-dimensional structure and enzymatic function of proapoptotic human p53-inducible quinone oxidoreductase PIG3. J. Biol. Chem. 2009, 284, 17194–17205. [Google Scholar] [CrossRef]
- Xu, J.; Cai, J.; Jin, X.; Yang, J.; Shen, Q.; Ding, X.; Liang, Y. PIG3 plays an oncogenic role in papillary thyroid cancer by activating the PI3K/AKT/PTEN pathway. Oncol. Rep. 2015, 34, 1424–1430. [Google Scholar] [CrossRef]
- Peyrou, M.; Bourgoin, L.; Foti, M. PTEN in non-alcoholic fatty liver disease/non-alcoholic steatohepatitis and cancer. Dig. Dis. 2010, 28, 236–246. [Google Scholar] [CrossRef]
- Korbecki, J.; Baranowska-Bosiacka, I.; Gutowska, I.; Chlubek, D. The effect of reactive oxygen species on the synthesis of prostanoids from arachidonic acid. J. Physiol. Pharmacol. Off. J. Pol. Physiol. Soc. 2013, 64, 409–421. [Google Scholar]
- Kumar, B.; Koul, S.; Khandrika, L.; Meacham, R.; Koul, H. Oxidative stress is inherent in prostate cancer cells and is required for aggressive phenotype. Cancer Res. 2008, 68, 1777–1785. [Google Scholar] [CrossRef]
- Kwong, E.; Li, Y.; Hylemon, P.; Zhou, H. Bile acids and sphingosine-1-phosphate receptor 2 in hepatic lipid metabolism. Acta Pharm. Sinica B 2015, 5, 151–157. [Google Scholar] [CrossRef]
- Mantena, S.; Vaughn, D.; Andringa, K.; Eccleston, H.; King, A.; Abrams, G.; Doeller, J.; Kraus, D.; Darley-Usmar, V.; Bailey, S. High fat diet induces dysregulation of hepatic oxygen gradients and mitochondrial function in vivo. Biochem. J. 2009, 417, 183–193. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Horie, Y.; Suzuki, A. Hepatocyte-specific Pten-deficient mice as a novel model for nonalcoholic steatohepatitis and hepatocellular carcinoma. Hepatol. Res. Off. J. Jpn. Soc. Hepatol. 2005, 33, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Korlach, J.; Baird, D.; Heikal, A.; Gee, K.; Hoffman, G.; Webb, W. Spontaneous nucleotide exchange in low molecular weight GTPases by fluorescently labeled gamma-phosphate-linked GTP analogs. Proc. Natl. Acad. Sci. USA 2004, 101, 2800–2805. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S.; Kobayashi, M.; Kitagishi, Y. Roles for PI3K/AKT/PTEN Pathway in Cell Signaling of Nonalcoholic Fatty Liver Disease. ISRN Endocrinol. 2013, 2013, 472432. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wong, C.; Fu, L.; Chen, H.; Zhao, L.; Li, C.; Zhou, Y.; Zhang, Y.; Xu, W.; Yang, Y.; et al. Squalene epoxidase drives NAFLD-induced hepatocellular carcinoma and is a pharmaceutical target. Sci. Transl. Med. 2018, 10, eaap9840. [Google Scholar] [CrossRef]
- Liu, C.; Zhou, B.; Meng, M.; Zhao, W.; Wang, D.; Yuan, Y.; Zheng, Y.; Qiu, J.; Li, Y.; Li, G.; et al. FOXA3 induction under endoplasmic reticulum stress contributes to non-alcoholic fatty liver disease. J. Hepatol. 2021, 75, 150–162. [Google Scholar] [CrossRef]
- Na, J.; Park, S.; Kang, Y.; Koh, H.; Kim, S. The clinical significance of serum ferritin in pediatric non-alcoholic Fatty liver disease. Pediatric Gastroenterol. Hepatol. Nutr. 2014, 17, 248–256. [Google Scholar] [CrossRef]
