Lipidomics of Bioactive Lipids in Alzheimer’s and Parkinson’s Diseases: Where Are We?
Abstract
:1. Bioactive Lipids: Main Families and Their Members
2. Lipids and Alzheimer’s Disease
2.1. Glycerophospholipids and Sphingolipids
2.2. Classical Eicosanoids
2.3. Specialized Pro-Resolving Mediators
2.4. Endocannabinoids
3. Lipids and Parkinson’s Disease
3.1. Glycerophospholipids and Sphingolipids
3.2. Classical Eicosanoids
3.3. Specialized Pro-Resolving Mediators
3.4. Endocannabinoids
4. Concluding Remarks
Author Contributions
Funding
Conflicts of Interest
List of Abbreviations
2-AG | 2-Arachidonoylglycerol |
6-OHDA | 6-Hydroxydopamine |
AA | Arachidonic Acid |
Aβ | β-Amyloid |
AD | Alzheimer’s Disease |
ADAPT | Alzheimer’s Disease Anti-Inflammatory Prevention Trial |
AEA | Anandamide |
ALA | α-Linolenic Acid |
APCI | Atmospheric pressure chemical ionization |
APPα | Neuroprotective α-Secretase-Cleaved Soluble APP |
ApoE | Apolipoprotein E |
α-syn | α-synuclein |
BMP | Bis (Monoacylglycero) Phosphate |
eCBs | Endocannabinoids |
CB | Cannabinoid Receptor |
CSF | Cerebrospinal Fluid |
CH-NAT | Cognitively Healthy Individuals With Normal Aβ42/Tau |
CH-PAT | Cognitively Healthy Individuals With Pathological Aβ42/Tau |
DHA | Docosahexaenoic Acid |
DHC | Dihydroceramides |
DPX | Disposable Pipette Extraction |
EETs | Epoxides |
EI | Electron impact |
EIA | Enzyme Immune Assay |
EPA | Eicosapentaenoic Acid |
ESI | Electrospray Ionization |
FAs | Saturated Fatty Acid |
FT | Fourier Transform |
F2-IsoPs | F2-Isoprostanes |
F4-NPs | Neuroprostanes |
GBA | Glucocerebrosidase |
GC | Gas Chromatography |
Β-GBA | Β-Glucocerebrosidase Enzyme |
dhGB3 | Dihydro Globotriaosylceramide |
dhGM3 | Dihydro GM3 Ganglioside |
dhSM | Dihydrosphingomyelin |
GlcCer | Glucosylceramide |
GPCRs | G Protein-Coupled Receptors |
HETEs | Hydroxyeicosatetraenoic Acids |
HILIC | Hydrophilic Liquid Interaction Chromatography |
HPLC | High-Performance Liquid Chromatography |
HR | High Resolution |
ICR | Ion Cyclotron Resonance |
LA | Linoleic Acid |
LC | Liquid Chromatography |
L-DOPA | Levodopa |
LC | Liquid Chromatography |
LID | Levodopa-Induced Dyskinesia |
LIF | Laser-Induced Fluorescence |
LPS | Lipopolysaccharides |
LRRK2 | Leucine-Rich Repeat Kinase 2 |
LTs | Leukotrienes |
LXA4 | Lipoxin A4 |
LXB4 | Lipoxin B4 |
LXs | AA-Derived Lipoxins |
MAGL | Monoacylglycerol Lipase |
MALDI | Matrix-Assisted Laser Desorption Ionization |
MaRs | Maresins |
MCI | Mild Cognitive Impairment |
MPTP | 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine |
MRM | Multiple Reaction Monitoring |
MS/MS | Tandem Mass Spectrometry |
MUFAs | Monounsaturated Fatty Acids |
NArPE | 1-Stearoyl,2-Docosahexaenoyl-Sn-Glycerophosphoethanolamine-N-Arachidonoyl |
NMR | Nuclear Magnetic Resonance |
NPs | Lipid-Rich Nanoparticles |
NPD1 | Derived Neuroprotectin D1 |
OA | Oleic Acid |
OEA | N-Oleoylethanolamine |
OH-Cer | Hydoxyceramides |
PBMCs | Peripheral Blood Mononuclear Cells |
PC | Phosphatidylcholine |
PD | Parkinson’s Disease |
PDA | Photodiode Array |
PDs | Protectins |
PE | Phosphatidylethanolamine |
PEA | N-Palmitoylethanolamine |
PE-Cer | Phosphoethanolamine Ceramides |
PUFA | Polyunsaturated Fatty Acid |
PGs | Prostaglandins |
Phyto-Cer | Phytoceramides |
RP | Reverse-Phase |
RSE | Relative Standard Error |
RvDs | D-Series Resolvins |
RvEs | E-Series Resolvins |
SMs | Sphingomyelins |
SM (OH) | Hydroxysphingomyelin |
SPMs | Specialized Pro-Resolving Mediators |
SPME | Solid-Phase Microextraction |
TLC | Thin-Layer Chromatography |
TNF-alpha | Tumor Necrosis Factor alpha |
TOF-MS | Time-of-Flight Mass Spectrometry |
TXs | Thromboxanes |
UHPLC | Ultra-High Performance Liquid Chromatography |
UPLC | Ultra-High-Pressure Liquid |
References
- Vigh, L.; Escribá, P.V.; Sonnleitner, A.; Sonnleitner, M.; Piotto, S.; Maresca, B.; Horváth, I.; Harwood, J.L. The significance of lipid composition for membrane activity: New concepts and ways of assessing function. Prog. Lipid Res. 2005, 44, 303–344. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T. Lipid mediators in health and disease: Enzymes and receptors as therapeutic targets for the regulation of immunity and inflammation. Annu. Rev. Pharmacol. Toxicol. 2009, 49, 123–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chiurchiù, V.; Maccarrone, M. Bioactive lipids as modulators of immunity, inflammation and emotions. Curr. Opin. Pharmacol. 2016, 29, 54–62. [Google Scholar] [CrossRef]
- Chiurchiù, V.; Leuti, A.; Maccarrone, M. Bioactive Lipids and Chronic Inflammation: Managing the Fire within. Front. Immunol. 2018, 9, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannun, Y.A.; Obeid, L.M. Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 2008, 9, 139–150. [Google Scholar] [CrossRef] [PubMed]
- El Alwani, M.; Wu, B.X.; Obeid, L.M.; Hannun, Y.A. Bioactive sphingolipids in the modulation of the inflammatory response. Pharmacol. Ther. 2006, 112, 171–183. [Google Scholar] [CrossRef]
- Serhan, C.N. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014, 510, 92–101. [Google Scholar] [CrossRef] [Green Version]
- Basil, M.C.; Levy, B.D. Specialized pro-resolving mediators: Endogenous regulators of infection and inflammation. Nat. Rev. Immunol. 2016, 16, 51–67. [Google Scholar] [CrossRef]
- Chiurchiù, V. Endocannabinoids and Immunity. Cannabis. Cannabinoid. Res. 2016, 1, 59–66. [Google Scholar] [CrossRef] [Green Version]
- Kao, Y.C.; Ho, P.C.; Tu, Y.K.; Jou, I.M.; Tsai, K.J. Lipids and Alzheimer’s Disease. Int. J. Mol. Sci. 2020, 21, 1505. [Google Scholar] [CrossRef]
- Kawarabayashi, T.; Shoji, M.; Younkin, L.H.; Wen-Lang, L.; Dickson, D.W.; Murakami, T.; Matsubara, E.; Abe, K.; Ashe, K.H.; Younkin, S.G. Dimeric amyloid beta protein rapidly accumulates in lipid rafts followed by apolipoprotein E and phosphorylated tau accumulation in the Tg2576 mouse model of Alzheimer’s disease. J. Neurosci. 2004, 24, 3801–3809. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.M.; Binder, L.I. Free fatty acids stimulate the polymerization of tau and amyloid beta peptides. In vitro evidence for a common effector of pathogenesis in Alzheimer’s disease. Am. J. Pathol. 1997, 150, 2181–2195. [Google Scholar] [PubMed]
- Nitsch, R.M.; Blusztajn, J.K.; Pittas, A.G.; Slack, B.E.; Growdon, J.H.; Wurtman, R.J. Evidence for a membrane defect in Alzheimer disease brain. Proc. Natl. Acad. Sci. USA 1992, 89, 1671–1675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Whiley, L.; Sen, A.; Heaton, J.; Proitsi, P.; García-Gómez, D.; Leung, R.; Smith, N.; Thambisetty, M.; Kloszewska, I.; Mecocci, P.; et al. Evidence of altered phosphatidylcholine metabolism in Alzheimer’s disease. Neurobiol. Aging 2014, 35, 271–278. [Google Scholar] [CrossRef]
- Mapstone, M.; Cheema, A.K.; Fiandaca, M.S.; Zhong, X.; Mhyre, T.R.; MacArthur, L.H.; Hall, W.J.; Fisher, S.G.; Peterson, D.R.; Haley, J.M.; et al. Plasma phospholipids identify antecedent memory impairment in older adults. Nat. Med. 2014, 20, 415. [Google Scholar] [CrossRef]
- Proitsi, P.; Kim, M.; Whiley, L.; Simmons, A.; Sattlecker, M.; Velayudhan, L.; Lupton, M.K.; Soininen, H.; Kloszewska, I.; Mecocci, P.; et al. Association of blood lipids with Alzheimer’s disease: A comprehensive lipidomics analysis. Alzheimer’s Dement. 2017, 13, 140–151. [Google Scholar] [CrossRef] [Green Version]
- Cutler, R.G.; Kelly, J.; Storie, K.; Pedersen, W.A.; Tammara, A.; Hatanpaa, K.; Troncoso, J.C.; Mattson, M.P. Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer’s disease. Proc. Natl. Acad. Sci. USA 2004, 101, 2070–2075. [Google Scholar] [CrossRef] [Green Version]
- Barbash, S.; Garfinkel, B.P.; Maoz, R.; Simchovitz, A.; Nadorp, B.; Guffanti, A.; Bennett, E.R.; Nadeau, C.; Türk, A.; Paul, L.; et al. Alzheimer’s brains show inter-related changes in RNA and lipid metabolism. Neurobiol. Dis. 2017, 106, 1–13. [Google Scholar] [CrossRef]
- Varma, V.R.; Oommen, A.M.; Varma, S.; Casanova, R.; An, Y.; Andrews, R.M.; O’Brien, R.; Pletnikova, O.; Troncoso, J.C.; Toledo, J.; et al. Brain and blood metabolite signatures of pathology and progression in Alzheimer disease: A targeted metabolomics study. PLoS Med. 2018, 15, e1002482. [Google Scholar] [CrossRef]
- Filippov, V.; Song, M.A.; Zhang, K.; Vinters, H.V.; Tung, S.; Kirsch, W.M.; Yang, J.; Duerksen-Hughes, P.J. Increased ceramide in brains with Alzheimer’s and other neurodegenerative diseases. J. Alzheimer’s Dis. 2012, 29, 537–547. [Google Scholar] [CrossRef] [Green Version]
- Satoi, H.; Tomimoto, H.; Ohtani, R.; Kitano, T.; Kondo, T.; Watanabe, M.; Oka, N.; Akiguchi, I.; Furuya, S.; Hirabayashi, Y.; et al. Astroglial expression of ceramide in Alzheimer’s disease brains: A role during neuronal apoptosis. Neuroscience 2005, 130, 657–666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, X.D.M.H.; McKeel, D.W., Jr.; Kelley, J.; Morris, J.C. Substantial sulfatide deficiency and ceramide elevation in very early Alzheimer’s disease: Potential role in disease pathogenesis. J. Neurochem. 2002, 82, 809–818. [Google Scholar] [CrossRef]
- Mielke, M.M.; Bandaru, V.V.; Haughey, N.J.; Rabins, P.V.; Lyketsos, C.G.; Carlson, M.C. Serum sphingomyelins and ceramides are early predictors of memory impairment. Neurobiol. Aging 2010, 31, 17–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, X.; Huang, Y.; Li, B.; Gong, C.X.; Schuchman, E.H. Deregulation of sphingolipid metabolism in Alzheimer’s disease. Neurobiol. Aging 2010, 31, 398–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrington, M.G.; Fonteh, A.N.; Oborina, E.; Liao, P.; Cowan, R.P.; McComb, G.; Chavez, J.N.; Rush, J.; Biringer, R.G.; Hühmer, A.F. The morphology and biochemistry of nanostructures provide evidence for synthesis and signaling functions in human cerebrospinal fluid. Cerebrospinal. Fluid Res. 2009, 6, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fonteh, A.N.; Chiang, A.J.; Arakaki, X.; Edminster, S.P.; Harrington, M.G. Accumulation of Cerebrospinal Fluid Glycerophospholipids and Sphingolipids in Cognitively Healthy Participants With Alzheimer’s Biomarkers Precedes Lipolysis in the Dementia Stage. Front. Neurosci. 2020, 14, 611393. [Google Scholar] [CrossRef] [PubMed]
- Iuliano, L.; Pacelli, A.; Ciacciarelli, M.; Zerbinati, C.; Fagioli, S.; Piras, F.; Orfei, M.D.; Bossu, P.; Pazzelli, F.; Serviddio, G.; et al. Plasma fatty acid lipidomics in amnestic mild cognitive impairment and Alzheimer’s disease. J. Alzheimer’s Dis. 2013, 36, 545–553. [Google Scholar] [CrossRef]
- Prasad, M.R.; Lovell, M.A.; Yatin, M.; Dhillon, H.; Markesbery, W.R. Regional membrane phospholipid alterations in Alzheimer’s disease. Neurochem. Res. 1998, 23, 81–88. [Google Scholar] [CrossRef]
- Wong, P.T.; McGeer, P.L.; McGeer, E.G. Decreased prostaglandin synthesis in postmortem cerebral cortex from patients with Alzheimer’s disease. Neurochem. Int. 1992, 21, 197–202. [Google Scholar] [CrossRef]
- Cui, Y.; Chen, X.; Liu, L.; Xie, W.; Wu, Q.; Wang, D. Gas chromatography-mass spectrometry analysis of the free fatty acids in serum obtained from patients with Alzheimer’s disease. Biomed. Mater. Eng. 2015, 26 (Suppl. 1), 2165–2177. [Google Scholar]
- Martín, V.; Fabelo, N.; Santpere, G.; Puig, B.; Marín, R.; Ferrer, I.; Díaz, M. Lipid alterations in lipid rafts from Alzheimer’s disease human brain cortex. J. Alzheimer’s Dis. 2010, 19, 489–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Snowden, S.G.; Ebshiana, A.A.; Hye, A.; An, Y.; Pletnikova, O.; O’Brien, R.; Troncoso, J.; Legido-Quigley, C.; Thambisetty, M. Association between fatty acid metabolism in the brain and Alzheimer disease neuropathology and cognitive performance: Anontargeted metabolomic study. PLoS Med. 2017, 14, e1002266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astarita, G.; Jung, K.M.; Berchtold, N.C.; Nguyen, V.Q.; Gillen, D.L.; Head, E.; Cotman, C.W.; Piomelli, D. Deficient liver biosynthesis of docosahexaenoic acid correlates with cognitive impairment in Alzheimer’s disease. PLoS ONE 2010, 5, e12538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Astarita, G.; Piomelli, D. Towards a whole-body systems [multi-organ] lipidomics in Alzheimer’s disease. Leukot. Essent. Fat. Acids 2011, 85, 197–203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tajima, Y.; Ishikawa, M.; Maekawa, K.; Murayama, M.; Senoo, Y.; Nishimaki-Mogami, T.; Nakanishi, H.; Ikeda, K.; Arita, M.; Taguchi, R.; et al. Lipidomic analysis of brain tissues and plasma in a mouse model expressing mutated human amyloid precursor protein/tau for Alzheimer’s disease. Lipids Health Dis. 2013, 12, 68. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Praticò, D.; Yao, Y.; Rokach, J.; Mayo, M.; Silverberg, G.G.; McGuire, D. Reduction of brain lipid peroxidation by CSF drainage in Alzheimer’s disease patients. J. Alzheimer’s Dis. 2004, 6, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Peña-Bautista, C.; López-Cuevas, R.; Cuevas, A.; Baquero, M.; Cháfer-Pericás, C. Lipid peroxidation biomarkers correlation with medial temporal atrophy in early Alzheimer Disease. Neurochem. Int. 2019, 129, 104519. [Google Scholar] [CrossRef]
- Montine, T.J.; Kaye, J.A.; Montine, K.S.; McFarland, L.; Morrow, J.D.; Quinn, J.F. Cerebrospinal fluid abeta42, tau, and f2-isoprostane concentrations in patients with Alzheimer disease, other dementias, and in age-matched controls. Arch. Pathol. Lab. Med. 2001, 125, 510–512. [Google Scholar] [CrossRef]
- Trushina, E.; Dutta, T.; Persson, X.M.; Mielke, M.M.; Petersen, R.C. Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer’s disease using metabolomics. PLoS ONE 2013, 8, e63644. [Google Scholar] [CrossRef] [Green Version]
- Biringer, R.G. The Role of Eicosanoids in Alzheimer’s Disease. Int. J. Environ. Res. Public Health 2019, 16, 2560. [Google Scholar] [CrossRef] [Green Version]
- Iwamoto, N.; Kobayashi, K.; Kosaka, K. The formation of prostaglandins in the postmortem cerebral cortex of Alzheimer-type dementia patients. J. Neurol. 1989, 236, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Montine, T.J.; Sidell, K.R.; Crews, B.C.; Markesbery, W.R.; Marnett, L.J.; Roberts, L.J., 2nd; Morrow, J.D. Elevated CSF prostaglandin E2 levels in patients with probable AD. Neurology 1999, 53, 1495–1498. [Google Scholar] [CrossRef] [PubMed]
- Ferré-González, L.; Peña-Bautista, C.; Baquero, M.; Cháfer-Pericás, C. Assessment of Lipid Peroxidation in Alzheimer’s Disease Differential Diagnosis and Prognosis. Antioxidants 2022, 11, 551. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.M.; Jung, B.H.; Paeng, K.J.; Kim, I.; Chung, B.C. Increased urinary F(2)-isoprostanes levels in the patients with Alzheimer’s disease. Brain Res. Bull. 2004, 64, 47–51. [Google Scholar] [CrossRef]
- Lukiw, W.J. A role for docosahexaenoic acid-derived neuroprotectin D1 in neural cell survival and Alzheimer disease. J. Clin. Investig. 2005, 115, 2774–2783. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Calon, F.; Julien, C.; Winkler, J.W.; Petasis, N.A.; Lukiw, W.J.; Bazan, N.G. Docosahexaenoic acid-derived neuroprotectin D1 induces neuronal survival via secretase- and PPARγ-mediated mechanisms in Alzheimer’s disease models. PLoS ONE 2011, 6, e15816. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Zhu, M.; Hjorth, E.; Cortés-Toro, V.; Eyjolfsdottir, H.; Graff, C.; Nennesmo, I.; Palmblad, J.; Eriksdotter, M.; Sambamurti, K.; et al. Resolution of inflammation is altered in Alzheimer’s disease. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2015, 11, 40–50. [Google Scholar]
- Zhu, M.; Wang, X.; Hjorth, E.; Colas, R.A.; Schroeder, L.; Granholm, A.C.; Serhan, C.N.; Schultzberg, M. Pro-Resolving Lipid Mediators Improve Neuronal Survival and Increase Aβ42 Phagocytosis. Mol. Neurobiol. 2016, 53, 2733–2749. [Google Scholar] [CrossRef]
- Lee, J.Y.; Han, S.H.; Park, M.H.; Baek, B.; Song, I.-S.; Choi, M.-K.; Takuwa, Y.; Ryu, H.; Kim, S.H.; He, X.; et al. Neuronal SphK1 acetylates COX2 and contributes to pathogenesis in a model of Alzheimer’s Disease. Nat. Commun. 2018, 9, 1479. [Google Scholar] [CrossRef]