- Rouabhia, S.; Milic, N.; Abenavoli, L. Metformin in the treatment of non-alcoholic fatty liver disease: Safety, efficacy and mechanism. Expert Rev. Gastroenterol. Hepatol. 2014, 8, 343–349. [Google Scholar] [CrossRef]
- Safari, Z.; Gérard, P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cell. Mol. Life Sci. CMLS 2019, 76, 1541–1558. [Google Scholar] [CrossRef]
- Arab, J.; Arrese, M.; Trauner, M. Recent Insights into the Pathogenesis of Nonalcoholic Fatty Liver Disease. Annu. Rev. Pathol. 2018, 13, 321–350. [Google Scholar] [CrossRef]
- Koh, A.; Molinaro, A.; Ståhlman, M.; Khan, M.; Schmidt, C.; Mannerås-Holm, L.; Wu, H.; Carreras, A.; Jeong, H.; Olofsson, L.; et al. Microbially Produced Imidazole Propionate Impairs Insulin Signaling through mTORC1. Cell 2018, 175, 947–961.e917. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Pan, Q.; Cao, H.; Xin, F.; Zhao, Z.; Yang, R.; Zeng, J.; Zhou, H.; Fan, J. Lipotoxic Hepatocyte-Derived Exosomal MicroRNA 192-5p Activates Macrophages Through Rictor/Akt/Forkhead Box Transcription Factor O1 Signaling in Nonalcoholic Fatty Liver Disease. Hepatology 2020, 72, 454–469. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jiang, W.; Xu, J.; Wu, N.; Wang, Y.; Lin, T.; Liu, Y.; Liu, Y. E. coli NF73-1 Isolated from NASH Patients Aggravates NAFLD in Mice by Translocating Into the Liver and Stimulating M1 Polarization. Front. Cell. Infect. Microbiol. 2020, 10, 535940. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Li, X.; Wang, X.; Zheng, H.; Tang, S.; Lu, L.; Ma, X. Gut Barrier Proteins Mediate Liver Regulation by the Effects of Serotonin on the Non-Alcoholic Fatty Liver Disease. Curr. Protein Pept. Sci. 2020, 21, 978–984. [Google Scholar] [CrossRef]
- Mao, Y.; Cheng, J.; Yu, F.; Li, H.; Guo, C.; Fan, X. Ghrelin Attenuated Lipotoxicity via Autophagy Induction and Nuclear Factor-κB Inhibition. Cell. Physiol. Biochem. 2015, 37, 563–576. [Google Scholar] [CrossRef]
- Jasirwan, C.; Lesmana, C.; Hasan, I.; Sulaiman, A.; Gani, R. The role of gut microbiota in non-alcoholic fatty liver disease: Pathways of mechanisms. Biosci. Microbiota Food Health 2019, 38, 81–88. [Google Scholar] [CrossRef]
- Park, H.; Song, J.; Park, J.; Lim, B.; Moon, O.; Son, H.; Lee, J.; Gao, B.; Won, Y.; Kwon, H. TXNIP/VDUP1 attenuates steatohepatitis via autophagy and fatty acid oxidation. Autophagy 2021, 17, 2549–2564. [Google Scholar] [CrossRef]
- Munson, M.; Ganley, I. MTOR, PIK3C3, and autophagy: Signaling the beginning from the end. Autophagy 2015, 11, 2375–2376. [Google Scholar] [CrossRef]
- Al-Bari, M.; Xu, P. Molecular regulation of autophagy machinery by mTOR-dependent and -independent pathways. Ann. N. Y. Acad. Sci. 2020, 1467, 3–20. [Google Scholar] [CrossRef]
- Annett, S.; Moore, G.; Robson, T. FK506 binding proteins and inflammation related signalling pathways; Basic biology, current status and future prospects for pharmacological intervention. Pharmacol. Ther. 2020, 215, 107623. [Google Scholar] [CrossRef]