- Do, K.V.; Hjorth, E.; Wang, Y.; Jun, B.; Kautzmann, M.I.; Ohshima, M.; Eriksdotter, M.; Schultzberg, M.; Bazan, N.G. Cerebrospinal Fluid Profile of Lipid Mediators in Alzheimer’s Disease. Cell Mol. Neurobiol. 2022. [Google Scholar] [CrossRef]
- van der Stelt, M.; Mazzola, C.; Esposito, G.; Matias, I.; Petrosino, S.; De Filippis, D.; Micale, V.; Steardo, L.; Drago, F.; Iuvone, T.; et al. Endocannabinoids and beta-amyloid-induced neurotoxicity in vivo: Effect of pharmacological elevation of endocannabinoid levels. Cell Mol. Life Sci. 2006, 63, 1410–1424. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Yun, Y.; Ku, T.; Li, G.; Sang, N. NO2 inhalation promotes Alzheimer’s disease-like progression: Cyclooxygenase-2-derived prostaglandin E2 modulation and monoacylglycerol lipase inhibition-targeted medication. Sci. Rep. 2016, 6, 22429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Altamura, C.; Ventriglia, M.; Martini, M.G.; Montesano, D.; Errante, Y.; Piscitelli, F.; Scrascia, F.; Quattrocchi, C.; Palazzo, P.; Seccia, S.; et al. Elevation of Plasma 2-Arachidonoylglycerol Levels in Alzheimer’s Disease Patients as a Potential Protective Mechanism against Neurodegenerative Decline. J. Alzheimer’s Dis. 2015, 46, 497–506. [Google Scholar] [CrossRef] [PubMed]
- Jung, K.-M.; Astarita, G.; Yasar, S.; Vasilevko, V.; Cribbs, D.H.; Head, E.; Cotman, C.W.; Piomelli, D. An amyloid β42-dependent deficit in anandamide mobilization is associated with cognitive dysfunction in Alzheimer’s disease. Neurobiol. Aging 2012, 33, 1522–1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piro, J.R.; Benjamin, D.I.; Duerr, J.M.; Pi, Y.; Gonzales, C.; Wood, K.M.; Schwartz, J.W.; Nomura, D.K.; Samad, T.A. A Dysregulated Endocannabinoid-Eicosanoid Network Supports Pathogenesis in a Mouse Model of Alzheimer’s Disease. Cell Rep. 2012, 1, 617–623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Zhang, J.; Wu, Y.; Wang, D.; Feng, G.; Tang, Y.-P.; Teng, Z.; Chen, C. Monoacylglycerol lipase is a therapeutic target for Alzheimer’s disease. Cell Rep. 2012, 2, 1329–1339. [Google Scholar] [CrossRef] [Green Version]
- Maroof, N.; Ravipati, S.; Pardon, M.C.; Barrett, D.A.; Kendall, D.A. Reductions in endocannabinoid levels and enhanced coupling of cannabinoid receptors in the striatum are accompanied by cognitive impairments in the AβPPswe/PS1ΔE9 mouse model of Alzheimer’s disease. J. Alzheimer’s Dis. JAD 2014, 42, 227–245. [Google Scholar] [CrossRef]
- Dorninger, F.; Moser, A.B.; Kou, J.; Wiesinger, C.; Forss-Petter, S.; Gleiss, A.; Hinterberger, M.; Jungwirth, S.; Fischer, P.; Berger, J.; et al. Alterations in the plasma levels of specific choline phospholipids in Alzheimer’s disease mimic accelerated aging. J. Alzheimer’s Dis. 2018, 62, 841–854. [Google Scholar] [CrossRef] [Green Version]
- Pettegrew, J.W.; Panchalingam, K.; Hamilton, R.L.; McClure, R.J. Brain membrane phospholipid alterations in Alzheimer’s disease. Neurochem. Res. 2001, 26, 771–782. [Google Scholar] [CrossRef]
- Alessenko, A.V.; Bugrova, A.E.; Dudnik, L.B. Connection of lipid peroxide oxidation with the sphingomyelin pathway in the development of Alzheimer’s disease. Biochem. Soc. Trans. 2004, 32 Pt 1, 144–146. [Google Scholar] [CrossRef]
- Panchal, M.; Gaudin, M.; Lazar, A.N.; Salvati, E.; Rivals, I.; Ayciriex, S.; Dauphinot, L.; Dargere, D.; Auzeil, N.; Masserini, M.; et al. Ceramides and sphingomyelinases in senile plaques. Neurobiol. Dis. 2014, 65, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Dominguez, G.; Maddelein, M.L.; Pucelle, M.; Nicaise, Y.; Maurage, C.A.; Duyckaerts, C.; Cuvillier, O.; Delisle, M.B. Neuronal sphingosine kinase 2 subcellular localization is altered in Alzheimer’s disease brain. Acta Neuropathol. Commun. 2018, 6, 25. [Google Scholar] [CrossRef] [PubMed]
- Fonteh, A.N.; Cipolla, M.; Chiang, J.; Arakaki, X.; Harrington, M.G. Human cerebrospinal fluid fatty acid levels differ between supernatant fluid and brain-derived nanoparticle fractions, and are altered in Alzheimer’s disease. PLoS ONE 2014, 9, e100519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Solomon, V.; Hafez, M.; Xian, H.; Harrington, M.; Fonteh, A.; Yassine, H. An Association Between Saturated Fatty Acid-Containing Phosphatidylcholine in Cerebrospinal Fluid with Tau Phosphorylation. J. Alzheimer’s Dis. 2022. Epub ahead of print. [Google Scholar] [CrossRef]
- Tully, A.M.; Roche, H.M.; Doyle, R.; Fallon, C.; Bruce, I.; Lawlor, B.; Coakley, D.; Gibney, M.J. Low serum cholesteryl ester-docosahexaenoic acid levels in Alzheimer’s disease: A case-control study. Br. J. Nutr. 2003, 89, 483–489. [Google Scholar] [CrossRef]
- El Shatshat, A.; Pham, A.T.; Rao, P.P.N. Interactions of polyunsaturated fatty acids with amyloid peptides Abeta40 and AbetaArch. Biochem. Biophys. 2019, 663, 34–43. [Google Scholar] [CrossRef]
- Yang, X.; Sheng, W.; Sun, G.Y.; Lee, J.C. Effects of fatty acid unsaturation numbers on membrane fluidity and alpha-secretase-dependent amyloid precursor protein processing. Neurochem. Int. 2011, 58, 321–329. [Google Scholar] [CrossRef] [Green Version]
- Kroger, E.; Verreault, R.; Carmichael, P.H.; Lindsay, J.; Julien, P.; Dewailly, E.; Ayotte, P.; Laurin, D. Omega-3 fatty acids and risk of dementia: The Canadian Study of Health and Aging. Am. J. Clin. Nutr. 2009, 90, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Fraser, T.; Tayler, H.; Love, S. Fatty acid composition of frontal, temporal and parietal neocortex in the normal human brain and in Alzheimer’s disease. Neurochem. Res. 2010, 35, 503–513. [Google Scholar] [CrossRef]
- Chu, C.S.; Hung, C.F.; Ponnusamy, V.K.; Chen, K.C.; Chen, N.C. Higher Serum DHA and Slower Cognitive Decline in Patients with Alzheimer’s Disease: Two-Year Follow-Up. Nutrients 2022, 14, 1159. [Google Scholar] [CrossRef]
- Furman, R.; Lee, J.V.; Axelsen, P.H. Analysis of eicosanoid oxidation products in Alzheimer brain by LC-MS with uniformly 13C-labeled internal standards. Free Radic. Biol. Med. 2018, 118, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Irizarry, M.C.; Yao, Y.; Hyman, B.T.; Growdon, J.H.; Praticò, D. Plasma F2A isoprostane levels in Alzheimer’s and Parkinson’s disease. Neurodegener. Dis. 2007, 4, 403–405. [Google Scholar] [CrossRef] [PubMed]
- Montine, T.J.; Quinn, J.F.; Milatovic, D.; Silbert, L.C.; Dang, T.; Sanchez, S.; Terry, E.; Roberts, L.J., 2nd; Kaye, J.A.; Morrow, J.D. Peripheral F2-isoprostanes and F4-neuroprostanes are not increased in Alzheimer’s disease. Ann. Neurol. 2002, 52, 175–179. [Google Scholar] [CrossRef] [PubMed]
- Kuo, H.C.; Yen, H.C.; Huang, C.C.; Hsu, W.C.; Wei, H.J.; Lin, C.L. Cerebrospinal fluid biomarkers for neuropsychological symptoms in early stage of late-onset Alzheimer’s disease. Int. J. Neurosci. 2015, 125, 747–754. [Google Scholar] [CrossRef] [PubMed]
- González-Domínguez, R.; García-Barrera, T.; Gómez-Ariza, J.L. Metabolomic study of lipids in serum for biomarker discovery in Alzheimer’s disease using direct infusion mass spectrometry. J. Pharm. Biomed. Anal. 2014, 98, 321–326. [Google Scholar] [CrossRef]
- Combrinck, M.; Williams, J.; De Berardinis, M.; Warden, D.; Puopolo, M.; Smith, A.D.; Minghetti, L. Levels of CSF prostaglandin E2, cognitive decline, and survival in Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry 2006, 77, 85–88. [Google Scholar] [CrossRef]
- Ciabattoni, G.; Porreca, E.; Di Febbo, C.; Di Iorio, A.; Paganelli, R.; Bucciarelli, T.; Pescara, L.; Del Re, L.; Giusti, C.; Falco, A.; et al. Determinants of platelet activation in Alzheimer’s disease. Neurobiol. Aging 2007, 28, 336–342. [Google Scholar] [CrossRef]
- Montine, T.J.; Sonnen, J.A.; Milne, G.; Baker, L.D.; Breitner, J.C. Elevated ratio of urinary metabolites of thromboxane and prostacyclin is associated with adverse cardiovascular events in ADAPT. PLoS ONE 2010, 5, e9340. [Google Scholar] [CrossRef] [Green Version]
- Dunn, H.C.; Ager, R.R.; Baglietto-Vargas, D.; Cheng, D.; Kitazawa, M.; Cribbs, D.H.; Medeiros, R. Restoration of Lipoxin A4 Signaling Reduces Alzheimer’s Disease-Like Pathology in the 3xTg-AD Mouse Model. J. Alzheimer’s Dis. 2014, 43, 893–903. [Google Scholar] [CrossRef] [Green Version]
- Kantarci, A.; Aytan, N.; Palaska, I.; Stephens, D.; Crabtree, L.; Benincasa, C.; Jenkins, B.G.; Carreras, I.; and Dedeoglu, A. Combined administration of resolvin E1 and lipoxin A4 resolves inflammation in a murine model of Alzheimer’s disease. Exp. Neurol. 2018, 300, 111–120. [Google Scholar] [CrossRef]
- Wang, X.; Hjorth, E.; Vedin, I.; Eriksdotter, M.; Freund-Levi, Y.; Wahlund, L.-O.; Cederholm, T.; Palmblad, J.; Schultzberg, M. Effects of n-3 FA supplementation on the release of proresolving lipid mediators by blood mononuclear cells: The OmegAD study. J. Lipid Res. 2015, 56, 674–681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fiala, M.; Halder, R.C.; Sagong, B.; Ross, O.; Sayre, J.; Porter, V.; and Bredesen, D.E. ω-3 Supplementation increases amyloid-β phagocytosis and resolvin D1 in patients with minor cognitive impairment. FASEB J. Off. Publ. Fed. Am. Soc. Exp. Biol. 2015, 29, 2681–2689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hopperton, K.E.; Trépanier, M.-O.; James, N.C.E.; Chouinard-Watkins, R.; Bazinet, R.P. Fish oil feeding attenuates neuroinflammatory gene expression without concomitant changes in brain eicosanoids and docosanoids in a mouse model of Alzheimer’s disease. Brain Behav. Immun. 2018, 69, 74–90. [Google Scholar] [CrossRef] [PubMed]
- Hur, J.; Mateo, V.; Amalric, N.; Babiak, M.; Béréziat, G.; Kanony-Truc, C.; Clerc, T.; Blaise, R.; Limon, I. Cerebrovascular β-amyloid deposition and associated microhemorrhages in a Tg2576 Alzheimer mouse model are reduced with a DHA-enriched diet. FASEB J. 2018, 32, 4972–4983. [Google Scholar] [CrossRef] [PubMed]
- Koppel, J.; Bradshaw, H.; Goldberg, T.E.; Khalili, H.; Marambaud, P.; Walker, M.J.; Pazos, M.; Gordon, M.L.; Christen, E.; Davies, P. Endocannabinoids in Alzheimer’s disease and their impact on normative cognitive performance: A case-control and cohort study. Lipids Health Dis. 2009, 8, 2. [Google Scholar] [CrossRef] [Green Version]
- Marchioni, C.; de Souza, I.D.; Grecco, C.F.; Crippa, J.A.; Tumas, V.; Queiroz, M.E.C. A column switching ultrahigh-performance liquid chromatography-tandem mass spectrometry method to determine anandamide and 2-arachidonoylglycerol in plasma samples. Anal. Bioanal. Chem. 2017, 409, 3587–3596. [Google Scholar] [CrossRef]
- Obeso, J.A.; Stamelou, M.; Goetz, C.G.; Poewe, W.; Lang, A.E.; Weintraub, D.; Burn, D.; Halliday, G.M.; Bezard, E.; Przedborski, S.; et al. Past, present, and future of Parkinson’s disease: A special essay on the 200th Anniversary of the Shaking Palsy. Mov. Disord. 2017, 32, 1264–1310. [Google Scholar] [CrossRef]
- Sarchione, A.; Marchand, A.; Taymans, J.-M.; Chartier-Harlin, M.-C. Alpha-Synuclein and Lipids: The Elephant in the Room? Cells 2021, 10, 2452. [Google Scholar] [CrossRef]
- Willingham, S.; Outeiro, T.F.; DeVit, M.J.; Lindquist, S.L.; Muchowski, P.J. Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synuclein. Science 2003, 302, 1769–1772. [Google Scholar] [CrossRef] [Green Version]
- Aufschnaiter, A.; Kohler, V.; Diessl, J.; Peselj, C.; Carmona-Gutierrez, D.; Keller, W.; Büttner, S. Mitochondrial lipids in neurodegeneration. Cell Tissue Res. 2017, 367, 125–140. [Google Scholar] [CrossRef] [Green Version]
- Riboldi, G.M.; Di Fonzo, A.B. GBA, Gaucher Disease, and Parkinson’s Disease: From Genetic to Clinic to New Therapeutic Approaches. Cells 2019, 8, 364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fais, M.; Dore, A.; Galioto, M.; Galleri, G.; Crosio, C.; Iaccarino, C. Parkinson’s Disease-Related Genes and Lipid Alteration. Int. J. Mol. Sci. 2021, 22, 7630. [Google Scholar] [CrossRef] [PubMed]
- Huh, Y.E.; Park, H.; Chiang, M.S.R.; Tuncali, I.; Liu, G.; Locascio, J.J.; Shirvan, J.; Hutten, S.J.; Rotunno, M.; Scherzer, C.R.; et al. Glucosylceramide in cerebrospinal fluid of patients with GBA-associated and idiopathic Parkinson’s disease en-rolled in PPMI. NPJ Park. Dis. 2021, 7, 102. [Google Scholar] [CrossRef] [PubMed]
- Mielke, M.M.; Maetzler, W.; Haughey, N.J.; Bandaru, V.R.; Savica, R.; Deutschle, C.; Gasser, T.; Hauser, A.H.; Grä-ber-Sultan, S.; Liepelt-Scarfone, I.; et al. Plasma Ceramide and Glucosylceramide Metabolism Is Altered in Sporadic Parkinson’s Disease and Associated with Cognitive Impairment: A Pilot Study. PLoS ONE 2013, 8, e73094. [Google Scholar] [CrossRef] [Green Version]
- Galvagnion, C.; Marlet, F.R.; Cerrie, S.; Schapira, A.H.V.; Blandini, F.; Di Monte, D.A. Sphingolipid changes in Parkinson L444P GBA mutation fibroblasts promote α-synuclein aggregation. Brain Awab. 2022, 371, 1038–1051. [Google Scholar] [CrossRef]
- Ferrazza, R.; Cogo, S.; Melrose, H.; Bubacco, L.; Greggio, E.; Guella, G.; Civiero, L.; Plotegher, N. LRRK2 deficiency im-pacts ceramide metabolism in brain. Biochem. Biophys. Res. Commun. 2016, 478, 1141–1146. [Google Scholar] [CrossRef] [Green Version]
- Zardini Buzatto, A.; Tatlay, J.; Bajwa, B.; Mung, D.; Camicioli, R.; Dixon, R.A.; Li, L. Comprehensive Serum Lipidomics for Detecting Incipient Dementia in Parkinson’s Disease. J. Proteome Res. 2021, 20, 4053–4067. [Google Scholar] [CrossRef]
- Hertel, J.; Harms, A.C.; Heinken, A.; Baldini, F.; Thinnes, C.C.; Glaab, E.; Vasco, D.A.; Pietzner, M.; Stewart, I.D.; Thiele, I.; et al. Integrated Analyses of Microbiome and Longitudinal Metabolome Data Reveal Microbial-Host Interactions on Sulfur Metabolism in Parkinson’s Disease. Cell Rep. 2019, 29, 1767–1777.e8. [Google Scholar] [CrossRef] [Green Version]
- Farmer, K.; Smith, C.A.; Hayley, S.; Smith, J. Major Alterations of Phosphatidylcholine and Lysophosphotidylcholine Lipids in the Substantia Nigra Using an Early Stage Model of Parkinson’s Disease. Int. J. Mol. Sci. 2015, 16, 18865–18877. [Google Scholar] [CrossRef] [Green Version]
- Xicoy, H.; Brouwers, J.F.; Wieringa, B.; Martens, G.J.M. Explorative Combined Lipid and Transcriptomic Profiling of Substantia Nigra and Putamen in Parkinson’s Disease. Cells 2020, 9, 1966. [Google Scholar] [CrossRef]
- Beger, A.W.; Dudzik, B.; Woltjer, R.L.; Wood, P.L. Human Brain Lipidomics: Pilot Analysis of the Basal Ganglia Sphingolipidome in Parkinson’s Disease and Lewy Body Disease. Metabolites 2022, 12, 187. [Google Scholar] [CrossRef] [PubMed]
- Abbott, S.K.; Li, H.; Sanz Munoz, S.; Knoch, B.; Batterham, M.; Murphy, K.E.; Halliday, G.M.; Garner, B. Altered ceramide acyl chain length and ceramide synthase gene expression in Parkinson’s disease. Mov. Disord. 2014, 29, 518–526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seyfried, T.N.; Choi, H.; Chevalier, A.; Hogan, D.; Akgoc, Z.; Schneider, J.S. Sex-Related Abnormalities in Substantia Nigra Lipids in Parkinson’s Disease. ASN Neuro. 2018, 10, 1759091418781889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, D.; Jenner, A.M.; Shui, G.; Cheong, W.F.; Mitchell, T.W.; Nealon, J.R.; Kim, W.S.; McCann, H.; Wenk, M.R.; Garner, B.; et al. Lipid pathway alterations in Parkinson’s disease primary visual cortex. PLoS ONE 2011, 6, e17299. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Irigoyen, J.; Cartas-Cejudo, P.; Iruarrizaga-Lejarreta, M.; Santamaría, E. Alteration in the Cerebrospinal Fluid Lipidome in Parkinson’s Disease: A Post-Mortem Pilot Study. Biomedicines 2021, 9, 491. [Google Scholar] [CrossRef]
- Sinclair, E.; Trivedi, D.K.; Sarkar, D.; Walton-Doyle, C.; Milne, J.; Kunath, T.; Rijs, A.M.; de Bie, R.M.A.; Goodacre, R.; Barran, P.; et al. Metabolomics of sebum reveals lipid dysregulation in Parkinson’s disease. Nat. Commun. 2021, 12, 1592. [Google Scholar] [CrossRef]
- Lobasso, S.; Tanzarella, P.; Vergara, D.; Maffia, M.; Cocco, T.; Corcelli, A. Lipid profiling of parkin-mutant human skin fibroblasts. J. Cell. Physiol. 2017, 232, 3540–3551. [Google Scholar] [CrossRef]