- Choi, A.; Ryter, S.; Levine, B. Autophagy in human health and disease. N. Engl. J. Med. 2013, 368, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Nobukini, T.; Thomas, G. The mTOR/S6K signalling pathway: The role of the TSC1/2 tumour suppressor complex and the proto-oncogene Rheb. Novartis Found. Symp. 2004, 262, 148–154. [Google Scholar]
- Spormann, L.; Rennert, C.; Kolbe, E.; Ott, F.; Lossius, C.; Lehmann, R.; Gebhardt, R.; Berg, T.; Matz-Soja, M. Cyclopamine and Rapamycin Synergistically Inhibit mTOR Signalling in Mouse Hepatocytes, Revealing an Interaction of Hedgehog and mTor Signalling in the Liver. Cells 2020, 9, 1817. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cui, Y.; Wang, X.; Shang, X.; Qi, Z.; Xue, J.; Zhao, X.; Deng, M.; Xie, M. PPARα/γ agonists and antagonists differently affect hepatic lipid metabolism, oxidative stress and inflammatory cytokine production in steatohepatitic rats. Cytokine 2015, 75, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Bhalla, S.; Evens, A.; Prachand, S.; Schumacker, P.; Gordon, L. Paradoxical regulation of hypoxia inducible factor-1α (HIF-1α) by histone deacetylase inhibitor in diffuse large B-cell lymphoma. PLoS ONE 2013, 8, e81333. [Google Scholar] [CrossRef]
- Singh, R.; Kaushik, S.; Wang, Y.; Xiang, Y.; Novak, I.; Komatsu, M.; Tanaka, K.; Cuervo, A.; Czaja, M. Autophagy regulates lipid metabolism. Nature 2009, 458, 1131–1135. [Google Scholar] [CrossRef]
- Kim, J.; Kundu, M.; Viollet, B.; Guan, K. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13, 132–141. [Google Scholar] [CrossRef]
- Jung, C.; Jun, C.; Ro, S.; Kim, Y.; Otto, N.; Cao, J.; Kundu, M.; Kim, D. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 2009, 20, 1992–2003. [Google Scholar] [CrossRef] [PubMed]
- Ganley, I.; Lam, D.H.; Wang, J.; Ding, X.; Chen, S.; Jiang, X. ULK1.ATG13.FIP200 complex mediates mTOR signaling and is essential for autophagy. J. Biol. Chem. 2009, 284, 12297–12305. [Google Scholar] [CrossRef]
- Baena, M.; Sangüesa, G.; Hutter, N.; Sánchez, R.; Roglans, N.; Laguna, J.; Alegret, M. Fructose supplementation impairs rat liver autophagy through mTORC activation without inducing endoplasmic reticulum stress. Biochim. Et Biophys. Acta 2015, 1851, 107–116. [Google Scholar] [CrossRef]
- Yoshimori, T.; Amano, A. Group a Streptococcus: A loser in the battle with autophagy. Curr. Top. Microbiol. Immunol. 2009, 335, 217–226. [Google Scholar] [CrossRef]
- Tanaka, S.; Hikita, H.; Tatsumi, T.; Sakamori, R.; Nozaki, Y.; Sakane, S.; Shiode, Y.; Nakabori, T.; Saito, Y.; Hiramatsu, N.; et al. Rubicon inhibits autophagy and accelerates hepatocyte apoptosis and lipid accumulation in nonalcoholic fatty liver disease in mice. Hepatology 2016, 64, 1994–2014. [Google Scholar] [CrossRef] [PubMed]