- Sharon, R.; Bar-Joseph, I.; Mirick, G.E.; Serhan, C.N.; Selkoe, D.J. Altered Fatty Acid Composition of Dopaminergic Neurons Expressing alpha-synuclein and human brains with α-Synucleinopathies. J. Biol. Chem. 2003, 278, 49874–49881. [Google Scholar] [CrossRef] [Green Version]
- Fabelo, N.; Martín, V.; Santpere, G.; Marín, R.; Torrent, L.; Ferrer, I.; Díaz, M. Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease. Mol. Med. 2011, 17, 1107–1118. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, L.; Zhang, L.; Chen, S.; Chen, Y.; Cai, C. Targeted fatty acid metabolomics to discover Parkinson’s disease associated metabolic alteration. J. Mass Spectrom. 2021, 56, e4781. [Google Scholar] [CrossRef]
- Zhao, H.; Wang, C.; Zhao, N.; Li, W.; Yang, Z.; Liu, X.; Le, W.; Zhang, X. Potential biomarkers of Parkinson’s disease revealed by plasma metabolic profiling. J. Chromatogr. B 2018, 1081–1082, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Golovko, M.Y.; Murphy, E.J. Brain prostaglandin formation is increased by alpha-synuclein gene-ablation during global ischemia. Neurosci. Lett. 2008, 432, 243–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernsebner, K.; Zorn, J.; Kanawati, B.; Walker, A.; Michalke, B. Manganese leads to an increase in markers of oxidative stress as well as to a shift in the ratio of Fe(ii)/(iii) in rat brain tissue. Metallomics 2014, 6, 921–931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seet, R.C.S.; Lee, C.Y.J.; Lim, E.C.H.; Tan, J.J.H.; Quek, A.M.L.; Chong, W.L.; Looi, W.F.; Huang, S.H.; Chan, Y.H.; Halliwell, B. Oxidative damage in Parkinson disease: Measurement using accurate biomarkers. Free Radic. Biol. Med. 2010, 48, 560–566. [Google Scholar] [CrossRef]
- Tyurina, Y.Y.; Polimova, A.M.; Maciel, E.; Tyurin, V.A.; Kapralova, V.I.; Winnica, D.E.; Vikulina, A.S.; Domingues, M.R.M.; McCoy, J.; Kagan, V.E.; et al. LC/MS analysis of cardiolipins in substantia nigra and plasma of rotenone-treated rats: Implication for mitochondrial dysfunction in Parkinson’s disease. Free Radic. Res. 2015, 49, 681–691. [Google Scholar] [CrossRef] [Green Version]
- Klatt-Schreiner, K.; Valek, L.; Kang, J.S.; Khlebtosky, A.; Trautmann, S.; Hahnfeld, L.; Schreiber, Y.; Gurke, R.; Thomas, D.; Tegeder, I.; et al. High Glucosylceramides and Low Anandamide Contribute to Sensory Loss and Pain in Parkinson’s Disease. Mov. Disord. 2020, 35, 1822–1833. [Google Scholar] [CrossRef]
- Di Marzo, V.; Hill, M.P.; Bisogno, T.; Crossman, A.R.; Brotchie, J.M. Enhanced levels of endogenous cannabinoids in the globus pallidus are associated with a reduction in movement in an animal model of Parkinson’s disease. FASEB J. 2000, 14, 1432–1438. [Google Scholar] [CrossRef]
- Gubellini, P.; Picconi, B.; Bari, M.; Battista, N.; Calabresi, P.; Centonze, D.; Bernardi, G.; Finazzi-Agrò, A.; Maccarrone, M. Experimental parkinsonism alters endocannabinoid degradation: Implications for striatal glutamatergic transmission. J. Neurosci. 2002, 22, 6900–6907. [Google Scholar] [CrossRef] [Green Version]
- Maccarrone, M.; Gubellini, P.; Bari, M.; Picconi, B.; Battista, N.; Centonze, D.; Bernardi, G.; Finazzi-Agrò, A.; Calabresi, P. Levodopa treatment reverses endocannabinoid system abnormalities in experimental parkinsonism. J. Neurochem. 2003, 4, 1018–1025. [Google Scholar] [CrossRef]
- Ferrer, B.; Asbrock, N.; Kathuria, S.; Piomelli, D.; Giuffrida, A. Effects of levodopa on endocannabinoid levels in rat basal ganglia: Implications for the treatment of levodopa-induced dyskinesias. Eur. J. Neurosci. 2003, 6, 1607–1614. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Zhang, G.J.; Sun, Y.N.; Yao, L.; Wang, H.S.; Du, C.X.; Zhang, L.; Liu, J. Identification of metabolite biomarkers for L-DOPA-induced dyskinesia in a rat model of Parkinson’s disease by metabolomic technology. Behav. Brain Res. 2018, 347, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Van der Stelt, M.; Fox, S.H.; Hill, M.; Crossman, A.R.; Petrosino, S.; Di Marzo, V.; Brotchie, J.M. A role for endocannabinoids in the generation of parkinsonism and levodopa-induced dyskinesia in MPTP-lesioned non-human primate models of Parkinson’s disease. FASEB J. 2005, 9, 1140–1142. [Google Scholar] [CrossRef] [PubMed]
- Nomura, D.K.; Morrison, B.E.; Blankman, J.L.; Long, J.Z.; Kinsey, S.G.; Marcondes, M.C.; Ward, A.M.; Hahn, Y.K.; Lichtman, A.H.; Conti, B.; et al. Endocannabinoid hydrolysis generates brain prostaglandins that promote neuroinflammation. Science 2011, 6057, 809–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mounsey, R.B.; Mustafa, S.; Robinson, L.; Ross, R.A.; Riedel, G.; Pertwee, R.G.; Teismann, P. Increasing levels of the endocannabinoid 2-AG is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson’s disease. Exp. Neurol. 2015, 273, 36–44. [Google Scholar] [CrossRef] [Green Version]
- Concannon, R.M.; Okine, B.N.; Finn, D.P.; Dowd, E. Differential upregulation of the cannabinoid CB2 receptor in neurotoxic and inflammation-driven rat models of Parkinson’s disease. Exp. Neurol. 2015, 269, 133–141. [Google Scholar] [CrossRef]
- Concannon, R.M.; Okine, B.N.; Finn, D.P.; Dowd, E. Upregulation of the cannabinoid CB2 receptor in environmental and viral inflammation-driven rat models of Parkinson’s disease. Exp. Neurol. 2016, 283, 204–212. [Google Scholar] [CrossRef]
- Kelly, R.; Bemelmans, A.P.; Joséphine, C.; Brouillet, E.; McKernan, D.P.; Dowd, E. Time-Course of Alterations in the Endocannabinoid System after Viral-Mediated Overexpression of α-Synuclein in the Rat Brain. Molecules 2022, 507, 14. [Google Scholar] [CrossRef]
- Krashia, P.; Cordella, A.; Nobili, A.; La Barbera, L.; Federici, M.; Leuti, A.; Campanelli, F.; Natale, G.; Marino, G.; Calabrese, V.; et al. Blunting neuroinflammation with resolvin D1 prevents early pathology in a rat model of Parkinson’s disease. Nat. Commun. 2019, 10, 3945. [Google Scholar] [CrossRef] [Green Version]
- Madeo, G.; Schirinzi, T.; Maltese, M.; Martella, G.; Rapino, C.; Fezza, F.; Mastrangelo, N.; Bonsi, P.; Maccarrone, M.; Pisani, A. Dopamine-dependent CB1 receptor dysfunction at corticostriatal synapses in homozygous PINK1 knockout mice. Neuropharmacology 2016, 101, 460–470. [Google Scholar] [CrossRef]
- Marchioni, C.; Santos-Lobato, B.L.; Queiroz, M.E.C.; Crippa, J.A.S.; Tumas, V. Endocannabinoid levels in patients with Parkinson’s disease with and without levodopa-induced dyskinesias. J. Neural Transm. 2020, 10, 1359–1367. [Google Scholar] [CrossRef]
- Oliveira, I.G.C.; Marchioni, C.; Queiroz, M.E.C. Determination of anandamide in cerebrospinal fluid samples by disposable pipette extraction and ultra-high performance liquid chromatography tandem mass spectrometry. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2019, 1130, 121809. [Google Scholar] [CrossRef]
- Oliveira, I.G.C.; Souza, I.D.; Nascimento, G.C.D.; Del Bel, E.; Queiroz, M.E.C. In-tube solid-phase microextraction directly coupled to tandem mass spectrometry for anandamide and 2-arachidonoylglycerol determination in rat brain samples from an animal model of Parkinson’s disease. J. Chromatogr. A 2021, 1636, 461766. [Google Scholar] [CrossRef]
- Lin, G.; Wang, L.; Marcogliese, P.C.; Bellen, H.J. Sphingolipids in the Pathogenesis of Parkinson’s Disease and Parkinsonism. Trends Endocrinol. Metab. 2019, 30, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Vendruscolo, M. Lipid Homeostasis and its Links with Protein Misfolding Diseases. Front. Mol. Neurosci. 2022, 15, 829291. [Google Scholar] [CrossRef] [PubMed]
- Nalls, A.M.; Duran, R.; Lopez, G.; Kurzawa-Akabni, M.; McKeith, I.G.; Chinnery, P.; Morris, C.M.; Theus, J.; Crosiers, D.; Cras, P.; et al. Multicenter Analysis of Glucocerebrosidase Mutations in Parkinson’s Disease. N. Engl. J. Med. 2009, 361, 1651–1661. [Google Scholar]
- Niimi, Y.; Mizutani, Y.; Akiyama, H.; Watanabe, H.; Shiroki, R.; Hirabayashi, Y.; Hoshinaga, K.; Mutoh, T. Cerebrospinal Fluid Profiles in Parkinson’s Disease: No Accumulation of Glucosylceramide, but Significant Downregulation of Active Complement C5 Fragment. J. Parkinsons. Dis. 2021, 11, 221–232. [Google Scholar] [CrossRef]
- Mata, I.F.; Wedemeyer, W.J.; Farrer, M.J.; Taylor, J.P.; Gallo, K.A. LRRK2 in Parkinson’s disease: Protein domains and functional insights. Trends Neurosci. 2006, 29, 286–293. [Google Scholar] [CrossRef]
- Hinkle, K.M.; Yue, M.; Behrouz, B.; Dächsel, J.C.; Lincoln, S.J.; Bowles, E.E.; Beevers, J.E.; Dugger, B.; Winner, B.; Melrose, H.L.; et al. LRRK2 knockout mice have an intact dopaminergic system but display alterations in exploratory and motor co-ordination behaviors. Mol. Neurodegener. 2012, 7, 25. [Google Scholar] [CrossRef] [Green Version]
- Avisar, H.; Guardia-Laguarta, C.; Area-Gomez, E.; Surface, M.; Chan, A.K.; Alcalay, R.N.; Lerner, B. Lipidomics Predic-tion of Parkinson’s Disease Severity: A Machine-Learning Analysis. J. Parkinsons. Dis. 2021, 11, 1141–1155. [Google Scholar] [CrossRef]
- Gegg, M.E.; Sweet, L.; Wang, B.H.; Shihabuddin, L.; Sardi, S.P.; Schapira, A.H.V. No evidence for substrate accumulation in Parkinson brains with GBA mutations. Mov. Disord. 2015, 30, 1085–1089. [Google Scholar] [CrossRef]
- Shahmoradian, S.H.; Lewis, A.J.; Genoud, C.; Hench, J.; Moors, T.E.; Navarro, P.P.; Castano-Diaz, D.; Schweighauser, G.; Graff-Meyer, A.; Lauer, M.E.; et al. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 2019, 22, 1099–1109. [Google Scholar] [CrossRef] [Green Version]
- Pizarro, C.; Esteban-Díez, I.; Espinosa, M.; Rodríguez-Royo, F.; González-Sáiz, J.-M. An NMR-based lipidomic approach to identify Parkinson’s disease-stage specific lipoprotein-lipid signatures in plasma. Analyst 2019, 144, 1334–1344. [Google Scholar] [CrossRef]
- Mattammal, M.B.; Strong, R.; Lakshmi, V.M.; Chung, H.D.; Stephenson, A.H. Prostaglandin H Synthetase-Mediated Metabolism of Dopamine: Implication for Parkinson’s Disease. J. Neurochem. 1995, 64, 1645–1654. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Zou, L.; Wang, F.; Chen, Z.; Hu, Y.; Wang, Y.; Wang, X.; Zhang, W. Potential biomarkers relating pathological proteins, neuroinflammatory factors and free radicals in PD patients with cognitive impairment: A cross-sectional study. BMC Neurol. 2014, 14, 113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashley, A.K.; Hinds, A.I.; Hanneman, W.H.; Tjalkens, R.B.; Legare, M.E. DJ-1 mutation decreases astroglial release of inflammatory mediators. Neurotoxicology 2016, 52, 198–203. [Google Scholar] [CrossRef] [PubMed]
- Choi, D.J.; An, J.; Jou, I.; Park, S.M.; Joe, E.-H. A Parkinson’s disease gene, DJ-1, regulates anti-inflammatory roles of astrocytes through prostaglandin D2 synthase expression. Neurobiol. Dis. 2019, 127, 482–491. [Google Scholar] [CrossRef]
- Bai, L.; Zhang, X.; Li, X.; Liu, N.; Lou, F.; Ma, H.M.; Luo, X.; Ren, Y. Somatostatin prevents lipopolysaccharide-induced neurodegeneration in the rat substantia nigra by inhibiting the activation of microglia. Mol. Med. Rep. 2015, 12, 1002–1008. [Google Scholar] [CrossRef] [Green Version]
- McLaughlin, P.; Zhou, Y.; Ma, T.; Liu, J.; Zhang, W.; Hong, J.S.; Kovacs, M.; Zhang, J. Proteomic analysis of microglial contribution to mouse strain-dependent dopaminergic neurotoxicity. Glia 2006, 53, 567–582. [Google Scholar] [CrossRef]
- Kang, K.H.; Liou, H.-H.; Hour, M.-J.; Liou, H.-C.; Fu, W.-M. Protection of dopaminergic neurons by 5-lipoxygenase inhibitor. Neuropharmacology 2013, 73, 380–387. [Google Scholar] [CrossRef]
- Branchi, I.; D’Andrea, I.; Armida, M.; Carnevale, D.; Ajomne-Cat, M.A.; Pèzzola, A.; Potenza, R.L.; Morgese, M.G.; Cassano, T.; Alleva, E.; et al. Striatal 6-OHDA lesion in mice: Investigating early neurochemical changes underlying Parkinson’s disease. Behav. Brain Res. 2010, 208, 137–143. [Google Scholar] [CrossRef]
- Pisani, A.; Fezza, F.; Galati, S.; Battista, N.; Napolitano, S.; Finazzi-Agrò, A.; Bernardi, G.; Brusa, L.; Pierantozzi, M.; Stanzione, P.; et al. High endogenous cannabinoid levels in the cerebrospinal fluid of untreated Parkinson’s disease patients. Ann. Neurol. 2005, 57, 777–779. [Google Scholar] [CrossRef] [PubMed]
- Pisani, V.; Moschella, V.; Bari, M.; Fezza, F.; Galati, S.; Bernardi, G.; Stanzione, P.; Pisani, A.; Maccarrone, M. Dynamic changes of anandamide in the cerebrospinal fluid of Parkinson’s disease patients. Mov. Disord. 2010, 7, 920–924. [Google Scholar] [CrossRef] [PubMed]
- Pisani, V.; Madeo, G.; Tassone, A.; Sciamanna, G.; Maccarrone, M.; Stanzione, P.; Pisani, A. Homeostatic changes of the endocannabinoid system in Parkinson’s disease. Mov. Disord. 2011, 2, 216–222. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, I.G.; Queiroz, M.E. A micro salting-out assisted liquid-liquid extraction combined with ultra-high performance liquid chromatography tandem mass spectrometry to determine anandamide and 2-arachidonoylglycerol in rat brain samples. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2020, 1158, 122351. [Google Scholar] [CrossRef] [PubMed]
- Serhan, C.N.; Gupta, S.K.; Perretti, M.; Godson, C.; Brennan, E.; Li, Y.; Soehnlein, O.; Shimizu, T.; Werz, O.; Chiurchiù, V.; et al. The Atlas of Inflammation Resolution (AIR). Mol Aspects Med. 2020, 74, 100894. [Google Scholar] [CrossRef] [PubMed]
Bioactive Lipid | Methods of Detection/Instruments | Tissue | Variation | References |
---|---|---|---|---|
PCs and PEs | HPLC Microsorb C-18 column (Rainin Instruments) and detected fluorimetrically | Human frontal cortex | Decreased levels in AD patients | [13] |
PC (16:0/20:5), PC (16:0/22:6), and PC (18:0/22:6) | LC/MS ACQUITY UPLC™ system (Waters Inc.) and Bruker Advance 600 spectrometer | Human plasma | Decreased levels in AD patients | [14] |
PC diacyl (C36:6), C38:0, C38:6, C40:1, C40:2, C40:6, PC acyl-alkyl C40:6, lyso-PC (C18:2), acylcarnitines and C16:1-OH | LCMS/MS (Biocrates Absolute-IDQ P180) | Human plasma | Decreased levels in MCI and AD patients and positive correlation with MCI/AD conversion | [15] |
PC 40:4 and PC 36:3 | LC/MS ACQUITY UPLC and XEVO QTOF system (Waters Inc.) | Human plasma | Decreased levels in AD patients | [16] |
SMs and ceramides | ES/MS/MS Sciex API 3000 triple stage quadrupole tandem mass spectrometer | Human brain | SMs decreased and ceramide increased in brain regions of AD patients with extensive Aβ SMs increased and ceramide decreased in brain regions of AD patients with diffuse Aβ | [17] |
Ceramide (C16:0, C22:0, and C24:1) | LC-MS Ultra-high performance liquid chromatography C8-reversed phase column (BEH C8, Waters) connected to an Orbitrap Exactive mass spectrometer and analyzed once in positive and once in negative ion mode | Human white matter | Decreased levels in AD patients | [18] |
SM (C16:0, C16:1, C18:1, and C14:1) | HPLC-MS/MS AB SCIEX 4000 QTrap mass spectrometer | Human blood, brain, and CSF | Increased levels in AD patients and positive correlation with disease severity | [19] |
Cer16, Cer18, Cer20, and Cer24 | HPLC-ESI-MS/MS Triple quadrupole 6410 mass spectrometer (Agilent Technologies) and ionization in the positive ion mode | Human brain and CSF | Increased levels in AD patients compared to other neurological diseases | [20,21,22,23] |
S1P | HPLC HPLC system Monitored using a model 474 scanning fluorescence detector | Human brain | Reduced levels in AD patients | [24] |
PC, PE, PS, and MUFAs (C15:1 and C19:1) | LC-MS LTQ ion trap mass spectrometer equipped with a nano-electrospray ion source (Thermo Fisher Scientific) and 30 μm PicoTip emitter (New Objective) | Human NPs fraction of CSF | Increased levels in AD | [25] |
PC | ESI-MS TSQ mass spectrometer (Thermo Fisher Scientific) | Human CSF | Decreased levels in AD patients with normal Aβ42/tau compared to pathological Aβ42/tau | [26] |
AA and LA | GC-MS Agilent 7820A Plus Gas Chromatograph | Human plasma | Increased levels in MCI and AD patients compared to controls, by contrast no differences are noticed between AD and MCI | [27] |
OA, PGE2, and PGF2a | TLC-HP-FFAP and TLC Hewlett Packard gas chromatograph using a capillary column | Human frontal cortex and hippocampus | Increased levels in AD patients compared to other cortical areas | [28,29] |