- Fukada, H.; Yamashina, S.; Izumi, K.; Komatsu, M.; Tanaka, K.; Ikejima, K.; Watanabe, S. Suppression of autophagy sensitizes Kupffer cells to endotoxin. Hepatol. Res. Off. J. Jpn. Soc. Hepatol. 2012, 42, 1112–1118. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Dou, X.; Ning, H.; Song, Q.; Wei, W.; Zhang, X.; Shen, C.; Li, J.; Sun, C.; Song, Z. Sirtuin 3 acts as a negative regulator of autophagy dictating hepatocyte susceptibility to lipotoxicity. Hepatology 2017, 66, 936–952. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Dou, X.; Ma, Y.; Ma, W.; Li, S.; Song, Z. Nicotinamide protects hepatocytes against palmitate-induced lipotoxicity via SIRT1-dependent autophagy induction. Nutr. Res. 2017, 40, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Yin, S.; Song, X.; Fan, L.; Hu, H. Glycycoumarin inhibits hepatocyte lipoapoptosis through activation of autophagy and inhibition of ER stress/GSK-3-mediated mitochondrial pathway. Sci. Rep. 2016, 6, 38138. [Google Scholar] [CrossRef]
- Laplante, M.; Sabatini, D. mTOR signaling in growth control and disease. Cell 2012, 149, 274–293. [Google Scholar] [CrossRef]
- Zhang, S.; Mao, Y.; Fan, X. oInhibition of ghrelin-acyltransferase attenuated lipotoxicity by inducing autophagy via AMPK-mTOR pathway. Drug Des. Dev. Ther. 2018, 12, 873–885. [Google Scholar] [CrossRef]
- Junker, A.; Gluud, L.; Pedersen, J.; Langhoff, J.; Holst, J.; Knop, F.; Vilsbøll, T. A 25-year-old woman with type 2 diabetes and liver disease. Case Rep. Gastroenterol. 2014, 8, 398–403. [Google Scholar] [CrossRef]
- Liu, T.; Xiong, X.; Ren, X.; Zhao, M.; Shi, C.; Wang, J.; Zhou, Y.; Zhang, F.; Han, Y.; Gao, X.; et al. FNDC5 Alleviates Hepatosteatosis by Restoring AMPK/mTOR-Mediated Autophagy, Fatty Acid Oxidation, and Lipogenesis in Mice. Diabetes 2016, 65, 3262–3275. [Google Scholar] [CrossRef]
- Farrell, G.; van Rooyen, D.; Gan, L.; Chitturi, S. NASH is an Inflammatory Disorder: Pathogenic, Prognostic and Therapeutic Implications. Gut Liver 2012, 6, 149–171. [Google Scholar] [CrossRef] [PubMed]
- Stanton, M.; Chen, S.; Jackson, J.; Rojas-Triana, A.; Kinsley, D.; Cui, L.; Fine, J.; Greenfeder, S.; Bober, L.; Jenh, C. Inflammatory Signals shift from adipose to liver during high fat feeding and influence the development of steatohepatitis in mice. J. Inflamm. 2011, 8, 8. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Deng, X.; Jiang, Q.; Li, G.; Zhang, J.; Zhang, N.; Xin, S.; Xu, K. Scoparone improves hepatic inflammation and autophagy in mice with nonalcoholic steatohepatitis by regulating the ROS/P38/Nrf2 axis and PI3K/AKT/mTOR pathway in macrophages. Biomed. Pharmacother. Biomed. Pharmacother. 2020, 125, 109895. [Google Scholar] [CrossRef] [PubMed]
- Tumaneng, K.; Schlegelmilch, K.; Russell, R.; Yimlamai, D.; Basnet, H.; Mahadevan, N.; Fitamant, J.; Bardeesy, N.; Camargo, F.D.; Guan, K.L. YAP mediates crosstalk between the Hippo and PI(3)K–TOR pathways by suppressing PTEN via miR-29. Nat. Cell Biol. 2012, 14, 1322–1329. [Google Scholar] [CrossRef] [PubMed]
- Song, K.; Kwon, H.; Han, C.; Chen, W.; Zhang, J.; Ma, W.; Dash, S.; Gandhi, C.; Wu, T. Yes-Associated Protein in Kupffer Cells Enhances the Production of Proinflammatory Cytokines and Promotes the Development of Nonalcoholic Steatohepatitis. Hepatology 2020, 72, 72–87. [Google Scholar] [CrossRef] [PubMed]
- Ao, N.; Ma, Z.; Yang, J.; Jin, S.; Zhang, K.; Luo, E.; Du, J. Liraglutide ameliorates lipotoxicity-induced inflammation through the mTORC1 signalling pathway. Peptides 2020, 133, 170375. [Google Scholar] [CrossRef]
- Liu, J.; Ma, K.; Zhang, Y.; Wu, Y.; Hu, Z.; Lv, L.; Tang, R.; Liu, H.; Ruan, X.; Liu, B. Activation of mTORC1 disrupted LDL receptor pathway: A potential new mechanism for the progression of non-alcoholic fatty liver disease. Int. J. Biochem. Cell Biol. 2015, 61, 8–19. [Google Scholar] [CrossRef]
- Wang, C.; Hu, L.; Zhao, L.; Yang, P.; Moorhead, J.; Varghese, Z.; Chen, Y.; Ruan, X. Inflammatory stress increases hepatic CD36 translational efficiency via activation of the mTOR signalling pathway. PLoS ONE 2014, 9, e103071. [Google Scholar] [CrossRef]
- Eslam, M.; Valenti, L.; Romeo, S. Genetics and epigenetics of NAFLD and NASH: Clinical impact. J. Hepatol. 2018, 68, 268–279. [Google Scholar] [CrossRef]
- Borrelli, A.; Bonelli, P.; Tuccillo, F.; Goldfine, I.; Evans, J.; Buonaguro, F.; Mancini, A. Role of gut microbiota and oxidative stress in the progression of non-alcoholic fatty liver disease to hepatocarcinoma: Current and innovative therapeutic approaches. Redox Biol. 2018, 15, 467–479. [Google Scholar] [CrossRef] [PubMed]
- Tobari, M.; Hashimoto, E.; Taniai, M.; Ikarashi, Y.; Kodama, K.; Kogiso, T.; Tokushige, K.; Takayoshi, N.; Hashimoto, N. Characteristics of non-alcoholic steatohepatitis among lean patients in Japan: Not uncommon and not always benign. J. Gastroenterol. Hepatol. 2019, 34, 1404–1410. [Google Scholar] [CrossRef] [PubMed]
- Daugaard, I.; Dominguez, D.; Kjeldsen, T.; Kristensen, L.; Hager, H.; Wojdacz, T.; Hansen, L. Identification and validation of candidate epigenetic biomarkers in lung adenocarcinoma. Sci. Rep. 2016, 6, 35807. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Liu, Z.; Lynch, E.; He, L.; Cheng, H.; Liu, L.; Li, Z.; Li, J.; Lawless, L.; Zhang, K.; et al. Osr1 regulates hepatic inflammation and cell survival in the progression of non-alcoholic fatty liver disease. Lab. Investig. A J. Tech. Methods Pathol. 2021, 101, 477–489. [Google Scholar] [CrossRef]
- De Conti, A.; Dreval, K.; Tryndyak, V.; Orisakwe, O.; Ross, S.; Beland, F.; Pogribny, I. Inhibition of the Cell Death Pathway in Nonalcoholic Steatohepatitis (NASH)-Related Hepatocarcinogenesis Is Associated with Histone H4 lysine 16 Deacetylation. Mol. Cancer Res. MCR 2017, 15, 1163–1172. [Google Scholar] [CrossRef]
- Santana, N.; Lerario, A.; Schmerling, C.; Marui, S.; Alves, V.; Hoff, A.; Kopp, P.; Danilovic, D. Molecular profile of Hürthle cell carcinomas: Recurrent mutations in the Wnt/β-catenin pathway. Eur. J. Endocrinol. 2020, 183, 647–656. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, X.; Lu, J.; Qian, Y.; Qian, T.; Wu, X.; Xu, Q. The EGFR Polymorphism Increased the Risk of Hepatocellular Carcinoma Through the miR-3196-Dependent Approach in Chinese Han Population. Pharm. Pers. Med. 2021, 14, 469–476. [Google Scholar] [CrossRef]