SFAs (C14:0, C16:0, and C18:0) and UFAs (C16:1, C18:1, C18:2, γ-C18:3, C20:2, and C22:6) | GC-MS Gas chromatograph coupled to an ion trap mass spectrometer (Thermo Finnigan) | Human serum | Decreased FFAs levels in AD patients Increased C18:3 in AD patients | [30] |
DHA and OA | HPTLC Shimadzu GC-14A gas chromatograph equipped with a flame ionization detector and a fused silica capillary column SupelcowaxTM10 | Human frontal cortex | Decreased levels in AD patients | [31] |
LA, AA, ALA, EPA, and OA | HILIC-MS and GC-MS Shimadzu QP-2010 with an AOC-20S autosampler | Human temporal gyrus | Decreased levels in AD patients | [32] |
DHA | LC-MS Agilent 1100 liquid chromatograph coupled to a 1946D mass detector equipped with an electrospray ionization interface (Agilent Technologies) | Human Hippocampus and liver | Decreased levels in AD patients and negative correlation with disease severity | [33,34] |
12-HETE, 15-HETE, and PGD2 | RP-LC-ESI-TOFMS Finnigan LTQ linear ion trap mass spectrometer (Thermo Fisher Scientific) interfaced with a Shimadzu Prominence HPLC system (Waters Inc.) | Plasma and brain of APP/tau mice | Increased 12-HETE levels Decreased 15-HETE and PGD2 levels | [35] |
isoprostane-F2a | GC-MS A Micromass Quattro II mass spectrometer (Micromass, Beverly, MA) equipped with a coaxial electrospray source and triple quadrupole analyzer | Human CSF | Increased levels in AD patients and positive correlation with disease severity | [36] |
isoprostane-F2a | UPLC-MS/MS Waters Acquity UPLC-Xevo TQD system (Milford) | Human plasma | Increased levels in AD | [37,38] |
17- HDHA and 15-HETE | UPLC-ToF-MS Acquity UPLC system (Waters, Milford) | Human CSF | Increased levels in AD patients compared to MCI | [39] |
TBX2 and PGD2 | GC-MS Finnigan 4500 GC-MS with the Super Incos Data System (Finnigan) and a capillary column of SPB-1 | Human cortex | Increased levels in AD patients | [40,41] |
PGE2 and 6-keto-PGF1 | GC-MS Instrument not specified | Human CSF | Increased PGE2 and decreased 6-keto-PGF1 levels in AD patients | [42] |
PGE2 | LC-MS Instrument not specified | Human CSF | Decreased PGE2 levels along progressive learning impairment in AD patients | [43] |
F2-isoprostanes, PGF2a, 8-isoPGF2a, and 11-dehydro-TXB2 | GC–MS Aglient GC–MS system, which consists of an HP 6890 GC and an HP 5973 MSD | Human urine | Increased levels in AD patients | [44] |
NPD1 | LC-PDA-ESI-MS/MS TSQ Quantum (Thermo Electron Corp.) triple quadrupole mass spectrometer and electrospray ionization | Human hippocampal CA1 region | Reduced in AD patients | [45] |
NPD1 | LC-PDA-ESI-MS/MS TSQ Quantum (Thermo-Finnigan) triple quadrupole mass spectrometer and electrospray ionization | Hippocampus of 3xTg-AD mice | Reduced in 12–13-month-old mice compared to 4-month-old mice | [46] |
LXA4 and MaR1 | LC-MS-MS Qtrap 5500 equipped with a Shimadzu LC-20AD | Hippocampus of AD patients | Reduced in AD patients compared to controls | [47] |
PD1, MaR1, and RvD5 | LC-MS/MS LC-20AD HPLC and a SIL-20AC auto-injector paired with a Qtrap 6500 | Entorhinal cortex of AD patients | Decreased in AD patients compared to controls | [48] |
15-R-LXA4 | LC-MS/MS Agilent 6470 Triple Quad LC-MS/MS system coupled to an Agilent 1290 HPLC system | Neurons from APP/PS1, APP/PS1/SphK1 and WT mice | Decreased in APP/PS1 mice compared to the other two groups | [49] |
RvD4, RvD1, PD1, MaR1, and RvE4 | LC-MS/MS Xevo TQ-S equipped with Acquity I Class UPLC | CSF of AD, MCI, and SCI subjects | Decreased in AD and/or MCI compared to SCI | [50] |
2-AG | LC-APCI-MS Shimadzu HPLC apparatus LC-10ADVP, coupled to a Shimadzu LCMS-2010, quadrupole MS via a Shimadzu APCI interface | Hippocampus of rodents (mice and rats) treated with Aβ | Increased in the hemisphere ipsilateral to the injection of Aβ, 12 days after treatment | [51] |
2-AG | LC-MS/MS UPLC system (Waters Inc.) coupled with a triple quadrupole Quattro Premiere/XE mass spectrometer | Brain tissue of APP/PS1 transgenic mouse model after NO2 exposition in presence or absence of MAGL inhibitor JZL184 | Increased in presence of JZL184 | [52] |
2-AG | LC-MS/MS Shimadzu HPLC apparatus LC10ADVP coupled to a quadrupole MS Shimadzu LCMS-2010 | Blood of AD patients | Increased in AD patients compared to controls | [53] |
AEA | LC-ESI-MS 1100-LC system (Agilent) coupled to a 1946D-MS detector equipped with an electrospray ionization (ESI) interface | Midfrontal and temporal cortex post-mortem tissues of AD patients | Decreased in AD patients compared to controls | [54] |
2-AG and AEA | LC-MS/MS 6430 triple quadrupole mass spectrometer (Agilent) | Brain tissue from PS1/APP AD mice | Increased compared to their wild-type littermates | [55] |
2-AG | LC-ESI-MS 1100 LC-MSD, SL mode (Agilent) | Brain tissue of 5xFAD mice | Increased after administration of MAGL inhibitor JZL184 | [56] |
AEA, 2-AG, PEA, and OEA | LC-MS/MS Applied Biosystems MDS SCIEX 4000 Q-Trap hybrid triple quadrupole–linear ion trap mass spectrometer model 1004229-F in conjunction with a Shimadzu series 10AD VP LC system | Frontal cortex, hippocampus, and striatum of AβPPswe/PS1ΔE9 | Increased AEA and OEA levels in the areas of both AβPPswe/PS1ΔE9 and wild-type mice with age. Increased AEA levels in AβPPswe/PS1ΔE9 compared to wild-type mice Lower 2-AG levels in AβPPswe/PS1ΔE9 compared to wild-type mice | [57] |
Bioactive Lipid | Methods of Detection/Instruments | Tissue | Variation | References |
---|---|---|---|---|
GlcCer and SM | LC/MS/MS Triple quadrupole mass spectrometer (AB Sciex API 500). | Human CSF | Increased GlcCer levels and decreased SM levels in early stages of de novo PD patients | [93] |
Cer (16:0, 18:0, 20:0, 22:0, and 24:1), MonohexosylCer (16:0, 20:0, and 24:0), and LactosylCer | HPLC coupled to/ESI/MS/MS Triple quadrupole mass spectrometer (AB Sciex API3000s) | Human plasma | Increased in PD patients with cognitive impairment | [94] |
Cer HexosylCer and SM | Shotgun lipidomics Q Exactive mass spectrometer (Thermo Scientific) equipped with a TriVersa NanoMate ion source (Advion Biosciences) | L444PGBA-mutated human fibroblasts | Increased Ceramide and SM levels and decreased total phospholipid levels in L444PGBA fibroblasts compared to healthy controls and idiopathic PD cells | [95] |
Cer | LC-MS Shimadzu High Performance LC system (CBM-20 A, equipped with the binary pump LC-20AB) | Brain of LRRK2−/− mice | Increased in LRRK−/− mice compared to wild-type mice | [96] |
Cer, PE, and SM | UHPLC/Q-TOF-MS Dionex UltiMate 3000 UHPLC system (ThermoFisher Scientific) coupled to an ultra-high resolution Maxis II Quadrupole Time-of-Flight (QtoF) mass spectrometer equipped with an electrospray ionization source | Human blood serum | Increased in PD patients | [97] |
Long-chain Fas (14:0, 17:1, and 20:1) | UPLC-MS/MS UPLC-ESI-Q-TOF (Agilent) high resolution mass spectrometer | Human plasma | Increased at baseline and decreased in the follow-up in PD | [98] |
LPC (16:0 and 18:1) PC (24:0, 24:1, 26:0, 28:0, 31:5, 34:2, 36:4, 36:5, 38:6, 40:5, 42:4, and 44:5) | HPLC-ESI-MS/MS 4000 QTRAP ESI-MS/MS Hybrid Triple Quadrupole/Linear Ion Trap (AB Sciex) | Substantia nigra of 6-OHDA rats | Increased LPC levels in 6-OHDA rats Decreased PC and LC levels in 6-OHDA rats | [99] |
BMP 42:8 and Pl 42:10 PC 36:3, PE 36:2, PS 36:3, and SM (18:1/14:0,18:1/16:0) | UPLC-MS Fusion mass spectrometer (Thermo Scientific) | Human substantia nigra | Increased BMP and PI in PD patients Decreased PC, PE, PS, and SM in PD patients | [100] |
Cer (16:0 and 18:0) and Hydroxyceramide (18:0) | ESI-HR-MS Orbitrap Thermo Q Exactive mass spectrometer (Thermo Scientific) | Human putamen | Decreased in PD patients | [101] |
SM | ESI-MS Hybrid triple quadrupole ion trap mass spectrometer (QTRAP 5500; AB SCIEX) coupled to an attached chip-based automated nanospray source (Triversa NanomateVR) | Human anterior cingulate cortex | Decreased in PD patients | [102] |