- Zhu, C.; Ho, Y.; Salomao, M.; Dapito, D.; Bartolome, A.; Schwabe, R.; Lee, J.; Lowe, S.; Pajvani, U. Notch activity characterizes a common hepatocellular carcinoma subtype with unique molecular and clinicopathologic features. J. Hepatol. 2021, 74, 613–626. [Google Scholar] [CrossRef]
- Bray, S. Notch signalling: A simple pathway becomes complex. Nat. Rev. Mol. Cell Biol. 2006, 7, 678–689. [Google Scholar] [CrossRef]
- Chan, S.; Weng, A.; Tibshirani, R.; Aster, J.; Utz, P. Notch signals positively regulate activity of the mTOR pathway in T-cell acute lymphoblastic leukemia. Blood 2007, 110, 278–286. [Google Scholar] [CrossRef]
- Palomero, T.; Sulis, M.; Cortina, M.; Real, P.; Barnes, K.; Ciofani, M.; Caparros, E.; Buteau, J.; Brown, K.; Perkins, S.; et al. Mutational loss of PTEN induces resistance to NOTCH1 inhibition in T-cell leukemia. Nat. Med. 2007, 13, 1203–1210. [Google Scholar] [CrossRef]
- Shepherd, C.; Banerjee, L.; Cheung, C.; Mansour, M.; Jenkinson, S.; Gale, R.; Khwaja, A. PI3K/mTOR inhibition upregulates NOTCH-MYC signalling leading to an impaired cytotoxic response. Leukemia 2013, 27, 650–660. [Google Scholar] [CrossRef] [PubMed]
- Pajvani, U.; Qiang, L.; Kangsamaksin, T.; Kitajewski, J.; Ginsberg, H.; Accili, D. Inhibition of Notch uncouples Akt activation from hepatic lipid accumulation by decreasing mTorc1 stability. Nat. Med. 2013, 19, 1054–1060. [Google Scholar] [CrossRef] [PubMed]
- Hibdon, E.; Razumilava, N.; Keeley, T.; Wong, G.; Solanki, S.; Shah, Y.; Samuelson, L. Notch and mTOR Signaling Pathways Promote Human Gastric Cancer Cell Proliferation. Neoplasia 2019, 21, 702–712. [Google Scholar] [CrossRef]
- Zheng, X.; Zeng, W.; Gai, X.; Xu, Q.; Li, C.; Liang, Z.; Tuo, H.; Liu, Q. Role of the Hedgehog pathway in hepatocellular carcinoma (review). Oncol. Rep. 2013, 30, 2020–2026. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Vittar, N.; Gai, X.; Fernandez-Barrena, M.; Moser, C.; Hu, C.; Almada, L.; McCleary-Wheeler, A.; Elsawa, S.; Vrabel, A.; et al. The transcription factor GLI1 mediates TGFβ1 driven EMT in hepatocellular carcinoma via a SNAI1-dependent mechanism. PLoS ONE 2012, 7, e49581. [Google Scholar] [CrossRef]
- Zheng, X.; Yao, Y.; Xu, Q.; Tu, K.; Liu, Q. Evaluation of glioma-associated oncogene 1 expression and its correlation with the expression of sonic hedgehog, E-cadherin and S100a4 in human hepatocellular carcinoma. Mol. Med. Rep. 2010, 3, 965–970. [Google Scholar] [CrossRef]
- Jiang, Y.; Peng, J.; Song, J.; He, J.; Jiang, M.; Wang, J.; Ma, L.; Wang, Y.; Lin, M.; Wu, H.; et al. Loss of Hilnc prevents diet-induced hepatic steatosis through binding of IGF2BP2. Nat. Metab. 2021, 3, 1569–1584. [Google Scholar] [CrossRef]
- Lenz, H. Molecular markers in gastrointestinal cancer: Targeted therapy and tailored chemotherapy. Onkologie 2004, 27, 12–14. [Google Scholar] [CrossRef]
- Wang, Y.; Ding, Q.; Yen, C.; Xia, W.; Izzo, J.; Lang, J.; Li, C.; Hsu, J.; Miller, S.; Wang, X.; et al. The crosstalk of mTOR/S6K1 and Hedgehog pathways. Cancer Cell 2012, 21, 374–387. [Google Scholar] [CrossRef]
- Zhao, B.; Tumaneng, K.; Guan, K. The Hippo pathway in organ size control, tissue regeneration and stem cell self-renewal. Nat. Cell Biol. 2011, 13, 877–883. [Google Scholar] [CrossRef]
- Liu, A.M.; Xu, M.Z.; Chen, J.; Poon, R.T.; Luk, J.M. Targeting YAP and Hippo signaling pathway in liver cancer. Expert Opin. Ther. Targets 2010, 14, 855–868. [Google Scholar] [CrossRef]
- Csibi, A.; Blenis, J. Hippo-YAP and mTOR pathways collaborate to regulate organ size. Nat. Cell Biol. 2012, 14, 1244–1245. [Google Scholar] [CrossRef] [PubMed]
- Liang, N.; Zhang, C.; Dill, P.; Panasyuk, G.; Pion, D.; Koka, V.; Gallazzini, M.; Olson, E.N.; Lam, H.; Henske, E.P.; et al. Regulation of YAP by mTOR and autophagy reveals a therapeutic target of tuberous sclerosis complex. J. Exp. Med. 2014, 211, 2249–2263. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wang, Y.; Zhou, W.; Chen, T.; Wu, Q.; Chutturghoon, V.K.; Lin, B.; Geng, L.; Yang, Z.; Zhou, L.; et al. YAP promotes multi-drug resistance and inhibits autophagy-related cell death in hepatocellular carcinoma via the RAC1-ROS-mTOR pathway. Cancer Cell Int. 2019, 19, 179. [Google Scholar] [CrossRef] [PubMed]
- Gan, W.; Dai, X.; Dai, X.; Xie, J.; Yin, S.; Zhu, J.; Wang, C.; Liu, Y.; Guo, J.; Wang, M.; et al. LATS suppresses mTORC1 activity to directly coordinate Hippo and mTORC1 pathways in growth control. Nat. Cell Biol. 2020, 22, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.H.; Kim, H.B.; Kim, M.C.; Lee, J.M.; Lee, J.H.; Kim, J.H.; Kim, J.W.; Park, W.Y.; Kim, S.Y.; Kim, J.B.; et al. Hippo-mediated suppression of IRS2/AKT signaling prevents hepatic steatosis and liver cancer. J. Clin. Investig. 2018, 128, 1010–1025. [Google Scholar] [CrossRef]
mTOR Related Signaling Pathways | The Stages That Affect NAFLD | Effects on the Course of Liver Disease | Reference |
---|---|---|---|
STING/mTORC1 | NAFLD | Reduce fatty acid accumulation in hepatocytes | [33] |
FLCN/mTORC1 | NAFLD | Decreased lipid accumulation in the liver | [34] |
mTORC1/SREBP1c/DNL | NAFLD | Liver lipid metabolism and fat deposition | [35,36,37,38] |
AMPK/mTORC1 | NAFLD | Reduce liver fat deposition; Mediating autophagy level and alleviating hepatotoxicity | [39,98,99,100] |
IRS1/mTORC2/Foxo1 | NAFLD | It regulates the occurrence of insulin resistance and affects hepatic glucose metabolism | [44] |
Raptor(mTOR)/CRTC2 | NAFLD | Inhibit hepatic steatosis; Regulates insulin secretion | [43,45,46] |
mTORC2/CREB/LIPIN1 | NAFLD | Regulation of LIPIN1 expression affects liver lipid accumulation | [47] |
mTORC2/AKT/ATP-citrate lyase | NAFLD | Drives brown adipogenesis and de novo adipogenesis | [48] |