SM | HP-TLC Silica gel HP-TLC plates (Merck) using a Camag Linomat V semiautomatic TLC spotter (Camag Scientific Inc.) | Human substantia nigra | Decreased in PD patients | [103] |
SM (18:1/22:1, 18:1/22/0, 18:1/24:1, 18:1/24:0, and 18:0/24:0) Cer (18:0/18:0, 18:1/24:1, and 18:0/24:1) | HPLC/MS HPLC 1200 system (Agilent) coupled with an Applied Biosystem Triple Quadrupole/Ion Trap mass spectrometer (3200 Qtrap) | Human visual cortex | Increased SM and Cer levels in PD patients | [104] |
TAG, SAFA, MUFA, PC, Cer, and SM | UPLC-ESI-qToF-MS/MS Acquity-LCT Premier XE system coupled to an Acquity-Xevo G2QTOF (Waters Corp.) | Human CSF | Increased in PD patients | [105] |
TAG (50:5) and Cer (42:0, 40:0, 38:1) | UHPLC-qToF-MS/MS Ultimate 3000 UHPLC (Thermo Scientific) coupled to a Synapt G2-Si QtoF mass spectrometer (Waters) | Human sebum | Decreased in drug-naive and medicated PD sebum samples compared to healthy controls. | [106] |
PI (34:1), PS (36:1), and LPC (16:0 and 18:1) | MALDI-TOF/MS) and TLC Bruker Microflex LRF mass spectrometer and Bruker Daltonics Ultraflex Extreme MALDI/TOF mass spectrometer (Bruker Daltonics) | Human parkin-mutant fibroblasts | Increased in parkin−/− PD fibroblasts | [107] |
PUFAs (18:3, 20:4, 22:4, 22:5, and 22:6) | GC/MS Hewlett Packard 6890 gas chromatograph using a mass selective detector (HP 5973) equipped with an MS Chemstation | Brain of α-syn−/− mice | Decreased in α-syn−/− mice compared to wild-type littermates | [108] |
DHA (22:6) and AA (20:4) | TLC Shimadzu GC-14A gas chromatograph | Lipid rafts from human frontal cortex | Decreased in PD patients | [109] |
AA, 13-hydroxy-octadecatrienoic DHA, lyso-PFA, 12-hydroxy-eicosatetraenoic acid, dihydroxy-eicosatrienoic acids, dihidroxy-octadecenoic acids, 17,18-dihydroxy-eicosatetraenoic acid, and hydroperoxy-octadecadienoic acids | UPLS-MS 8045 series UPLS-MS (Shimadzu) coupled with a C8 column (Phenomenex) | Human plasma | Increased AA and 13-hydroxy-octadecatrienoic in PD patients compared to healthy controls Decreased DHA, lyso-PFA, 12-hydroxy-eicosatetraenoic acid, dihydroxy-eicosatrienoic acids, dihidroxy-octadecenoic acids, 17,18-dihydroxy-eicosatetraenoic acid, and hydroperoxy-octadecadienoic acids in PD patients compared to healthy controls | [110] |
LTB3 and Lyso-PC (18:2) | UPLC-qTOF-MS Agilent 1290 UPLC system coupled with an Agilent 6520 TOF-MS analyzer | Human plasma | Increased levels in plasma of PD patients | [111] |
PGE2, PGD2, and PGF2α | RF-LC-ESI-MS/MS Quadrupole mass spectrometer (API3000, Applied Biosystem) equipped with a TurboIonSpray ionization source | Brains of α-syn−/− mice | Increased levels in α-syn−/− mice compared to wild-type littermates | [112] |
PGB1, PGH2, and 15(S)-HETE | ESI-FT-ICR-MS Fourier transform ion cyclotron resonance mass spectrometer (ICR-FTMS, Solarix) equipped with a 12 T superconducting magnet (Magnex Scientific, Varian Inc.) and an electrospray source (Bruker Daltonics) | Brains of manganese-supplemented rats | Increased levels compared to standard diet-fed rats | [113] |
F2-IsoPs, F4-NPs, and HETEs | GC-MS Hewlett Packard 6890 Gas chromatographer coupled to a Hewlett Packard 5973N mass selective detector (Agilent) | Human plasma | Increased levels in early-stage PD patients | [114] |
Oxidizable PUFAs containing cardiolipin | LC/MS Dionex Ultimate™ 3000 HPLC coupled to a linear ion trap mass spectrometer (LXQ, ThermoFisher Scientific) | Substantia nigra and plasma of rotenone-lesioned rats | Decreased levels compared to control rats | [115] |
AEA | LC-ESI-MS/MS Hybrid triple quadrupole-ion trap mass spectrometer QTRAP 5500 or 6500+ (Sciex) equipped with a Turbo-V-source operating in positive ESI mode | Human plasma | Reduced levels in PD patients | [116] |
AEA and 2-AG | LC-ESI-MS/MS HP-MS 5989B quadrupole mass analyzer equipped with an electron impact source | Globus pallidus and substantia nigra of reserpine-treated rats | Increased 2AG levels in the globus pallidus | [117] |
AEA | GC-EI-MS VG Micromass model QUATTRO spectrometer | Striatum of 6-OHDA-lesioned rats | Increased AEA levels in the striatum | [118,119] |
AEA and 2-AG | HPLC/MS HP 1100 Series HPLC/MS system equipped with a Hewlett Packard octadecyl-silica (ODS) Hypersil column | Caudate–putamen, globus pallidus, and substantia nigra of 6-OHDA-lesioned rats | Reduced AEA levels in the caudate–putamen ipsilateral to the lesion | [120] |
AEA and 2-AG | LC–MS LC-Q/TOF-MS System (1290 Infinity LC, 6530 UHD and Accurate-Mass Q-TOF/MS, Agilent) | Striatum from 6-OHDA lesioned rats | Decreased AEA and 2-AG levels after chronic L-DOPA administration | [121] |
AEA and 2-AG | LC-APCI-MS Shimadzu (LCMS-2010) quadrupole MS via a Shimadzu APCI interface | Basal ganglia (striatum, globus pallidum, and substantia nigra) of MPTP-lesioned cynomolgus monkeys | Increased AEA and 2-AG levels in the striatum Increased AEA levels in the external globus pallidus Increased 2-AG levels in the substantia nigra | [122] |
2-AG | LC-MS Agilent G6410B QQQ instrument | Brain of Mgll+/+, +/−, and −/− MPTP-lesioned mice | Increased levels compared to wild-type littermates | [123] |
2-AG | LC–MS/MS Triple quadrupole mass spectrometer (Thermo Surveyor PDA/TSQ Quantum, Thermo Scientific) | Ventral midbrain of MPTP-lesioned mice | Increased levels compared to control mice | [124] |
AEA, 2-AG, PEA, and OEA | LC-MS/MS 1100 HPLC system coupled to a triple quadrupole 6460 mass spectrometer (Agilent) | Striatum of 6-OHDA, LPS, rotenone, or Poly(I:C)-lesioned rats | Increased AEA and 2-AG levels upon LPS treatment Increased AEA upon rotenone treatment Increased 2-AG upon Poly(I:C) treatment Increased PEA and OEA upon 6-OHDA, LPS, rotenone, and Poly(I:C) treatment | [125,126] |
AEA, 2-AG, PEA, and OEA | LC-MS/MS Agilent 1260 infinity 2 HPLC system coupled to a triple quadrupole SCIEX QTRAP 4500 mass spectrometer | Striatum and substantia nigra of AAV-GFP- or AAV-α-syn-lesioned rats | Reduced 2-AG levels at 12 weeks compared to control rats | [127] |
AEA | RP-HPLC and HPLC-LIF PerkinElmer Nelson Model 1022 | Human CSF | Increased levels in PD patients | [128,129] |
AEA and 2-AG | UHPLC-MS/MS and DPX-UHPLC-MS/MS Two dimensional UHPLC–MS/MS system coupled with a Xevo® TQ-D triple-quadrupole operating in positive electrospray ionization | Human plasma and CSF | Increased AEA levels in the CSF of PD patients Decreased 2-AG levels in the plasma and CSF of PD patients | [130,131] |
AEA and 2-AG | In-tube SPME-MS/MS Two-dimensional UHPLC–MS/MS system coupled with a Xevo® TQ-D triple-quadrupole operating in positive electrospray ionization | Striatum of 6-OHDA-lesioned rats | Increased AEA and decreased 2-AG in the striatum tissue ipsilateral to the lesion compared to contralateral to the lesion | [132] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiurchiù, V.; Tiberi, M.; Matteocci, A.; Fazio, F.; Siffeti, H.; Saracini, S.; Mercuri, N.B.; Sancesario, G. Lipidomics of Bioactive Lipids in Alzheimer’s and Parkinson’s Diseases: Where Are We? Int. J. Mol. Sci. 2022, 23, 6235. https://doi.org/10.3390/ijms23116235
Chiurchiù V, Tiberi M, Matteocci A, Fazio F, Siffeti H, Saracini S, Mercuri NB, Sancesario G. Lipidomics of Bioactive Lipids in Alzheimer’s and Parkinson’s Diseases: Where Are We? International Journal of Molecular Sciences. 2022; 23(11):6235. https://doi.org/10.3390/ijms23116235
Chicago/Turabian StyleChiurchiù, Valerio, Marta Tiberi, Alessandro Matteocci, Federico Fazio, Hasibullah Siffeti, Stefano Saracini, Nicola Biagio Mercuri, and Giuseppe Sancesario. 2022. "Lipidomics of Bioactive Lipids in Alzheimer’s and Parkinson’s Diseases: Where Are We?" International Journal of Molecular Sciences 23, no. 11: 6235. https://doi.org/10.3390/ijms23116235
APA StyleChiurchiù, V., Tiberi, M., Matteocci, A., Fazio, F., Siffeti, H., Saracini, S., Mercuri, N. B., & Sancesario, G. (2022). Lipidomics of Bioactive Lipids in Alzheimer’s and Parkinson’s Diseases: Where Are We? International Journal of Molecular Sciences, 23(11), 6235. https://doi.org/10.3390/ijms23116235