mTOR/OS/JNK/p53 | NAFLD and HCC | Regulating hepatocyte death affects autophagy | [51,52,53] |
PI3K/AKT/mTOR | NAFLD, NASH and HCC | Induced oxidative stress and affected hepatocyte apoptosis; It affects the production of autophagy; Enhance autophagy flux, regulate autophagy and inhibit inflammation | [54,84,85,103,115,116] |
PIG3/p53/OS/mTOR | NAFLD | Down-regulation or termination of insulin signaling downstream of PI3K affects cellular ROS level | [57,58,59] |
PI3K/AKT/PTEN/mTOR | NAFLD | Cause OS to occur | [60,61,62,63,64] |
LPS/TLR4,TLR9/mTOR | NAFLD and NASH | Activate the inflammatory cascade | [69,70,104,105] |
p-AKT/mTOR/LC-3II | NAFLD | Macrophages were polarized toward a proinflammatory phenotype (M1) | [72] |
mTOR/TLR2/NLRP3 | NASH | It affects the production of M1 macrophages in liver | [73] |
LPS/5-HT/mTOR | NAFLD | Improve intestinal barrier damage, alleviate liver inflammation | [74] |
Ghrelin/AMPK/mTOR | NAFLD | It restored the up-regulation of autophagy and inhibited the translocation of NF-κB into the nucleus | [82] |
mTORC2/AKT/Foxo1/3 | HCC | Reduce the production of autophagy protein and inhibit autophagy | [81,82,83] |
mTORC1/ULK1/ATG13 | NAFLD | It affects the early stage of autophagy | [87,88,89] |
Rubicon/mTOR | NAFLD and NASH | Accelerate hepatocyte apoptosis, excessive lipid accumulation and inhibit autophagy | [91,92] |
mTOR/p70S6K, 4E-BP1 and eIF4E | NAFLD | Reduce hepatic lipid accumulation caused by inflammatory stress | [106,107,108] |
SQLE/DNMT3A/PTEN/AKT/mTOR | NAFLD and HCC | Oxidative stress and reduced fat deposition in the liver | [65] |
Osr1/PI3K/AKT/mTOR | NAFLD and NASH | Participates in the regulation of liver inflammation | [113] |
microRNA/mTOR | NASH and HCC | Affect the occurrence of liver cancer | [114] |
Notch/mTOR | NAFLD and HCC | Occur crosstalk | [117,118,119,120,121,122] |
Hedgehog/mTOR | NAFLD and HCC | Occur crosstalk | [124,125,126,127,128] |
Hippo/mTOR | NAFLD and HCC | Occur crosstalk | [104,133,134,135,136] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feng, J.; Qiu, S.; Zhou, S.; Tan, Y.; Bai, Y.; Cao, H.; Guo, J.; Su, Z. mTOR: A Potential New Target in Nonalcoholic Fatty Liver Disease. Int. J. Mol. Sci. 2022, 23, 9196. https://doi.org/10.3390/ijms23169196
Feng J, Qiu S, Zhou S, Tan Y, Bai Y, Cao H, Guo J, Su Z. mTOR: A Potential New Target in Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences. 2022; 23(16):9196. https://doi.org/10.3390/ijms23169196
Chicago/Turabian StyleFeng, Jiayao, Shuting Qiu, Shipeng Zhou, Yue Tan, Yan Bai, Hua Cao, Jiao Guo, and Zhengquan Su. 2022. "mTOR: A Potential New Target in Nonalcoholic Fatty Liver Disease" International Journal of Molecular Sciences 23, no. 16: 9196. https://doi.org/10.3390/ijms23169196
APA StyleFeng, J., Qiu, S., Zhou, S., Tan, Y., Bai, Y., Cao, H., Guo, J., & Su, Z. (2022). mTOR: A Potential New Target in Nonalcoholic Fatty Liver Disease. International Journal of Molecular Sciences, 23(16), 9196. https://doi.org/10.3390/ijms23169196